
P5: Policy-driven optimization of P4 pipeline

Anubhavnidhi Abhashkumar∗ Jeongkeun Lee◦ Jean Tourrilhes† Sujata Banerjee?

Wenfei Wu]† Joon-Myung Kang† Aditya Akella∗

University of Wisconsin-Madison∗ Barefoot Networks◦ HP Labs† VMware? Tsinghua University]

Abstract
The physical pipeline of flexible network switches is usu-
ally programmed using packet-level programs, such as P4
programs. However, those programs are low level and leave
room for further optimization. We propose P5 (Policy-driven
optimization of P4 Pipeline), a system that exploits knowl-
edge of application deployments embedded in a high-level
policy abstraction to: 1) detect features that are used by ap-
plications in a mutually-exclusive way and thereby remove
inter-feature dependencies between the tables implement-
ing these features in a network switch. This improves the
pipeline concurrency of switches and hence its pipeline ef-
ficiency. 2) detect and remove the features that are not used
by any application/traffic on the switch in a given topology.
This reduces the number of tables and the resource con-
sumed by switches, which also improves its pipeline effi-
ciency. Our experiments on real P4 switch programs show
that the resulting switch pipelines are up to 50% more effi-
cient as compared to the cases that do not exploit this infor-
mation.

CCS Concepts
•Networks→ Programmable networks;

Keywords
Policy Intent; P4; Pipeline Concurrency

1. INTRODUCTION
Building highly flexible programmable networks requires

both SDN control plane and data plane programmability.
While there have been significant efforts focused on pro-
grammable control planes in the past several years, switch
data plane programmability is just emerging. Recently, few

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050220.3050235

switch vendors have released flexible, reconfigurable, pro-
grammable hardware pipelines: the RMT [11] architecture
from Stanford/TI, Intel’s Flexpipe [23], and HP 5400Rzl2’s
ProVision ASIC [6] are some examples of flexible pipeline
switches. To program the flexible pipeline, new data plane
programming languages are being introduced to enable a
user to specify packet processing requirements in logical ta-
bles, which are then compiled down to an optimized pipeline
of physical hardware stages. One of the first such languages
is P4 (Programming Protocol independent Packet Proces-
sor) [10]. P4 provides a switch pipeline abstraction on which
a programmer can program the entire set of switch features
in one P4 program.

In this paper, we make a case for incorporating application-
level intelligence into the data plane programming. There
are 3 reasons for this.

Standard networking features supported by switches in-
clude L2 forwarding, L3 routing, tunneling, multicast, QoS,
VLAN, NAT, MPLS, ECMP etc. However, not all traffic
will require all features and there are scenarios where dis-
joint traffic will require different features. For example, op-
erator’s management traffic and tenant’s data traffic are of-
ten processed differently by the network; tenant traffic may
get virtualized by VTEP feature but the management traffic
wouldn’t. Some management traffic may require advanced
QoS but telemetry traffic may not. VPN traffic may need
stateful firewall but DC internal traffic may not. The knowl-
edge of which application traffic (or tenant) requires which
feature is missing from the data plane and may be available
as part of high-level policy information.

Secondly, in a network topology with multiple P4 switches,
not all features need to be enabled in every switch and some
network features can be implemented across the topology.
The high-level policies can inform what features need to be
enabled in the topology to support all network-wide policies.
As long as we can control the routing between switches, we
can ensure that traffic that needs a particular feature will tra-
verse the switch that supports that feature [29, 18, 22].

Finally, an important factor affecting the performance ca-
pability of today’s switches is pipeline concurrency, which
allows multiple tables to be placed in the same pipeline stage.
This depends on the dependency relationship between ta-
bles. A dependency relation exists between two tables (A,B)
if table A’s match/action impacts the packet processing in ta-

http://dx.doi.org/10.1145/3050220.3050235

ble B. Two tables can be placed on the same pipeline stage
if and only if they do not have a dependency relationship.
One of the significant challenges involved in improving the
performance of network switches is correctly identifying de-
pendency relationship between tables.

We aim to incorporate application-level intelligence into
the data plane, to correctly identify 1) dependencies between
tables and 2) features that are safe to remove, thus creating
an efficient switch pipeline.

