
Play and Learn: Deep Reinforcement Learning

Adithya Bhat
2nd Yr CS Grad

Anshu Raina
1st Yr CS Grad

Arjun Singhvi
2nd Yr CS Grad

Ayon Sen
3rd Yr CS Grad

Abstract

Deep Neural Networks (DNNs) and Rein-
forcement Learning (RL) have been gaining
a lot of attention over the past few years.
Over the course of this project, we explore
the domain of Deep Reinforcement Learning.
The main objective of this project is to gain
experience and evaluate the efficacy of us-
ing DNNs in conjunction with RL. They key
takeaways being - the RL input and reward
formulation significantly impacts the perfor-
mance, the policy gradient algorithm outper-
forms the Deep Q Network algorithm and
LSTM does help in improving performance
of games that have partially visible state.
Lastly, but more importantly, since we write
all of the code from scratch, we have gained
a hands-on understanding of the domain we
set out to explore.

1 Introduction

In this project, we explore the conjunction
of Deep Neural Networks and Reinforcement
Learning (RL) to build agents that learn to
play games. For the game environment, we
make use of the OpenAI Gym Python en-
vironment [1]. Then, we re-implement var-
ious RL algorithms from scratch in Keras, a

Python library. On the neural network side
of things, we experiment with Recurrent Neu-
ral Networks and various network structures.
From the RL perspective, we experiment with
changing the state observation and the re-
ward schemes.

The rest of the paper is organized as fol-
lows. We first introduce the related terms in
Section 2. The exact problems we tackle are
discussed in Section 3. Our experimental re-
sults and findings are provided in Section 4.
In Section 6 we go through the related work
in the field of RL. Finally, we discuss the fu-
ture directions of this project in Section 7 and
briefly conclude in Section 8. Individual con-
tributions are stated in Section 5.

2 Background

In this section we provide a primer on a num-
ber of concepts so that the the rest of the pa-
per can be appreciated even by readers who
have not taken the course.

2.1 Deep Neural Networks

Similar to conventional neural networks,
DNNs are composed of three different lay-
ers - input layer, hidden layer(s) and output
layer. However, the difference being that in
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DNNs, the input passes through multiple hid-
den layers. In other words, DNNs are neu-
ral networks that have multiple hidden lay-
ers. Intuitively, one can imagine each hid-
den layer to learn more complex features (by
being trained by the features learnt by the
previous hidden layer) in comparison to the
previous layer. There has been a lot of suc-
cess in this field in the past few years due
to the advent of GPUs, machines with more
computation power as well as open-source li-
braries that provide efficient implementations
of vectorized operations, which are the basic
operations used while training DNNs.

2.2 Reinforcement Learning

Reinforcement Learning is a subfield of Ma-
chine Learning, wherein the goal of a soft-
ware agent is to take actions in an environ-
ment in order to maximize some notion of re-
ward. To be more specific, as seen in Figure
1, a RL model consists of two main entities -
agent and environment. At each timestep,
the agent performs actions in the environ-
ment. This action leads to the environment
moving onto a new state and may lead to a
reward which is passed to the agent. Next,
the agent performs its next action (with the
goal of maximizing the cumulative reward)
based on the information it received from the
environment and this cycle continues.

Figure 1: Reinforcement learning loop

It is important to note that RL differs from
both supervised and unsupervised learning.
In supervised learning one has labeled data

and in unsupervised learning one has no la-
bels at all. On the other hand, in reinforce-
ment learning the rewards can be considered
to be analogous to the labels and are there-
fore sparse and time-delayed.

2.3 Deep Reinforcement Learn-
ing

As the name suggests, in Deep Reinforcement
Learning (DRL), we use deep learning tech-
niques to carry out the task of RL. We choose
two DRL algorithms that have been proposed
in prior work, which we discuss next.

