
Everything You Still Don’t Know About Synchronization and
How It Scales

Anshu Raina, Suhas Pai, Mohit Verma, Vikas Goel, and Yuvraj Patel

Department of Computer Sciences, University of Wisconsin-Madison
araina, spai, mohit93, vikasgoel, yuvraj@cs.wisc.edu

Abstract
Scaling the software systems to harness the paral-
lelism offered by today’s many-core systems is an
extremely challenging task. One key component -
synchronization is generally a hindrance to achieving
scalability. It is extremely hard to reason about how
the synchronization paradigms scale. In this study,
we present an analysis of various layers - hardware
atomic instructions, software synchronization prim-
itives and applications which use these primitives.
We also study the behavior of these synchronization
primitives to understand how the thread placement
(intra-socket, inter-socket, and hyperthreading) im-
pacts synchronization. We further analyze how the
size of the critical section impacts the performance of
software synchronization primitives. Throughout the
paper, we present various observations and explain
the reason behind them.

1 Introduction and Motivation
As predicted by Moore’s Law, transistor density gains
and reductions in the lithographic feature size has
continued but is unlikely to continue for long [1]. The
rise in the clock speed and performance of single-core
has somewhat saturated. Instead, modern computer
architects have started focusing on providing more
parallelism within a single chip by providing many
cores within a single chip [2, 3].

In order to harness this implicit parallelism within
a chip, a lot of research has been conducted to scale
systems. Efforts have been put in at various software
stack levels to improve the performance of the system
by making the system run in parallel [4, 5, 6, 7, 8, 9].
However, one thing that is commonly pointed out in
all prior work is that scaling systems is a challenging
task. One of the major hindrance to scale systems
is synchronization. Extra care has to be taken to
ensure synchronization does not end up degrading the
performance of the system.

Synchronization refers to an act of coordinating

among processes or threads to ensure correctness. In
the absence of a proper coordination, the overall re-
sult of the computation in a multiple process envi-
ronment can be incorrect. Most of the time, this co-
ordination is ensured by serializing the execution of
the processes. Looking from Amdahl’s law [10] point
of view, serialization always ends up slowing the sys-
tem down defeating the purpose of scaling the system
[11].

The most common problem faced while designing
parallel systems is that the developers are not aware
about the effects of scaling on synchronization. More-
over, if the system fails to deliver high performance,
it is hard to understand which component within the
synchronization primitive is a bottleneck. This is gen-
erally attributed to the fact that most of the time
developers are not aware about the intricate details
of the underlying hardware. It is hard to pin point
which factor within the system is failing the scaling.
The factors have a diverse range e.g. cache coherence
affecting hardware atomics, higher level synchroniza-
tion primitives w.r.t. the size of the critical section,
thread placement and so on.

Understanding the effect of synchronization under
scaling thus becomes extremely difficult. Tudor et.
al. [12] make an attempt to explain synchronization
from a many-core perspective. They explain synchro-
nization in a multi-dimensional way and study four
different hardware. However, their study still fails
to explain the intricacies of how the latency of the
atomic operations varies once the number of threads
contending increases. Similarly, the study fails to ex-
plain how the software synchronization primitives like
mutex, spinlock, semaphore behave when the number
of contending threads increases.

In this paper, we extend the work done by [12]
and understand synchronization from the following
prespective

1. We study synchronization by varying the num-
ber of threads that try to contend hence helping
us understand how the atomic instructions, soft-

1

ware synchronization primitives and applications
behave when the number of contending threads
increases.

2. We study synchronization from the thread place-
ment perspective by placing threads in three dif-
ferent configurations - within the same socket,
across sockets and in hyper-threaded fashion
where two threads are running on the same phys-
ical core. This will help us understand how
thread placement impacts synchronization and if
there is any advantage when the threads execute
within a socket or in hyper-threaded manner.

3. Another parameter we believe is important to
understand synchronization is the size of critical
section. We vary the size of the critical section
in our experiments to understand what impact
does size of the critical section have on synchro-
nization.

We study the above parameters by conducting ex-
periments around the following

1. Hardware artifacts - CAS, TAS and FAI

2. Software synchronization primitives - mutex,
semaphore and spinlocks.

3. Applications - MongoDB

In our experiments, we also understand the in-
ternals of the software synchronization primitives to
make sure if the implementation of these primitives
is optimal.

Throughput the paper, we try answering certain
questions to understand the impact on synchroniza-
tion while scaling. Few of the interesting observations
we observed while analyzing the experimental data
are as follows

1. Inter socket communication is costly because
of which cache coherency related traffic suffers,
ending up making synchronization across sockets
expensive.