Our paper makes the following contributions:

1. Using high level policies, we create tenant-to-feature
mappings, to correctly identify dependencies between
the tables, thus creating a more efficient pipeline switch.

2. We further decide which specific features must be sup-
ported in the network topology to meet the network-
wide policies, and thus enable only those features in
selective P4 switches.

3. We demonstrate up to 50% improvement in pipeline
efficiency, in terms of number of pipeline stages, with
real P4 switch programs.

2. BACKGROUND
In this section, we provide relevant background on high-

level policy intent and the P4 language.

2.1 Policy Intent
To provide scalable and effective management for com-

plex networks, several high-level policy intent frameworks
have been recently proposed [24, 2, 3, 8, 12, 9]. These
frameworks allow defining high level abstract policy intent
by hiding physical dependencies and low level details such
as IP/Mac addresses, protocols, etc. until the run-time con-
figurations need to be generated. In [24, 2, 3], policy intents
can be defined with a group of end points (EPG) and their as-
sociated rules. An end point is the smallest unit of abstrac-
tion on which a policy is applied, e.g., a server, VM, end-
user etc. An EPG is a set of end-points having a common
attribute or state, e.g., servers in Campus A. Each EPG has
a logical label representing various attributes of the member
endpoints: e.g., Tenant:Marketing, Location:Campus A, etc.
Logical labels, their properties, and relationships can be ei-
ther manually specified by human experts or automatically
generated by a system like LMS [17]. LMS creates the la-
bel namespace and their relationships by analyzing various
standard infrastructure data sources such as infrastructure
databases, management, controller services, etc. Some ex-
amples of these data are OpenDaylight NIC [3], ONF Boul-
der [12] and OpenStack Congress [4].

Systems like PGA (Policy Graph Abstraction) [24] use la-
bels and label-trees to specify high level policy intents. Fig-
ure 1 shows a sample label tree for Tenant. In this example,
there are three tenants (Finance, HR and Support), and
Support has sub tenants (Urgent and Normal). Urgent
and Normal are disjoint or mutually exclusive, which means
an endpoint cannot be at both places at the same time. Addi-
tionally, Support and Urgent do overlap (parent-child re-

L2 switching, L3 routing
Multicast, QoS

Finance

Urgent Normal

L2 switching, Firewall
Tunnel

L2 switching, Firewall
NAT

HR
L2 switching
L3 routing, Multicast

Support

Tenant
L2 switching, Firewall

Label
Required Features

L2 switching, L3 routing
Multicast

Figure 1: Examples of label tree with required features

lation), which means all endpoints in Urgent are also in
Support. In terms of networking, tenant administrators can
define which network features are required for which ten-
ant or they can be automatically retrieved from management
system or infrastructure database. As shown in Figure 1, the
tenant label tree can provide required features as an addi-
tional property for each label for tenant-to-feature mappings.
In the tree structure, all features are inherited from parents to
children nodes. For example, L2 switching and Firewall are
required for all tenants. Additionally the Tunnel feature is
required for the tenant Finance, whereas NAT is required
for the tenant HR. Such additional features are exclusive
to these tenants, and hence can be classified as mutually ex-
clusive features. For example, to handle network traffic for
tenant HR, we only need to enable L2 switching, Firewall,
and NAT features. In this paper, we use the tenant-to-feature
mappings from the label tree to identify mutually exclusive
features. By mutually-exclusive features (F1, F2), we mean
that a packet which requires feature F1 will not require fea-
ture F2 and vice versa.

2.2 P4 Language
P4 [10] is a language to program protocol and target inde-

pendent packet processing pipelines of switches with pro-
grammable data planes. A P4 program consists of head-
ers, parse graph, actions, match-action tables and a control
flow between tables. A header defines a sequence and struc-
ture of a series of packet fields; a parse graph specifies the
header sequences in packets; an action is a customized func-
tion to process a packet (composed of primitive actions such
as modify, drop, etc.); a table specifies header fields to match
and a set of actions to perform - only one of the actions is
performed for a matched packet. Finally, a control flow de-
termines the order of tables that are applied to a packet. P4’s
flexibility and reconfigurability makes it protocol and target
independent. That is, many protocols can be described flexi-
bly in headers and parsers, and the program can be compiled
to different target systems, ranging from software switches
to NPU, FPGA or ASIC based switches.