2.3.1 Deep Q Network

Traditionally, Q-Learning has been used in
RL. In Q-learning, we define a function that
represents the maximum reward that can be
achieved when we perform a particular action
in a particular state of the environment. The
core idea of the Deep Q Network (DQN) algo-
rithm proposed by DeepMind [2] is to repre-
sent the Q-function as a DNN. Essentially,
the DQN algorithm is a variant of the Q-
Learning algorithm. The pseudocode of the
algorithm can be found in [2].

DQN introduces the notion of Experience
Replay. During a gameplay, all the interac-
tions with the environment are stored in a
replay memory. While training the deep neu-
ral network, random mini batches of the in-
teractions are picked instead of the most re-
cent one. This allows the neural network to
be more robust and prevents it from getting
stuck at a local minima.

2.3.2 Policy Gradient

Another method for RL that has been gar-
nering a lot of attention during the last few
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(a) Cartpole (b) Pong (c) Alien

Figure 2: Screenshots of different games

years is policy gradient [3]. Instead of opti-
mizing the expected reward, policy gradient
optimizes policies with respect to expected
return. Here for each possible input we learn
the best possible action. Let θ ∈ RK be the
policy parameters. Policy gradient optimizes
the following expected return

J(θ) = E

(
H∑
k=0

akrk

)
(1)

Here ak denotes the weighting factor and rk
is the reward received at the k-th step. We
want to see how a neural network employ-
ing policy gradient performs with respect to
a DQN.

3 Problem Definition

In this section, we discuss the problem that
we are trying to tackle. Our goal is to learn
different strategies of performing DRL. To do
so we look at three different games namely
Cartpole, Pong and Alien. In what follows,
we discuss the input and outputs of these

games and how the challenges are different
for each of them.

3.1 Cartpole

We start our exploration of RL algorithms us-
ing a simple environment. For this, we select
the Cartpole game. In the Cartpole problem,
also known as the inverted pendulum prob-
lem, the objective is to maximize the number
of timesteps for which the pole remains bal-
anced on the cart, while also ensuring that
the cart does not move too far from the cen-
ter. At each timestep, the agent must choose
to push the cart left or right. The state ob-
served by the agent consists of the cart’s po-
sition, its velocity, the angle the pole makes
with the normal and the velocity of the pole’s
tip. Figure 3 shows the network structure.

3.2 Pong

Our main goal is to figure out how RL works
for different games. In most cases differ-
ent games will have different types of states.
Thus generalizing the concept as a whole is
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Figure 3: Neural network structure for Cart-
pole

not simple. To work around this, each state
in a game can also be viewed as an image.
Then the input to the neural network would
be the pixel values of that image. This con-
cept can be used for a vast array of games.

To explore this idea we choose the game
Pong (Figure 2b). In Pong, the goal is to
play a game of virtual ping pong against a
computer controlled agent. Whichever agent
scores 21 points first wins the game. The in-
put for pong is a 210× 160× 3 image. There
are 6 possible actions listed in the game. A re-
ward of +1 is provided if the computer agent
misses the ball. If our agent misses the ball
then a reward of −1 is provided. In all other
cases the reward is 0. The total reward that
can be gained from an episode ranges between
[−21, 21].

As mentioned previously, we also wanted
to see the impact of using policy gradient al-
gorithm compared to a DQN. We do so by
using Pong. Figure 4 shows the neural net-
work structures that we have used to perform
the comparison between these two strategies.
In both cases we subsample the input im-
age to a gray scale image of size 105 × 80.
For the DQN, we used two convolution lay-
ers, followed by a fully connected layer with
rectifier linear units (relu) and a linear out-
put layer. For the policy gradient neural net-
work we used a much simpler structure. It
has only one hidden layer with 200 units with
sigmoid activation function. The output layer
also uses sigmoid activation function.

(a) DQN structure for Pong

(b) Policy gradient neural network
structure for pong

Figure 4: Neural network structures for Pong

3.3 Alien

For some games, the game world states are
not fully visible at all times e.g., there are
some games where one portion of the screen
is obscure at any given point of time. One
such game is Alien. Alien is a maze video
game and essentially a clone of Pac-man. The
objective of this game is to run through the
hallways of your space ship and crush all the
alien eggs which have been placed there. The
player can also use a flamethrower to kill the
adult aliens and snatch up as many prizes as
possible. This game has flickering screen and
hence the environment is partially observed.
The input image size for Alien is 210×160×3.