2. Placing threads on Hyper-threaded cores per-
forms better than just placing them on differ-
ent physical cores in same socket - We observed
that two threads running on the same physical
core perform better as sharing the cache helps in
lesser cache coherence traffic causing an overall
decrease in the latency to execute the synchro-
nization operations.

3. Current implementations of mutex and binary
semaphores first try to perform CAS a couple of

times and in case of failure, they spin for some
time and then perform a system call. We argue
that for larger critical sections, CPU cycles are
wasted on unnecessary spins because eventually
almost every thread performs a system call.

4. Spinlocks with more threads perform worse even
on small critical sections - Common belief is that
spinlocks are good when critical section size is
small. But our study suggests that if the num-
ber of threads trying to acquire a spinlock in-
creases, the latency of successfully acquiring the
lock increases exponentially because spinlock re-
peatedly tries a CAS operation without backoff
hence increasing the cache coherence overhead.
Surprisingly, mutex and semaphore perform bet-
ter than spinlocks in such a situation.

5. CAS operation is more costly than TAS as CAS
is executed using cmpxchg instruction in x86-64
and achieves atomicity using lock prefix. There
are many cache coherence state transitions which
can increase the latency of CAS.

6. Locks are generally acquired in clusters - During
our experiments, we found that the cores physi-
cally near the core that is holding a lock are more
likely to acquire the lock next compared to the
cores that are physically far apart. Generally,
the cluster size we found is around 3 to 4 cores.

The rest of the paper is organized as follows. In
Section 2, we cover the synchronization basics fol-
lowed by the experiment details in Section 3. In
Section 4, we discuss the key results obtained while
conducting the experiments. In Section 5, we briefly
discuss related work and in section 6 we talk about
the future work. We conclude in Section 7.

2 Synchronization Background
Systems with multiple processing elements have be-
come the norm in recent years. Such systems not
only enable running multiple workloads at the same
time but also allow programmers to take advantage
of the inherent parallelism in a single workload and
speed up its execution. Given enough information
about the workload, the theoretical speedup of exe-
cution by exploiting parallelism can be predicted by
Amdahl’s law [10]. However, no matter how parallel
these workloads are, they need to communicate with
various threads. This is because they either need to
enforce mutual exclusion when accessing a shared re-
source, or the nature of the workload requires ag-
gregation and processing of all parallel computations
by a single serial component. The process through

2

which the various parallel components communicate
with each other to achieve this is known as synchro-
nization.

Programmers achieve synchronization using vari-
ous synchronization primitives provided by the oper-
ating system, such as spinlocks, mutex, semaphores
etc. These synchronization primitives are built using
atomic instructions provided by the underlying hard-
ware. We describe the atomic operations provided by
hardware and the higher-level synchronization prim-
itives that are built using them in this section.

2.1 Basic Hardware Artifacts
Modern processors provide multiple instructions
guaranteed to execute atomically. Each of these in-
structions has different semantics and can be used to
design various synchronization schemes. We describe
three key atomic instructions provided by the x86-64
ISA which we study in this work.

Compare-And-Swap (CAS): The CAS instruction
compares a value in memory with an expected value;
if they are equal, then the value in memory is updated
with a new value. In either case, the original value
at the memory location is returned. On x86-64 hard-
ware, CAS is implemented using the lock cmpxchg
instruction.

Test-And-Set (TAS): The TAS instruction returns
the old value present at a memory location, while
simultaneously updating it with a new value. This
ensures that the memory location has no other inter-
mediate values. On x86-64 hardware, TAS is imple-
mented using the xchg instruction.

Fetch-And-Increment (FAI): The FAI instruction
increments the value at a memory location atomi-
cally, while returning the original value. The atomic
update ensures that the memory location holds no
other intermediate value.

2.2 Higher level Synchronization
Primitives

Most programmers are familiar with synchroniza-
tion primitives like mutex, semaphore, and spin locks
while writing parallel code. In this section, we discuss
how these primitives are implemented using the basic
hardware artifacts discussed in the previous subsec-
tion. We first provide a brief description of each of
these primitives, where they are used, and then pro-
vide the algorithm for them used in musl[13]. We em-
phasize that different implementations[14] may pro-
vide some extra optimizations, and have support for
additional features, but the basic algorithm remains
the same.