Figure 2 shows the high level differences between pro-
gramming conventional fixed pipeline switches and recon-
figurable pipeline switches using P4.

RMT [11] and FlexPipe [23] are some examples of high-
speed pipeline switch architectures that support the P4 lan-
guage. In these architectures, logical tables are instantiated
onto a pipeline of match-action stages, with each stage hav-
ing dedicated resources: TCAM, SRAM, ALU, etc. Match-
action stages can be separated into ingress and egress pipeline.
Efficiently assigning logical P4 tables to a limited number

SDN Control Plane

Rule
Translator

Parser L3
RoutingACL L2

learning

Compiler

Populating:
Installing and
querying rules

Target switch with fixed pipeline

SDN Control Plane

Rule
Translator

Stage
Z

Stage
X

Stage
Y

Compiler

Populating:
Installing and
querying rules

Target switch with flexible pipeline

Parser & Table
configuration

Configuration:
P4 program

Programmed
Parser

Pipeline stages

Figure 2: Left: a conventional southbound API that popu-
lates pre-determined tables of a fixed pipeline. Right: the
new trend of the two stage process of 1) defining parser and
logical tables in P4 and compiling them into flexible pipeline
stages, 2) populating match+action rules in the tables de-
fined by the program.

of physical stages is a critical job of P4 compilers, and it
involves two aspects: table dependency and resource con-
straints.

A typical P4 program implementing various switch fea-
tures has more tables than the number of physical stages;
Many of the logical tables can be concurrently executed in
the same stage as long as they don’t have any dependencies
on one another and the stage has enough resources to run the
tables. An efficient compiler packs as many tables as pos-
sible in a fewer number of stages, reducing pipeline latency
and leaving space to pack more tables and features.

While resource packing has been studied recently in the
context of programmable switch pipeline [16, 20], little at-
tention has been given to reducing table dependencies. For
example, a standard P4 compiler [5] is composed of 1) a
target-independent frontend (p4-hlir) that analyzes the
given P4 program and expresses table dependencies into a
table dependency graph (TDG), and 2) a target-dependent
backend that can consume TDG in finding the tables to place
in the same resource-constrained stage. Even if the pipeline
has large enough net resources across stages, a P4 program
may fail to fit in the pipeline if the TDG requires more num-
ber of stages than the pipeline provides. Since the pipeline
architecture and the number of stages are often static even in
a programmable pipeline, detecting and removing unneces-
sary table dependencies is critical.

Existing P4 compilers [16, 11] detect table dependen-
cies only from a given P4 program, which defines its match-
action tables using low-level (packet-level, protocol-level)
constructs. In this paper, we propose to identify and re-
move unnecessary table dependencies by exploiting knowl-
edge of application requirements and deployments embed-
ded in high-level policy abstractions.

3. GENERATING ACCURATE TABLE
DEPENDENCIES

Currently the P4 compiler alone is responsible for find-
ing dependency relationship between tables. One way to re-
duce table dependencies, is to leverage policy intents speci-
fying which features will be used by which tenant (tenant-to-
feature mapping). Systems like PGA [24] use labels, label-

mapping and label-trees to specify not only such tenant-to-
feature mapping, but also which tenants are mutually exclu-
sive and hence which features are mutually exclusive.

A system like LMS [17] can be used to derive label data
from various standard infrastructure metadata sources [3, 12,
4]. Currently there is no way for the P4 compiler to have
such information. Using high-level policy information as a
source of optimization has not been done in previous lan-
guage compilers. Our main insight is that we can com-
pute accurate dependency relationships between P4 tables
from high-level policy information, by avoiding unneces-
sary dependencies between tables that belong to mutually-
exclusive features. Decreasing the number of dependencies
increases the chances of packing more P4-tables to fewer
pipeline stages, i.e., it allows more features/tables to fit in
the pipeline, thus improving the pipeline efficiency.

Example Scenario: We have a single P4 switch with 3
features enabled: tunnel, NAT and multicast. The P4-tables
used by all these features are mentioned in Table 1 and all
these tables are reading and/or modifying the destination IP
address. According to the label tree and tenant-to-feature
mapping given in Figure 1 - tunnel, NAT and multicast are
mutually-exclusive features and hence the P4-tables repre-
senting these features are also mutually exclusive.