Since the input is an image, we first start
with using Convolutional Neural Network
(CNN) to determine the action of agent. Fig-
ure 5a represents the architecture of neural
network. We first convert the input image
into a gray scale image of 210 × 160 and
then pass it on through the convolutional lay-
ers. We also try another structure where we
added one recurrent Long Short Term Mem-
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(a) DQN neural network structure for
Alien using CNN

(b) DQN structure for Alien using CNN
and LSTM

Figure 5: Neural network structures for alien

ory (LSTM) layer [4] after the convolutional
layers. Figure 5b shows this architecture.
The LSTM layer has 512 hidden units. The
structure of the network is similar to the
structure given in [5]. We believe that the
LSTM layer should be helpful for this game
because it would make neural network suc-
cessfully integrate information through time
and thus prevent it from taking incorrect de-
cisions based on just the present frame.

4 Experiments and Re-

sults

We present our experimental findings in
this section. For all our experiments we use
Python OpenAI Gym [1] framework. It pro-
vides a convenient way of interacting with the
game while abstracting away the complexi-
ties. At each time step, the environment pro-
vides us with an input state (image or param-
eters for that timestep). We can select from
a list of possible actions. Performing that ac-
tion gives us a reward and also the next input
state. Each game ends after a certain crite-
rion is fulfilled. This is known at the end of

an episode.
As mentioned previously in Section 3, we

try out three games namely Cartpole, Pong
and Alien. In each game the goal is to max-
imize the score that can be achieved for one
particular episode. We base the evaluation
of the neural networks on this criterion as
well. In the following subsection we discuss
the methodology. Then we present our re-
sults for these three games.

4.1 Methodology

We believe that re-implementing the learning
agents would lead to better understanding.
For this purpose we used primitives provided
by the Keras library in Python. Experiments
were run on a combination of CloudLab and
Google Cloud. CloudLab provides powerful
CPUs with considerable RAM, while Google-
Cloud is used for the NVidia K80 GPU, for
running experiments with image input.

4.1.1 Randomness in Measurement

There are multiple sources of randomness in
the experimentation environment. Once a
game reaches a certain state, the underlying
physics/game engine provides a consistent ex-
perience. However, the start state of each
episode is not fixed, making it hard to chart
fine grained improvement over time. Sec-
ondly, the learning algorithm itself often has
a random exploration feature to it. Thirdly,
the neural networks are initialized to ran-
dom weights. Fourthly, a random sample of
the past states is used to train the network.
While setting the random seed in python was
able to solve two of these, it did not resolve
the variability of the start state, and as a
result, the training sample. Thus, we de-
cided to allow randomness, and ran the ex-
periments duplicate or triplicate. We restrict
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our discussion of results to those that we can
consistently replicate.

4.1.2 Metrics

In simple supervised learning, the error al-
most always decreases with more training
epochs. However, in reinforcement learning,
the same does not hold true for the rewards.
In addition to the the randomness discussed
above, reinforcement learning algorithms like
Q-Learning involve function approximation
on a sample of data, which has implications
on incremental performance. Thus, look-
ing at individual successive episode scores
does not always provide a meaningful picture.
Hence, we use the following metric.

Moving Average

At each episode of the data, we compute the
simple average of the previous 100 episode
scores. This helps to analyze the trend of
the scores. The disadvantage of this metric is
that individual points of data are lost, only
the aggregated values are represented.

4.2 Cartpole

In the Cartpole environment, each episode
lasts for 200 timesteps, and the score is
the number of timesteps the pole remains
upright. We experiment with various net-
work structures, try modifying the reward
structure, and test if training for more
episodes/timesteps or with more distributed
data affects the performance. In addition, we
also modify the environment to change the
200 timestep limit to better evaluate real life
performance. Thus, there are training scores
limited to 200, while evaluation scores are can
reach up to 1000.