Mutex : Mutex is used to provide mutual exclusion.
These are most often used when exactly one thread

can be allowed to enter the critical section. After the
introduction of the futex system call in Linux [15], it
became a practice to let the lock be acquired in user
space, if possible, to avoid the expensive system call
(and the user space to kernel space switching over-
head). Thus, internally mutex tries to acquire the
lock multiple times using a couple of CAS instruc-
tions. If successive CAS on the lock fails, it implies
some contention on the lock, so mutex spins for some
time in a loop, exiting the spin loop when a loop count
of 100 is reached, or it detects there are no waiters,
whichever comes first. Next, it tries a CAS again to
get the lock, and if this also fails, it registers itself as
a waiter on this lock and calls the futex sleep system
call. If any of the above CAS succeeds, it implies
that lock has been successfully acquired, and the mu-
tex lock call returns. The pseudocode for the mutex
primitive is provided below. Notice that the entire
algorithm has been broken down into different APIs
to allow the user to call any of them. Mutex unlock
atomically updates the shared lock to unlock it and
wakes up a waiter (if any).

pthread_mutex_lock () {
Try CAS , return if successful
pthread_mutex_timedlock ()

}
pthread_mutex_timedlock () {
Try CAS , return if successful
r = pthread_mutex_trylock ()
if (r) return /∗ l ock acquired ∗/
spin − max 100 loops or until no waiter on lock
while (pthread_mutex_trylock ()) {

register as waiter
do futex sleep syscall
/∗wake up once unlock i s c a l l e d ∗/

}
}
pthread_mutex_trylock () {
Try CAS , return CAS result

}
pthread_mutex_unlock () {
atomic swap
if (waiters) futex wakeup syscall

}

Semaphore: A semaphore is an object with an in-
teger value that we can manipulate with two rou-
tines; in the POSIX standard, these routines are
sem_wait() and sem_post()[16]. Semaphores are
mostly used for signaling purposes. They may allow
multiple threads to enter the critical section, and sig-
nal the waiters once they are done. As in mutex,
internally semaphore tries CAS a couple of times,
before spinning and subsequently blocking. Note
that the CAS operation here is implemented in a
while(allowed entries > 0) loop because the CAS may
succeed in another attempt as long as it is okay for
the thread to enter the critical section.

Since multiple threads may be in the critical sec-
tion at once, semaphore post needs to update the

3

internal shared count in a while loop till it is suc-
cessful. The pseudocode for semaphore is provided
below. sem_wait() API tries to get the ownership of
lock and sem_post() API gives up the ownership of
lock.

sem_wait () {}
sem_timedwait ()

}
sem_timedwait () {
sem_trywait ()
spin − max 100 loops or until no waiter on lock
while (sem_trywait ()) {

register as waiter−atomic_inc
do futex sleep syscall
/∗wake up once unlock i s c a l l e d ∗/

}
}
sem_trywait () {
while (allowed entries > 0)
Try CAS , return 0 if successful , else 1

}
sem_post () {
do {
} while (CAS allowed entries ++)
if (waiters) futex wakeup syscall

}

Spinlocks: Spinlocks are used to provide mutual ex-
clusion when the critical section size is known to be
small. The thread which is trying to acquire a lock is
stuck in a while loop to get the lock. The implemen-
tation of spinlock involves continuously trying a CAS
operation in a while loop, till it succeeds. We note
that such an implementation will cause a lot of cache
coherence traffic because of multiple threads being ac-
tive at any given point of time. In our experiments,
we used musl[13] library which implements spinlocks
without any back-off. This means the threads don’t
wait before trying the next CAS operation. The pseu-
docode for spinlock is provided below.

spin_lock () {}
while (CAS (lock)) ;

}
spin_unlock () {
atomic_store

}

3 Experimental Setup
The aim of our experiments is to study the effects of
synchronization on different primitives ranging from
hardware to software and see how these primitives
scale as we increase the number of threads up to the
number of cores present in the processor. So, we have
divided our study into two layers. In the first layer,
we do this study on various hardware artifacts like
Compare and Swap (CAS), Test and Set (TAS) and
Fetch and Add (FAI). In the second layer, we ana-
lyze software synchronization primitives like mutex,
semaphore, and spin locks and answer some impor-
tant questions pertaining to scalability. These exper-

Figure 1: Haswell-EP block diagram: There are two
rings with one memory controller each

iments are done by varying the placement of threads
across different configurations e.g. all the threads
present in a single socket, threads distributed across
sockets and threads placed on the same physical core
but different logical cores in case of hyper-threading.

3.1 Hardware

All our experiments are performed on Intel Xeon E5
v3 machine otherwise called as Haswell-EP. Haswell-
EP has three variants-an eight-core die (4, 6, 8-core
SKUs), a 12-core die (10, 12-core SKUs), and an 18-
core die (14, 16, 18-core SKUs)[2]. The eight-core die
uses a single bi-directional ring interconnect and 12-
core and 18-core die’s use a partitioned design as de-
picted in Figure. 1 [17]. Eight L3 slices, one memory
controller, the QPI interface, and the PCIe controller
are connected to one bidirectional ring. Remaining
cores (4 or 10), L3 slices, and the second memory con-
troller are connected to another bi-directional ring.
The ring topology is hidden from the operating sys-
tem by default.