As shown in Table 2, the original P4 compiler would have
put all these tables in a separate pipeline stage (five pipeline
stages). This happens because according to the P4 compiler,
all of the tables have a dependency relationship with every
other table as they are all using the destination IP address.
On the other hand, the label tree and tenant-to-feature map-
ping tells us that since all three features are mutually exclu-
sive, there is no inter-feature table dependency and hence
the number of pipeline stages can be reduced to three. The
two other stages are freed up and can be used to either host
new advanced features or increase the size of the standard
features placed in stages 1-3.

Feature P4-tables
Tunnel tunnel, ipv4-src-vtep, tunnel-lookup-

miss
NAT egress_nat
Multicast outer_ipv4_multicast

Table 1: P4 tables used by all features. All these tables are
reading and/or modifying destination IP address

Stage 1 Stage
2

Stage
3

Stage
4

Stage 5

Without
map-
ping

tunnel ipv4-
src-
vtep

tunnel-
lookup-
miss

egress-
nat

outer-
ipv4-
multicast

With
map-
ping

egress-
nat,
outer-
ipv4-
multicast,
tunnel

ipv4-
src-
vtep

tunnel-
lookup-
miss

Table 2: Stage assignment of P4 tables with and without la-
bel tree and tenant-to-feature mapping

4. FEATURE REMOVAL
Fixed pipeline switches often include a large set of fea-

tures that most customers may not need; typically a feature
may be included to support a small set of customers. One
of the goals of P4 is to customize the set of features in a
switch for a group of customers and avoid installing unused
features. However, the programmer that programs the P4
pipeline of the switch may not have access to all policies,
and those policies may evolve after switch programming.
For example, the programmer may decide to include some
features that he thinks might be needed by application poli-
cies; however, when the actual policy set is deployed, no
policy requires those features. Conversely, at programming
time some features from the P4 pipeline may be excluded, to
reduce resource consumption, and at deployment time this
will prevent the deployment of policies needing them.

Here, knowledge of high level policies is crucial in build-
ing an efficient switch data plane with the minimal set of
features needed by all the application policies. Thus the set
of features to be included in the P4 pipeline can be auto-
matically derived from high level policies. In most P4 pro-
grams, most features can be optionally enabled or disabled
- for example in the P4 switch program, 13 features can be
optionally included with a simple flag. The tenant-to-feature
mapping of the high-level policy can be used to determine
the list of features required for the network. A simple post-
processing step can use that list to automatically customize
the set of P4 features programmed in all switches.

Removing unused features from the P4 pipeline reduces
the resource consumption and in most cases improves per-
formance. Figure 3 represents a complex egress pipeline
with 8 network features enabled. The total number of stages
in this pipeline is 10. In Figure 3, shaded blocks represent
the stages occupied by each feature and the arrows represent
the dependency between blocks. One of the main things that
stands out is the interdependencies between features. An ob-
vious way to reduce the number of pipeline stages is to re-
duce the number of features to only the ones required, which
is shown in Figure 4. This reduces the number of stages
not just because the P4-tables associated with the removed
features are missing, but also because the dependencies to
those features are avoided and hence they can be placed in
an earlier stage. Adding tenant-to-feature mapping can fur-
ther reduce the number of pipeline stages as shown in Figure
5.

With some policy intents, it might be possible to cus-
tomize the set of features for each switch in the network
topology. However, typical policy intents are decoupled from
the underlying topology and do not specify a physical path
(i.e. a set of switches), and the physical path may change
in complex ways due to fault tolerance, load balancing and
QoS. One way to solve this issue is to assume that the (re-
duced) feature set is the same for all switches. Alternatively,
more resource efficiency can be extracted by placing features
appropriately in the topology. While we do not explore this
in detail, we do present an example scenario in the evalua-
tion and the associated benefits of this approach.

Adapting to policy changes: in case the policy intent
changes or the network topology changes, the P4 program
may need to be recompiled – with updated feature set and
table dependencies – into the switch data plane. To update
the data plane under live traffic, as opposed to rebooting the
switch, it is also required for the switch control plane soft-
ware to record various switch states and replay them. Certain
software modules may also need to upgrade to work with the
new data plane.