4.2.1 Effects of Varying the Network
Structure

As seen in the Figure 6, we find that a sim-
ple network with one input, one hidden and
one output layers, and 20 hidden nodes is suf-
ficient to approximate the Q-function. The
more complicated network structures prob-
ably need more training to improve perfor-
mance.

4.2.2 Effects of Varying the Reward
Mechanism

In addition to the default reward mechanism,
we experiment with what we call positive en-
hancement and negative enhancement. In
each of these, we positively or negatively bias
the score depending on whether the pole is
upright or not at the end of the training
episode, by a weight of 10 timesteps. We find
that positive enhancement performs worse
than negative and the default reward struc-
ture. This is not surprising since we do not
know how long the pole will actually stay up-
right, which could be orders of magnitude
more than the 10 timesteps we add. This
would result making the training data for the
Q-function approximation to be noisy. While
the default mechanism and the Negative En-
hancement perform comparably in the train-
ing episodes, as seen in Figure 7a, in the eval-
uation episodes we find that Negative En-
hancement performs significantly better, as
shown in Figure 7b.

4.2.3 Effects of Training with more
data (More Episodes)

This experiment highlights the difference be-
tween reinforcement learning and regular su-
pervised learning. Comparing the perfor-
mance of models that are trained for 1000
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(a) 1 hidden layer vs 2 hidden layers (b) 1 hidden layer with various number of nodes

Figure 6: Various network structures for Cartpole - training scores

(a) Training scores (b) Average evaluation score (Rounded to Near-
est Integer)

Figure 7: Reward Schemes - Default(v1) and Negative Reinforcement(v3) - Cartpole training
scores schemes

and 5000 episodes, all else remaining con-
stant, the performance of the two models is
almost identical as seen in Figure 8a.

4.2.4 Effects of Training with better
data (Longer Episodes)

We observe that given that the start state
varies in a small range of possible values, in
the 200 timestep episode length, a vast ma-
jority of the visited states are near the center
of the state space. This impacts the sample
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(a) Training with more episodes (b) Training with longer episodes

Figure 8: Effects of training with more and better data (average score rounded to nearest
integer)

of the states that are used to train the neu-
ral network too. In other words, the training
data is biased with insufficient data on state-
action pairs near the corners. This results
in the agent learning how to keep the pole
upight, but it fails to learn to keep the cart
inside the arena. We decided to experiment
on this by modifying the training episode du-
ration to 2000 timesteps. As seen in the Fig-
ure 8b, this resulted in much better perfor-
mance.

A key point to note here, is that since the
sample size for each training step is the same,
and the number of episodes/training steps is
the same, the quantity of training is exactly
the same. Only the distribution of the train-
ing examples, i.e., the quality of the training
data, varies.

4.3 Pong

The neural network structure used for Pong is
already discussed in Section 3. As mentioned,
our goal is to compare a DQN against a policy
gradient neural network. Also note that the
input images of Pong do not provide all nec-

essary information of a state. For example,
just by looking at an image we cannot decide
which way the ball is moving. One common
strategy to counter this is to take the differ-
ence between two consecutive images and use
that as the state. We also wanted to see how
using this strategy works against taking just
the input image as a state. To do so we use
the difference between consecutive images as
a state for both the DQN and the policy gra-
dient (PG1) neural network. We also train a
separate policy gradient neural network with
the same structure where the input state was
just the image and not the difference between
two consecutive states (PG2). The learning
rate was set to 0.001 in all cases. We present
our findings in this section.

We trained all three neural networks for
12000 episodes. We used the average reward
as our metric for measuring which network
performs the best. The results are shown in
Figure 9.

As can be seen from the figure, the aver-
age reward improves a lot more for the policy
gradient neural networks. This clearly sug-
gests that the policy gradient neural network
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Figure 9: Training results for Pong after
training for 12000 episodes

learns much more quickly than a traditional
DQN even when convolution layers are not
being used. Also note that PG1 performs bet-
ter than PG2, which suggests that using the
difference between two consecutive images as
the state does provide more useful informa-
tion to the neural network.