The architecture uses MESIF protocol[18] to main-
tain cache coherence. Modified, exclusive, shared and
invalid are inherited from MESI and a state forward
is added to enable cache-to-cache transfers of shared
lines. The protocol is implemented by caching agents
(CAs) within each L3 slice and home agents (HAs)
within each memory controller as depicted in Fig-
ure. 2[17]. MESIF protocol supports three snoop
modes: source snoop mode, home snoop mode and
cluter-on-die mode. In source snoop mode, snoops
are sent by the caching agents and it is enabled by
default. Note that in our experiments we are using
a default configuration which supports source snoop-
ing. Also we have clocked our machine at 1.2GHz so
as to keep uniformity in our results.

4

Figure 2: Cache Coherence Implementation

3.2 Basic Hardware Artifacts
To study the first layer of synchronization primitives,
i.e. the atomic instructions provided by hardware,
we make use of the open source benchmarking sys-
tem called ccbench [19], developed at EPFL. We use
this tool to spawn varying number of threads in the
system and have each of them perform atomic op-
erations in parallel. Each experiment creates a cer-
tain number of threads, all of which arrive at a bar-
rier and then proceed to perform atomic operations
on a shared memory location in a loop, until all of
them succeed. We measure the time taken for ex-
ecution in each thread using the RDTSC(read-time
stamp counter) instruction in the x86-64 ISA. We
ensure that these measurements are not affected by
reordering of instructions in the out-of-order CPU by
making use of fence instructions at appropriate loca-
tions. The latency numbers we report do not include
the fence instruction latency. Each experiment is re-
peated for 100000 iterations and the median value of
the latencies are reported.

We conduct these experiments for all three instruc-
tions described above: CAS, TAS and FAI. We vary
the number of threads in the system from a minimum
of 1 to the maximum number of logical cores in the
system. We also place the threads in various config-
urations: single socket without hyper-threading, sin-
gle socket with hyper-threading, two sockets without
hyper-threading, two sockets with hyper-threading.

3.3 Higher level primitives
We use musl[13] to study the behavior of spinlocks,
mutex and binary semaphore with scaling. Musl is a
lightweight and simple standard C library that con-
forms to the requirements of the ISO C99 standard.
We change the API definitions of the above primitives
in musl, so that we can pass an additional structure as
argument. This structure is maintained per thread,
and records the latencies of various operations that
take place. As explained before, time is measured us-

ing RDTSC instruction. Since we have clocked our
CPU at a fixed frequency of 1.2GHz, we then easily
convert the cycle count given by RDTSC into micro
or nano seconds depending on the precision of the re-
sults required. We don’t use glibc in our experiments
as glibc is heavyweight and is difficult to change for
instrumentation. We use the following critical section
across which mutex/ semaphore/ spinlock is applied:

FOR (0 . . . LOOP_COUNT) {
count := count + 1 ;

}

LOOP_COUNT refers to the number of times the
instructions within the for loop are executed. For
our experiments, we use LOOP_COUNT of size 100,
1000 and 10000 which are representative of small,
intermediate and larger critical section. Note that
"count" is a volatile variable here and we have made
it volatile to avoid any compiler optimizations in the
critical section.

3.4 Applications
To understand how thread placement can impact the
performance of the applications, we conduct exper-
iments on MongoDB [20]. MongoDB is a free and
open source document-oriented database. MongoDB
provides high availability of the data by using repli-
cation. A record in MongoDB is a document which
is a data structure composed of field and value pairs.
MongoDB stores documents in collections and thus
are analogous to the tables in relational databases.
Databases hold collections of documents. MongoDB
supports two storage engine namely WiredTiger and
MMAP. We are using MongoDB version 3.2 which
has WiredTiger storage engine as the default storage
engine.

MongoDB provides a variety of acknowledgment
behavior for write operations. MongoDB describes
this level of acknowledgment in terms of write
concern. A write concern is specified as

{
w: <value>, j: <boolean>, wtimeout: <number>
}
where, (i) w option specifies that the write operation
has been propagated to a specified number of mon-
god instances. Here, if the value is 1, it means that
the write operation has propagated to a standalone
mongod instance. While a value of 0 means that no
acknowledgment of the write operation. A higher
value is used when the write operation needs to be
propagated to many replicas. (ii) j option specifies
that a write operation has been written to the
journal. (iii) the wtimeout option specifies a time

5

limit to prevent write operations from blocking
indefinitely.

For our experiments, we are using the w option
with value 0 and j to be false. We believe that this
is going to stress the system the maximum as there
is no I/O path involved during the write operation.
We study MongoDB for write and read operations
respectively. We measure the overall throughput for
reading and write operations when varying number of
clients try to insert or read the documents in parallel.

