
Analysis of Gradient Descent Optimization
Algorithms on ResNet

Chirayu Garg, Abhinav Garg, Anshu Raina
Department of Computer Sciences, University of Wisconsin-Madison

{cgarg2,garg26,araina2}@wisc.edu

Abstract

Gradient descent optimization algorithms like stochastic gradient descent (SGD)
are most widely used to train neural networks. Recently, adaptive variants of
gradient methods like Adagrad, Adam etc. have caught popularity and are being
used by almost all the new architectures for training. Since these algorithms
perform local optimization for each parameter, they are supposed to give better
results. Some studies have shown that adaptive methods can give undue influence to
spurious features, hence generalizing worse than the SGD. In this work, we analyze
different variants of gradient descent algorithms to find out if the adaptive methods
are really useful. Our results show that with some tuning of hyper-parameters,
adaptive methods attain same accuracy as SGD on validation and test sets.

1 Introduction

Deep learning algorithms have achieved remarkable feats in fields like image classification and
speech recognition. At the very heart of deep learning is the gradient descent which is one of most
common way of optimizing neural networks. Past several years have seen a surge in the introduction
of many versions of gradient descent algorithms which provide the promise of good convergence with
faster training speed[6, 4, 7]. Majority of the these algorithms introduced are adaptive methods and
Adam[6] has become the de-facto standard for these algorithms. But the generalization and out of
sample behavior of these methods are poorly understood and they give no guarantee of generalization.

Recent work done by [9] shows that adaptive optimization techniques generalize much worse than
stochastic gradient descent (SGD) even when the solutions have better training performance. The
authors make a case for reconsideration of adaptive methods to train neural networks. In our project
we wanted to see if such a claim holds true for the larger networks. We implement one of the most
popular network used for image classification called ResNet and perform rigorous experiments with
different algorithms. We observe that by properly tuning the hyper-parameters and implementing a
step-sized decay of the learning rate in ResNet-20, adaptive methods like Adam and Adagrad can
give similar results when compared to non-adaptive methods like stochastic gradient descent (SGD)
and stochastic gradient descent with Nesterov momentum (SGDN) in terms of validation and test set
accuracy.

2 Background

Gradient descent remains one of the most popular algorithms to optimize deep neural networks. Over
the period of time, many algorithms have been introduced to optimize gradient descent. In this section
we will discuss about these algorithms based on [8]. We will limit the discussion to the algorithms
we use in our experiments.



2.1 Stochastic gradient descent

Stochastic Gradient Descent (SGD) is a variant of gradient descent in which the parameter update
happens for every training example. Vanilla gradient descent computes the gradient of cost function
for entire training dataset before performing one update and SGD gets rid of this redundancy by
performing one update at a time.

wk+1 = wk − η5w f(wk : xi; yi) (1)

2.2 Mini-batch gradient descent

Mini-batch gradient descent is a combination of vanilla gradient descent and stochastic gradient
descent. Here, the parameter update is performed on a mini-batch of say n training example where n
is the batch size. In this paper whenever we refer to SGD, we actually refer to the mini-batch gradient
descent as it is very useful to use mini-batches to get the maximum utilization of the hardware
resources.

wk+1 = wk − η5w f(wk : xi:i+n; yi:i+n) (2)

2.3 Nesterov accelerated gradient

Nesterov accelerated gradient adds a special momentum term while calculating the gradient [7]. The
gradient calculation is done by not looking at the current parameters but w.r.t. to the future position
of the parameters:

vk = γvk−1 + η5w f(wk − γvk−1) (3)

wk+1 = wk − vk (4)

2.4 Adagrad

Adagrad is an adaptive gradient-based optimization algorithm that adapts the learning rate to perform
larger updates for infrequent parameters and smaller updates for frequent parameters [4]. For all the
gradient descent methods mentioned above, all parameters are updated in a single update as every
parameter has the same learning rate. Adagrad uses different learning rate for each parameter.

wk+1,i = wk,i − (η/
√
Gk,ii + ε).5wk

f(wk,i) (5)

G is a diagonal matrix in which each diagonal element (i, i) is the sum of squares of gradients up to
timestep k. ε is a smoothing term used for avoiding division by zero.

2.5 Adam

Adam computes the adaptive learning rates for each parameter as well [6]. It keeps the exponentially
decaying average of past squared gradients vk and it also stores the exponentially decaying average
of past gradients mk.

gk = 5wk
f(wk,i) (6)

mk = β1mk−1 + (1− β1)gk (7)

vk = β2vk−1 + (1− β2)g2k (8)

mk and vk are the estimates of first moment and second moment of gradient respectively. It was
found by the authors of Adam that mk and vk are biased towards zero mostly for the initial time
steps and when the decay rates are small. So, the following bias corrected first and second moment
estimates were introduced.

m̂k = mk/(1− βk
1 ) (9)

v̂k = vk/(1− βk
2 ) (10)

Below is the Adam update rule:

ˆwk+1 = wk − η/(
√
vt + ε).m̂k (11)

2



Figure 1: Basic Block of ResNet

3 Network architecture

The experiments for evaluating different gradient descent approaches are performed on Residual
networks (ResNets)[5]. ResNets differ from the normal convolutional neural networks as they have
a shortcut (skip) connection to each basic block which gets added to its output. Skip connections
enable a clear path for gradients to propagate to early layers of the network which makes learning
faster by avoiding the problem of vanishing gradients.