STAGE NO 1 2 3 4 5 6 7 8 9 10

L2

TUNNEL

VLAN

NAT

L3

QOS

MULTICAST

ACL

Figure 3: Egress pipeline with 8 features enabled. An arrow
from one block to the other block represents a dependency
between the tables in those blocks.

STAGE NO 1 2 3 4 5 6 7 8 9 10

L2

TUNNEL

VLAN

NAT

L3

Figure 4: Egress pipeline after removing four features.
The features enabled in this switch are L2, NAT, TUNNEL,
VLAN. Number of stages is reduced to 7.

STAGE NO 1 2 3 4 5 6 7 8 9 10

L2

TUNNEL

VLAN

NAT

L3

Figure 5: In this example we are also adding tenant-to-
feature mapping: tenant A has (L2,NAT), tenant B has
(L2,TUNNEL) and tenant C has (L2,VLAN). Number of
stages is further reduced to 6

Anecdotal information from vendors and operators indi-
cate that the update complexity is higher in the control plane
software stack than the data plane. Data plane updates can
be as simple as having a new program loaded in memory
(or pre-configured in swap resource depending on data plane
implementations) and switching from the old to the new after
the software setup is complete. Upgrading the software stack
takes up to a few seconds [1] while the data plane update is
almost instantaneous, orders of magnitude faster. Alterna-
tively, network-wide traffic engineering and update schedul-
ing has been a viable solution in production networks [15].

5. EVALUATION

5.1 Experimental Setup
For all our experiments, we use a sample P4 switch pro-

gram (switch.p4) from the P4 github repository [5]. This
is the most complex p4 program available. It has 129 ta-
bles and over 10K LOC. It describes the data plane of an

L2/L3 switch. Some of the features supported by this sample
switch are L2 switching, L3 routing, multicast, tunneling,
ACLs, Mirroring, Inband Network Telemetry (INT), MPLS,
ECMP, QOS, VLAN, NAT and Unicast RPF. The p4-hlir
frontend compiler comes with a tool called P4-graph, which
generates the table dependency graph (TDG), and the mini-
mum number of ingress and egress pipeline stages required
to satisfy all dependencies. From there, P4-graph also as-
signs a set of tables that can concurrently run together within
the same logical stage without considering resource con-
straints. This logical stage assignment serves as a starting
point for backend compilers. We use this tool to identify
both the table dependencies and stage assignment of P4-
tables.

0 2 4 6 8 10 12 14 16 18
No. of Tenants

0

20

40

60

80

100

%
 o

f e
xc

lu
si

ve
 p

ai
rs

Scenario 1 Scenario 2 Scenario 3

Figure 6: Percentage of mutually-exclusive pairs vs. number
of tenants. The three lines represent three scenarios: each
feature used by 1, 2 and 4 tenants, respectively.

0 2 4 6 8 10 12 14 16 18
No. of Tenants

600
700
800
900

1000
1100
1200

N
o.

 o
f D

ep
en

de
nc

ie
s

Scenario 1 Scenario 2 Scenario 3

Figure 7: Number of table dependencies.

0 2 4 6 8 10 12 14 16 18
No. of Tenants

7
8
9

10
11
12
13
14

N
o.

 o
f i

ng
re

ss
 s

ta
ge

s

1 2 4 8 16
No. of Tenants

7
8
9

10
11
12
13
14

N
o.

 o
f e

gr
es

s
st

ag
es

Scenario 1 Scenario 2 Scenario 3

Figure 8: Number of pipeline stages (both ingress and
egress).
5.2 Dependency reduction

We first show that the tenant-to-feature mapping infor-
mation can help reduce the number of pipeline stages (both
ingress and egress) by reducing the number of table depen-
dencies. In this experiment, we enable 13 different features
in the switch, and vary the number of tenants as well as the
tenant-to-feature mapping. The L2 feature is an exception

and used by every tenant assuming basic L2 switching is
the minimally required feature for all traffic. The tenant-to-
feature mappings for the other 12 features are controlled as
follows.