For writes, we insert 50 million documents in to-
tal while the number of clients varies. Similarly, for
reads, we read the same 50 million documents in-
serted earlier while varying the number of threads.
We run the experiments 50 times and take an aver-
age of the completion times for reporting purpose.

As experimenting with MongoDB needs two ma-
chines, we are using cloudlab machines for the same.
The configuration of the machines is the same as that
described in Section 3.1. On one machine, MongoDB
server runs and the data is persisted on SSD disk
while the clients run on another machine and send-
s/receives data from the server via a 10 Gbps net-
work.

4 Observation and Results
In this section, we present our study on the three lay-
ers. Throughout the following subsections, we first
ask questions that can be answered by such a study,
and we then present our observations and explana-
tions for them.

4.1 Basic Hardware Artifacts
In the experiments for basic hardware artifacts, we
try to find answers to the following questions:

• How do latencies of atomic instructions scale
with varying levels of contention in the system?

• Does placement of threads in the system affect
their latencies? For example, are latencies af-
fected by relative placements of threads among
sockets?

• Does the use of hardware multi-threading, when
available, have any effect on scaling?

Through our experimental results, we see that the
latencies of all three instructions that we study in-
crease linearly with increasing contention in the sys-
tem. Figures 3, 4 and 5 show this trend. Note
that the latencies in Figure 3 for the CAS instruc-
tion is in microseconds, while the other two are in
nanoseconds. This is because the CAS instruction
in x86-64 is executed using the cmpxchg instruction

Figure 3: Latency trends for CAS with number of
threads

Figure 4: Latency trends for TAS with number of
threads

which does a read-modify-write update of memory,
and atomicity is achieved using the lock prefix [21].
As a result of this implementation, there are multiple
cache coherence state transitions which happen when
this instruction is executed, and this may increase the
latency of CAS instruction compared to TAS.

Figures 6, 7 and 8 show the latencies for the three
instructions when 8 threads are placed in different
configurations in the system. Here, 1S No HT corre-
sponds to placing threads on a single socket without
the use of hyper-threaded cores, while 1S HT cor-
responds to threads being placed on a single socket,
while half of them are placed on the same physical
cores as the other half using hyper-threading. Simi-
larly, 2S No HT and 2S HT represent the non-hyper-
threaded and hyper-threaded configurations in the
two sockets. In general, we see that use of hyper-
threading provides some decrease in latency com-
pared to the case when it is not used. This is because
the use of hyper-threading implies the threads are
placed on different logical cores while actually run-

6

Figure 5: Latency trends for FAI with number of
threads

Figure 6: Latencies for CAS with 8 threads placed in
different configurations

ning on the same physical core as another thread. As
a result, caches are shared between these threads re-
sulting in lower cache coherence traffic in the system
and hence lesser delays.

Figure 9 shows a better visualization of effects of
thread placements on latencies for CAS. It can be
seen that the latency is least when two threads per-
form CAS on hyper-threaded cores due to reasons
mentioned above. Performing a CAS operation across
sockets has the highest latency due to inter-socket
communication. It can be seen that the latency is
about 1.5x for inter-socket compared to intra-socket.

4.2 Higher level primitives

In this subsection, we present our observations on
higher level primitives. This subsection is struc-
tured as a question-answer discussion for better un-
derstanding.

Figure 7: Latencies for TAS with 8 threads placed in
different configurations

Figure 8: Latencies for FAI with 8 threads placed in
different configurations

4.2.1 How do synchronization primitives be-
have as critical section size varies?

To answer this question, we do our experiments for
small, medium and large sized critical sections. For
these experiments, 14 threads are contending on a
single mutex lock. Figure 28 shows the timeline
for the 14 contending threads placed on 2 different
sockets when the critical section is small (100 loop
count). The timeline is color-coded to identify dif-
ferent events: lock acquisition begin, lock acquisition
successful, unlock begin, and unlock end. Note that
in this case, a thread enters a lock acquisition phase,
successfully acquires the lock, performs the critical
section work, perform unlock and exits. So, there is
no contention in the system, as critical section got
over before other threads were even scheduled.

Figure 29 shows the timeline for 14 threads on 2
sockets when the critical section is large (10000 loop
count). We find that almost every thread tried to
acquire the lock, and does a system call to sleep,
while one thread is in its critical section. When this

7

Figure 9: Relative performance of CAS for different
thread placements

thread exits critical section, we observe that threads
acquire the lock in the order they registered to acquire
it. Thus, there is a first-come-first-serve ordering of
thread wake-ups.

Figure 30 shows the timeline for 14 threads on 2
sockets when the critical section size is intermediate
(1000 loop count). The timeline shows that some
(not all) threads tried to acquire the lock when one
thread was in critical section. Interestingly, when this
thread exits its critical section, another thread which
tried to acquire the lock later, ended up getting the
lock. Thus, the thread woken-up due to the wake-
up system call has to sleep again. In general, since
the critical section is not big enough, some threads
which were scheduled later start contending with the
thread just woken up and create this mess. Thus,
we conclude that a FCFS wake-up ordering doesn’t
imply a FCFS lock acquisition.