ResNet is a collection of multiple basic blocks which are serially connected together. In addition,
there is shortcut connection to each basic block which gets added to output. Figure 1 shows the basic
block of ResNet. The number of layers which we use in ResNet for our experiments is 20 as more
number of layers take a lot of resources and time to train which was not feasible in the scope of this
project. The datasets used for image classification are Cifar-10 and Cifar-100[1]. Input to the network
is a 32x32 size image and the network learns a model to assign a class to a particular image.

4 Evaluation

As discussed, we perform our experiments for the aforementioned optimizers on ResNet-20. We
implement our own ResNet in Tensorflow[3] with a step decay policy for learning rate in which the
learning rate is reduced by a particular decay factor after a given number of epochs. With the number
of resources we could get in a given amount of time, we try to be as much rigorous as possible in
the selection of learning rate, step decay factor and number of epochs the algorithm runs before
performing the decay. All these experiments are done on cloud lab machines [2]. These machines
don’t come with GPU support, so it takes us a lot of time to train a network as big as ResNet even
if we restrict the number of layers to 20. The experiments were performed on both Cifar-10 and
Cifar-100. Table 1 contains the parameters for best test accuracy of different algorithms on Cifar-10.

3



Table 2 has the best test accuracy parameters on Cifar-100. These parameters were found by doing
multiple runs of the algorithms using different parameters.

Table 1: Best training parameters for different algorithms on Cifar-10

Algorithm Learning Rate Step decay Step size
SGD 0.25 0.1 5

SGDN 0.2 0.5 10
Adagrad 0.1 0.5 5
Adam 0.02 0.1 5

Table 2: Best training parameters for different algorithms on Cifar-100

Algorithm Learning Rate Step decay Step size
SGD 0.25 0.1 10

SGDN 0.15 0.1 10
Adagrad 0.25 0.2 10
Adam 0.01 0.1 5

Figure 2: Top-1 Validation Accuracy Comparison for Cifar-10

Figure 2 and Figure 3 show the best validation and test accuracy of different algorithms on Cifar-10.
As can be seen from the curves, all the optimizers reach the same accuracy after a particular number
of epochs. Adam seems to converge faster for both validation and test set.

Figure 4 and Figure 5 show the best validation and test accuracy of different algorithms on Cifar-100.
Again, all the optimizers reach almost same accuracy after a particular number of epochs. SGD and
SGDN perform a bit better than Adam and Adagrad in terms of accuracy. Note that Cifar-10 and
Cifar-100 both have 60000 images, but former has just 10 classes while the latter has 100 classes.
So, the number of images per class is less for Cifar-100. It seems that if we have less number of
examples per label, adaptive methods like Adam and Adagrad may converge to a lesser accuracy than
SGD and SGDN though the difference is less.

In the experiments, we performed tuning to achieve maximum training and validation accuracy for
both adaptive and non-adaptive methods. We found that non-adaptive methods require more tuning
than adaptive methods. For best results, non-adaptive methods tend to have larger initial higher
learning rate than the adaptive methods. Adam gives the best solution at a very small initial learning
rate as compared to other methods.

4



Figure 3: Top-1 Test Accuracy Comparison for Cifar-10

Figure 4: Top-1 Validation Accuracy Comparison for Cifar-100

5 Conclusion

The main motive of this project was to determine whether non-adaptive methods generalize better
than adaptive methods. We find out that with proper tuning of hyper-parameters and implementing a
step-sized decay of learning rate, adaptive gradient algorithms like Adagrad and Adam can achieve
same accuracy as that of stochastic gradient descent algorithm with and without Nesterov momentum.
Adam tends to reach convergence early for the given datasets.

Non-adaptive methods need more tuning to get best results than adaptive methods. So, if one doesn’t
want to do an extensive parameter search and just want neural network to learn faster, adaptive

5



Figure 5: Top-1 Test Accuracy Comparison for Cifar-100

methods like Adam work better. But if one can afford to do an extensive hyper-parameter search,
then a simple SGD or SGDN implemented with a weight decay may give similar or better results.

References
[1] Cifar-10 and cifar -100 dataset. http://www.cs.toronto.edu/~kriz/cifar.html.

[2] Cloudlab. https://www.cloudlab.us.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[6] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/kˆ 2). In Doklady AN USSR, volume 269, pages 543–547, 1983.

[8] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[9] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht.
The marginal value of adaptive gradient methods in machine learning. arXiv preprint
arXiv:1705.08292, 2017.

6

http://www.cs.toronto.edu/~kriz/cifar.html
https://www.cloudlab.us

	Introduction
	Background
	Stochastic gradient descent
	Mini-batch gradient descent
	Nesterov accelerated gradient
	Adagrad
	Adam

	Network architecture
	Evaluation
	Conclusion