The ultimate goal of controlling tenant-to-feature map-
pings is to control the number of mutually-exclusive fea-
ture pairs. More precisely, the ratio of mutually-exclusive
feature pairs compared to the total number of feature pairs
(C(13, 2)) is the key metric that affects dependency reduc-
tions. To control the metric, we vary the total number of
tenants, and also the number of tenants used by each feature
(other than L2) in three different scenarios. In scenario 1,
each feature is used only by one randomly-selected tenant.
(Since we are using only 13 features, after increasing the
number of tenants to 13, the remaining tenants will have only
the L2 feature enabled). In scenario 2 each feature is used by
two randomly-chosen tenants; and in scenario 3 each feature
is used by four tenants (i.e., each tenant uses more features
in scenario 3 than in scenarios 1 and 2). Fig. 6 shows the
wide range of the metric covered in our experiments: the
percentage of mutually-exclusive pairs ranges from zero to
85%. More features become mutually exclusive as the num-
ber of tenants increases and each tenant uses fewer features
(scenario 1, compared to scenarios 2 and 3).

As expected, making more features mutually-exclusive re-
duces table dependencies (Figure 7), which then reduces the
number of pipeline stages needed to fit the program (Fig-
ure 8). For example, the number of egress stages in sce-
nario 1 reduces from 12 down to 8, which is a 33% reduction
in terms of stage usage. This also means that up to 50% more
tables can fit in the same pipeline assuming similar level of
dependencies and resource requirements from the new ta-
bles. The 50% increase in pipeline efficiency may mean 1)
50% increase of routing table size or other standard features,
2) room to run additional advanced network functions, or
3) increase of switching throughput, depending on different
pipeline architectures.

In all experiments, each data point is an average taken
over 20 randomized runs; where in each run, the number of
tenants were kept constant and we randomly chose tenants
that used each feature.

5.3 Feature removal
In the previous experiment, using tenant-to-feature map-

ping information did not help reduce table dependencies or
stage requirements in scenario 3, where tenants have more
features in common and thus there are less mutually exclu-
sive feature pairs (see Fig. 6).

We now show that feature removal can reduce the pipeline
stages even when features are shared by many tenants. To
show the benefit of per-switch feature selection/removal, we
consider a simple 2-tier fat-tree DC topology where every
ToR switch is connected to every spine. There are the same
number of ToR switches and spine switches and we vary the
number of ToR-spine pairs. Total number of tenants is fixed
to 8, each tenant having two hosts (traffic source and desti-
nation). The 16 hosts are randomly assigned their ToR lo-
cations in a given topology, thus creating various tenant-to-

switch mappings and eventually deriving feature-to-switch
mappings. A switch needs to implement only features re-
quired by the tenant traffic traversing the switch. We analyze
only ToR switches in feature selection since ToR switches
are typically expected to run much more features than spine
switches. As the number of tenants is constant, the set of
features required at each switch reduces as the tenants are
spread over more number of ToR switches.

In Figure 9, we compute the number of pipeline stages
(ingress + egress) needed to pack the required features at
each switch and plot the maximum across all switches, i.e.
MAXs∈all-switches(ingresss + egresss). Each data point
is an average taken over 20 randomized runs with different
feature-to-tenant and tenant-to-switch mappings. As shown
in Figure 9, systematically selecting features to implement
at each switch allows removal of unnecessary features (and
their tables), thus decreasing the number of pipeline stages
even in scenario 3 where there is no room to optimize table
dependencies. We note that the stage reduction benefit gets
smaller as the number of switches increases. This is because
there are some large features such as tunneling, which alone
takes 12 stages. Thus the pipeline length is lower-bounded
and there is not much room to further optimize beyond that
point.

0 1 2 3 4 5 6 7 8 9
No. of Switches

12
14
16
18
20
22
24
26
28

M
ax

 n
o.

 o
f p

ip
el

in
e

st
ag

es Scenario 1 Scenario 2 Scenario 3

Figure 9: Impact of network-wide feature-to-switch assign-
ment on max pipeline stages required over all switches.
More switches in the network, more room to optimize per-
switch feature selection. Total number of tenants is fixed to
8.
6. RELATED WORK

Many recent approaches have been proposed to provide
high-level languages, abstract models, or additional portabil-
ity layers as a northbound interface for programming entire
networks based on policy intent [13, 21, 28, 30, 7, 14, 19,
2, 24]. Most of them have been targeted to control planes
(e.g., SDN controllers [13, 21, 28, 30, 20, 7, 14, 19, 2, 24]
or cloud controllers (e.g., OpenStack Neutron) [2, 24]), and
not to data planes. We have focused on constructing an effi-
cient pipeline switch (as a data plane) using such high-level
policies.