4.2.2 Performance scaling as the number of
threads increase

Figure 10 shows that the maximum spin count of
spinlock before it successfully acquires the lock in-
creases exponentially as we increase the number of
threads. In subsection 4.2.5, we show that spinlocks
perform worse than mutex and semaphores even for
small critical sections when the number of threads is
more.

Mutex and semaphore also show an increase in the
latency as the number of threads increases. Figure
11 shows the latency of mutex lock acquisition on
a single socket with a critical section of relative size
100. Figure 12 shows that performance is even worse
when the same analysis is done for threads placed
across sockets. The trend continues when we increase
the number of threads to 56 on a configuration where
hyper-threading is turned on. There is a lot of con-

Figure 10: Maximum number of spins for Spinlock
tention when we go to 28 and 56 threads with hyper-
threading as can be seen in Figure 13.

Figure 11: Latency of Mutex lock acquisition on 1
socket

We next present an analysis of the scaling of mu-
texes as the number of threads increase. Figure 14
shows the breakup of stages a thread undergoes in or-
der to acquire a lock. As explained in section 3, mu-
tex performs CAS operation a couple of times. If it
fails to do a successful CAS, it spins for some time and
then tries CAS again. In case, it still doesn’t get the
lock, it performs a futex system call to go to sleep. In
Figure 14, the spike in the latency is due to threads
contending for a lock. They perform CAS multiple
numbers of times, spin for some time and then get
the lock. While others get the lock in the first CAS,
the lock acquisition time for the contending threads
increase by 4x. Figure 15 presents a similar analysis
when the threads are placed on hyper-threaded cores
of a single socket. Figure 16 extends this observation
to the two sockets in which we see more contention
than the single socket. A couple of threads get the
lock after three CAS operations, others have to spin

8

Figure 12: Latency of Mutex lock acquisition on 2
sockets

Figure 13: Latency of Mutex lock acquisition on 2
sockets with Hyperthreading

as well. Note the increase in lock acquisition time by
8x which is twice more than that observed in Figure
14. As shown in subsection 4.1, CAS across sockets
can be 2x expensive which attributes to this result.

4.2.3 Impact of thread placement on perfor-
mance

The next question which we answer is the impact
of thread placement on performance. Table 1
shows the data for 14 threads contending as the
thread placement varies. NHT stands for Non-
Hyperthreaded thread placement, HT represents Hy-
perthreaded thread placement. 100 and 1000 repre-
sent the loop count of the critical section as explained
in the earlier sections. The numbers for first, sec-
ond and third CAS represent the percentage of the
threads getting successful in their CAS attempts re-

Figure 14: Mutex lock overhead breakup for 14
threads on 1 socket

Figure 15: Mutex lock overhead breakup for 14
threads on 1 socket with hyper-threaded cores

spectively. As discussed in section 3, mutex tries CAS
multiple times, backs-off if there is contention, spins,
and does a system call. What we see is that percent-
age of threads succeeding the first CAS is more in
single socket than in two sockets. We also note that
the number of system calls in the threads rise when
threads are placed across sockets. Table 1 shows
that in the single socket non-hyper-threaded run for
a critical section of relative size 1000, 7 threads per-
form system call once and 4 threads perform system
call twice. In contrast, when threads are placed across
sockets, 4 threads perform system call once, 6 threads
twice and one thread does it thrice which makes the
inter-socket performance worse than the intra-socket.
Table 1 also shows that almost all threads end up
doing system call(more than once) even though they
spin. We conclude that it might not make sense to
spin, and waste CPU cycles when the critical sec-
tion is large. We did not show the results of binary
semaphore because it is similar.

We perform a similar study for spinlock as given
in Table 2 and find that the maximum number of
spins in a loop is highest when the threads are placed
across sockets. For threads placed on hyper-threaded

9

1st CAS 2nd CAS 3rd CAS while loop - try lock Syscall Spin didn’t complete No of syscalls
NHT1s_1000 22 0 0 0 78 1 7-1/4-2
NHT2s_1000 15 0 0 7 78 0 4-1/6-2/1-3
HT_1000 22 0 0 14 64 3 6-1/3-2
NHT1s_100 86 0 0 14 0 2 0
NHT2s_100 43 0 14 43 2 2 0
HT_100 79 7 0 14 0 0 0

Table 1: Mutex Percentage of threads completing at each stage.