4.4 Alien

As discussed earlier in section 3, Alien has a
flickering game screen which makes its envi-
ronment partially observed and the input to
the neural network is an image. In this sec-
tion, we analyze the performance benefits of
adding an LSTM layer on the top of convolu-
tion layers in the neural network. We report
our scores on both configurations (with and
without an LSTM layer) and then perform a
comparison between the two.

4.4.1 Effects of adding a LSTM layer

The structure of the neural networks for Alien
is given in Figure 5. Note that in Figure 5b
all the parameters including the number of
convolution layers and the filter size for each

layer remain the same as Figure 5a. Only dif-
ference is the introduction of an LSTM layer.

Figure 10: Comparison of the average scores
in Alien with and without an LSTM layer

Figure 10 presents the comparison of mov-
ing averages of best 500 episodes with and
without LSTM. The peak average score which
we get when we use only CNN is 180. But
the peak average jumps to 210 after adding
an LSTM layer. There is 17% improvement
in the peak average score as compared to us-
ing only CNN. The reason can be attributed
to the LSTM layer being able to keep track
of the past history and thus resulting in more
correct decisions. So, LSTM layer does help
in the games that have flickering frames. The
score which we got is one of the top scores for
Alien-v0 in Open AI Gym. The algorithm
can be found at [6].

5 Individual Contribution

Everyone in the team was new to OpenAI.
So, all of us started with familiarizing our-
selves with the OpenAI Gym by looking at
the Cartpole environment. Adithya took lead
on setting up the different versions of the
Cartpole environment. Ayon took lead on the
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implementing the DNN for the Pong enviro-
ment. Anshu took lead on implementing the
DNN for the Alien environment. Arjun took
lead in setting up the infrastructure.

The algorithms which we implemented
were detailed, and though each one had a lead
person, all the others were involved in debug-
ging and thus learnt what the other person
was doing. All of us were involved in col-
lecting and interpreting the results as well as
worked on the report.

6 Related Work

DeepMind’s paper [2] is the first one to in-
vestigate the impact of using DNNs in the
context of reinforcement learning. The DQN
algorithm was proposed in [2] and its effec-
tiveness was evaluated to seven Atari games.
However, all the games chosen by them used
images as an input. As a part of our work,
in addition to evaluating the DQN algorithm
when images are used as input, we even tested
its efficacy when that was not the case. The
DNN structure mentioned in [2] was used as
a reference point for our experiments.

For the partially observed states, there
have been efforts to add recurrency to the
neural network [5]. This paper provides
recurrency as an alternative to stacking of
frames and feeding it to the Deep Q network.

7 Future Work

Our goal for this project is to learn how the
different RL algorithms work in conjunction
with deep neural networks. Even though we
try out several problems for this purpose, we
are not able to run all of them to convergence
due to time and processing power limitations.
As a future task we would like to see the high-

est scores we can get for each of these tasks.
We would also like to vary the different hyper-
parameters of the neural networks e.g., num-
ber of hidden layers, activation functions used
in hidden layers etc. and see how that im-
pacts the individual tasks. That might give
us some insight on which structures are best
for a particular type of task. Visualizing the
layer activations, and using pre-trained mod-
els for a different task, such as image classifi-
cation, to initialize our model would also be
an interesting approach.

8 Conclusion

For this project, we try out reinforcement
learning in the setting of deep neural net-
works. We use multiple games from the Ope-
nAI Gym as the problems to tackle. More-
over, we analyze our results using different
neural network structures and RL strategies.
Our experiments suggest that multiple pos-
sible neural network structures may perform
equivalently for reinforcement learning. The
policy gradient strategy performs better than
Deep-Q learning. Furthermore, for image in-
puts it is better to take as input the difference
between two images instead of using just the
image for a given time as the former provides
more information. A higher level take-away
is that if the design of inputs and reward sys-
tem is appropriate, it significantly enhances
the performance of our agents. Finally, for
the games that have partially visible state,
adding a recurrent neural network(LSTM) on
the top of convolution layers helps to increase
the performance.
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