P4 [10] has addressed a low-level language for program-
ming packet processors with reconfigurability, protocol in-
dependence and target independence. DC.P4 [27] has demon-
strated how to use the P4 language for expressing the for-
warding plane behaviors of a data center network as a case
study. In addition, DC.P4 has contributed improvements to
the P4 specification in terms of better language semantics
and modularity. Recently, a P4 compiler [16] for recon-

figurable switches [16] has defined how to build a switch
compiler by using abstractions to hide hardware details and
showed results with RMT [11] and Intel’s FlexPipe [23].
This P4 compiler used a Table Dependency Graph (TDG)
for reinterpreting traditional control and data dependencies
in a match+action context. It has also compared the perfor-
mance of a greedy heuristic design with an Integer Linear
Programming (ILP) model.

Ori et al [25] also talk about improving switch perfor-
mance by packing tables to fewer pipeline stages. But they
are only capable of removing dependencies between tables
(representing network function boxes) belonging to different
service chains.

Concurrent NetCore [26] has specified high-level switch
policies as well as concrete, low-level switch architectures.
It showed linguistic models of both RMT and Flexpipe ar-
chitecture. Concurrent NetCore has provided a small num-
ber of primitive operations for specifying packet processing,
plus combinators for constructing more complex packet pro-
cessors from simpler ones. There are works [9, 18] that
talk about mapping features/state-functions modeled in one-
big switch abstraction onto a topology of multiple switches.
Nanxi et al [18] considered only table efficiency and not
pipeline efficiency. We can use a methodology similar to
SNAP’s [9] state placement and routing to decide feature-to-
switch mapping (feature placement) - that is, which feature
should be enabled in which switch, will be most efficient in
terms of total number of pipeline stages traversed across all
switches while satisfying all dependency constraints.

7. CONCLUSION
This paper tackles an important challenge that has not

received much attention yet on the topic of reconfigurable
switch chips. We showed that packet-level programs, such as
P4 programs, for flexible switch pipelines are low level, and
leave room for further optimization when compiled down
to the physical pipeline. Our P5 system exploits knowl-
edge of application requirements and deployments embed-
ded in high level policy specifications to create an efficient
programmable switch pipeline. To the best of our knowl-
edge, this is the first system to achieve this goal. The eval-
uation of our system implementation shows that leveraging
the knowledge of high-level policies can provide up to 50%
improvement in pipeline efficiency. Our future work will en-
tail a larger study of a variety of P4 programs and scenarios
to evaluate the pipeline efficiency that can be achieved using
P5. Devising an authoring tool that helps programmers to
easily leverage policy/application level information in mod-
ular P4 programming is another future work.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful

comments. This work is supported by the Wisconsin Insti-
tute on Software-defined Datacenters of Madison and Na-
tional Science Foundation grants CNS-1302041, CNS-13303
08, and CNS-1345249

9. REFERENCES

[1] Miercom Lab Testing Report, Chapter 12 Resiliency during ISSU.
http://miercom.com/pdf/reports/20121129.pdf.

[2] OpenDaylight Group Policy.
https://wiki.opendaylight.org/view/Group_Policy:Main.

[3] OpenDaylight Network Intent Composition. https:
//wiki.opendaylight.org/view/Network_Intent_Composition:Main.

[4] OpenStack Congress. https://wiki.openstack.org/wiki/Congress.
[5] P4 github repository. https://github.com/p4lang/.
[6] HP 5400R zl2 Switch Series. See goo.gl/t3kk9D, 2015.
[7] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. Netkat: Semantic foundations for
networks. In Proceedings of the 41st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14,
pages 113–126, New York, NY, USA, 2014. ACM.

[8] Anu Mercian, Felipe Yrineu, Joon-Myung Kang, Raphael Amorim,
Saket M Mahajani, Mario Sanchez and Sujata Banerjee. Network
Intent Composition (NIC) Be Feature Update and Demo: Intent
Compilation, Lifecycle Management and Automated Mapping.
Presented in OpenDaylight Summit 2016, September 2016.