Figure 16: Mutex lock overhead breakup for 14
threads on 2 sockets

Configuration CS size Max spin count
NHT1s 1000 3719
NHT2s 1000 4275
HT 1000 3242
NHT1s 100 50
NHT2s 100 151
HT 100 28

Table 2: Spin count variation with thread placement
for spinlock

cores, this spin count is the least. The trend is same
if critical section size is changed.

4.2.4 Variation of max and min overheads as
number of threads vary

In this section, we analyze the maximum and mini-
mum overheads for a semaphore wait operation as we
increase the number of threads. Figure 17 shows the
latency of the sem-wait operation when the number
of threads is two. As the number of threads increases
to 4 in Figure 18, the sem-wait latency increases.
Note that for a lesser number of threads, Figure 17
shows that the worst-case latency of sem-wait for two
threads placed across sockets is lesser than when two
threads are placed on the same sockets. A timeline
of these threads shows that one thread completed ex-
ecution even before other thread got scheduled.

The same trend continues as we increase the num-

Figure 17: Semaphore latency variation for 2 threads
with a relative critical section size of 1000

ber of threads to 8 in Figure 19 and then 14 in
Figure 20. Now, the inter-socket sem-wait latencies
are worse than intra-socket thread placement. No-
tice that contention starts happening now, so inter-
socket latencies worsen. For each of these cases. the
latencies when threads are placed on hyper-threaded
cores are same or slightly better than when threads
are placed on separate physical cores.

4.2.5 Comparison of different primitives with
each other

Figure 21 shows the variation of semaphore wait la-
tency for 14 threads when the relative critical sec-
tion size is 100. Figure 22 presents the same plot
for mutex with the same critical section size. We
can see from these graphs that the behavior of both
semaphore and mutex is similar. Mutex is slightly
more costly compared to semaphore as mutex issues
one extra CAS than semaphore.

Figure 23 shows the variation of spinlock latency
for 14 threads in different configurations with a rela-
tive critical section size of 100. This figure shows that
the latency of spinlocks is more than the latency of
mutex for 14 threads with a critical section of relative
size 100. As discussed in subsection 4.1, mutex and
semaphores have back off when successive CAS oper-
ations fail. Spinlock performs worse because as more

10

Figure 18: Semaphore latency variation for 4 threads
with a relative critical section size of 1000

Figure 19: Semaphore latency variation for 8 threads
with a relative critical section size of 1000

and more threads try to do a CAS in parallel, it leads
to an increase in the cache coherence traffic resulting
in larger latencies. We infer that if the number of
threads is more, it makes sense not to use spinlocks.

4.3 Applications
In this section, we study how thread placement im-
pacts the overall performance of an application (Mon-
goDB). We believe that by intelligent thread place-
ment, the cache coherence traffic can be reduced
thereby improving the performance of the applica-
tion.

4.3.1 Write Throughput

We conduct read and write experiments on MongoDB
and report the overall read and write throughput in
operations/second in Figure 24. As seen from the

Figure 20: Semaphore latency variation for 14
threads with a relative critical section size of 1000

Figure 21: Semaphore wait latency variation for 14
threads in different configurations with a relative crit-
ical section size of 100

figure, the overall write throughput is more by a fac-
tor of 1̃5-20% for the intra-socket case. Surprisingly,
hyperthreading does not increase the throughput of
the system. Rather the throughput is similar to the
one seen in the inter-socket case.

The probable reason for such a behavior in case
of hyperthreading seems to be from the fact that
two threads share the same physical CPU and cache
thereby limiting the overall effectiveness. As the
physical resources are stressed, it may end up evict-
ing cache lines multiple times in order to accommo-
date the data for the other thread. This competition
eventually leads to lesser throughput compared to the
intra-socket case.

Another point to note here is that the overall av-
erage CPU utilization as seen in Figure 25 is al-

11

Figure 22: Mutex lock latency variation for 14
threads in different configurations with a critical sec-
tion size of 100

most similar in all the three cases. We looked at the
amount of I/O issued and found that the system is
not bottlenecked due to I/O. Similarly, the network is
also not a bottleneck. This suggests that the threads
are contending in order to get locks and hence wast-
ing a lot of CPU without doing any useful work.

To understand the locking pattern for the write
path, we use BCC [22] that relies on ebpf to do effi-
cient kernel tracing. Using BCC, we instrument the
code to trap every time a pthread_mutex_lock() call
is issued. We then print the entire stack trace when
mutex lock call is issued. We find that for every sin-
gle write being issued by the client, MongoDB takes
16 locks. This explains the reason why as the num-
ber of threads increase, the contention increases, not
letting the CPU do useful work. Providing a detailed
analysis on each type of lock is out of scope of this
project.

When the lock access happens across sockets, the
overall cache coherence traffic increases thereby lead-
ing to poor performance compared to an intra-socket
case.