[9] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker.
SNAP: Stateful Network-Wide Abstractions for Packet Processing.
In Proceedings of the 2016 Conference on ACM SIGCOMM 2016
Conference, SIGCOMM ’16, pages 29–43, New York, NY, USA,
2016. ACM.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al. P4:
Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review, 44(3):87–95, 2014.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn. In
ACM SIGCOMM Computer Communication Review, volume 43,
pages 99–110. ACM, 2013.

[12] D. L. et al. Open Networking Foundation – Intent NBI - Definition
and Principles, 2016.

[13] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
In ACM SIGPLAN Notices, volume 46, pages 279–291. ACM, 2011.

[14] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A
coalgebraic decision procedure for netkat. In Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 343–355, New York, NY,
USA, 2015. ACM.

[15] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer. Dynamic scheduling of network
updates. In ACM SIGCOMM Computer Communication Review,
volume 44, pages 539–550. ACM, 2014.

[16] L. Jose, L. Yan, G. Varghese, and N. McKeown. Compiling packet
programs to reconfigurable switches. In USENIX NSDI, 2015.

[17] J.-M. Kang, J. Lee, V. Nagendra, and S. Banerjee. Lms: Label
management service for intent-driven cloud management. In
Integrated Network Management, 2017. IM’17. IFIP/IEEE
International Symposium on. IEEE, 2017.

[18] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the one big
switch abstraction in software-defined networks. In Proceedings of
the ninth ACM conference on Emerging networking experiments and
technologies, pages 13–24. ACM, 2013.

[19] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark.
Kinetic: Verifiable dynamic network control. In Proceedings of the
12th USENIX Conference on Networked Systems Design and
Implementation, NSDI’15, pages 59–72, Berkeley, CA, USA, 2015.
USENIX Association.

[20] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and
run-time system for network programming languages. In
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’12, pages
217–230, New York, NY, USA, 2012. ACM.

[21] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software defined networks. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 13), pages 1–13, Lombard, IL, 2013.
USENIX.

[22] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. Dream: dynamic
resource allocation for software-defined measurement. In ACM
SIGCOMM Computer Communication Review, volume 44, pages
419–430. ACM, 2014.

[23] R. Ozdag. Intel R© ethernet switch fm6000 series-software defined
networking. See goo.gl/AnvOvX, 2012.

[24] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang. Pga: Using graphs to
express and automatically reconcile network policies. SIGCOMM
Comput. Commun. Rev., 45(4):29–42, Aug. 2015.

[25] O. Rottenstreich, I. Keslassy, Y. Revah, and A. Kadosh. Minimizing
delay in network function virtualization with shared pipelines. IEEE
Transactions on Parallel and Distributed Systems, 28(1):156–169,
2017.

[26] C. Schlesinger, M. Greenberg, and D. Walker. Concurrent netcore:
From policies to pipelines. In Proceedings of the 19th ACM
SIGPLAN international conference on Functional programming,
pages 11–24. ACM, 2014.

[27] A. Sivaraman, C. Kim, R. Krishnamoorthy, A. Dixit, and M. Budiu.
Dc.p4: Programming the forwarding plane of a data-center switch. In
Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research, SOSR ’15, pages 2:1–2:8, New York,
NY, USA, 2015. ACM.

[28] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple:
Simplifying sdn programming using algorithmic policies. In
Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 87–98, New York, NY, USA,
2013. ACM.

[29] M. Yu, A. G. Greenberg, D. A. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling network performance for multi-tier
data center applications. In NSDI, 2011.

[30] M. Yu, A. Wundsam, and M. Raju. Nosix: A lightweight portability
layer for the sdn os. SIGCOMM Comput. Commun. Rev.,
44(2):28–35, Apr. 2014.

http://miercom.com/pdf/reports/20121129.pdf
https://wiki.opendaylight.org/view/Group_Policy:Main
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://wiki.openstack.org/wiki/Congress
https://github.com/p4lang/

	Introduction
	Background
	Policy Intent
	P4 Language

	Generating Accurate Table Dependencies
	Feature Removal
	Evaluation
	Experimental Setup
	Dependency reduction
	Feature removal

	Related Work
	Conclusion
	Acknowledgments
	References