4.3.2 Read Throughput

We do a similar exercise as discussed above for read
workload that can be seen in Figure 26. As seen from
the figure, the overall read throughput of inter and
intra-socket case remains the same. As the number
of threads on hyperthreaded cores increase, the read
throughput decreases by about 10-12%.

We attribute this behavior to the increase in con-
tention of physical resources by two threads running
on the same physical core. Figure 27 shows the CPU
utilization for all three cases and we see that the CPU
utilization is more or less the same.

Figure 23: Spinlock latency variation for 14 threads
in different configurations with a critical section size
of 100

Figure 24: MongoDB write throughput for varying
number of threads and different thread placement

Using a similar code instrumentation technique, we
find that in the read path, there are 18 locks overall
that are taken. We had expected that a fair amount
of contention would degrade the performance of the
inter socket case but that is not being observed during
our experiments. Further analysis is needed to study
the cache footprint for read operations and how it
impacts the performance.

5 Related Work
Through this paper, we have tried to closely iden-
tify the problems that are seen during synchroniza-
tion while scaling. As per our knowledge, the only
work that comes close to our study is the one done
by David et al. [12]. They also study synchroniza-
tion in a layered manner and on various hardware
platforms. However, their study only concentrates on
understanding synchronization between two threads.

12

Figure 25: MongoDB CPU utilization for writes while
varying number of threads and different thread place-
ment

Figure 26: MongoDB read throughput for varying
number of threads and different thread placement

It fails to answer what happens when the number of
threads increases and thus contention increases. We
try to explain this behavior through this paper.

Similarly, our study includes how various software
level synchronization primitives behave internally in
the presence of contention. They do not discuss how
the internals of each primitive behave when multiple
threads contend.

We also try to study the impact of the critical sec-
tion on synchronization. We believe that critical sec-
tion size does have a role to play while scaling. Our
results have shown that spinlocks do not perform well
even for smaller critical section size when the number
of threads increases. Such interesting observations
are missing in the other work so far.

Many others have tried to work around and build
scalable systems by trying to reduce the level of syn-
chronization needed for efficient working [5, 4]. They
assume that designing systems to rely less on syn-
chronization will help in scaling the systems to 100’s

Figure 27: MongoDB CPU utilization for writes while
varying number of threads and different thread place-
ment

to 1000’s of cores. However, they never study the root
cause of why synchronization does not perform well
with scaling. Our study tries to address such prob-
lems faced and our study does emphasize that the
performance of software level primitives is dependent
on the performance of hardware artifacts.

6 Future Work
We could not complete a lot of experiments that
should be included in such a study. Without the fol-
lowing, the understanding of synchronization under
scaling will not be complete. We point out that we
could not complete all of this due to resource con-
straints.

1. We run our current experiments only an Intel
Xeon platform. But, we want to understand
the impact of different cache coherence protocols
(directory vs snooping protocols, for example)
on the behavior of synchronization primitives.
But due to the unavailability of the hardware,
we couldn’t conduct experiments on such a plat-
form.

2. For now, we have only analyzed binary
semaphore. However, it will be interesting to
understand how counting semaphore will scale
under the parameters which we have used for
our measurement. As counting semaphore al-
lows more than one threads to enter the critical
section, our belief is that the contention will be
more than what we have observed so far in our
results.

3. We want to study more applications to under-
stand if the thread placement can help in an
application’s performance. We believe thread

13

placement can help to decrease the cache coher-
ence traffic generated by software synchroniza-
tion primitives. The results obtained from such
a study can help us understand if some kind
of cooperative scheduling will help in improving
the performance of the applications. The data
we have collected so far from MongoDB analysis
isn’t enough to draw conclusions.

4. To expand our study, we want to include more
software level primitives like conditional vari-
ables and barrier in our study. Expanding the
current study to other primitives will help us un-
derstand the behavior of each primitive in more
detail.

5. David et.al. [12] have measured throughput
of various synchronization mechanisms. How-
ever, we believe that with varying length of non-
critical section code, the behavior of CAS and
TAS operations will be an important part of the
study.

6. Lastly, we want to rewrite the software synchro-
nization primitives using TAS instead of CAS
and then measure how they behave so that we
can get a better understanding and also propose
the use of TAS as in our study as we have ob-
served that performance of CAS is always worse
than TAS.

7 Conclusion
Our work presents a detailed study of synchroniza-
tion starting from hardware primitives and then mov-
ing up towards the software primitives to applica-
tions. We find that the basic hardware artifacts like
CAS, TAS, and FAI are closely related with software
synchronization primitives like mutex, spinlocks, and
semaphores. One needs to have a good understand-
ing of the underlying architecture in order to get per-
formance while scaling. In our experiments we try
to answer the number of questions like performance
scaling of a given primitive as the number of threads
are increased, the effect of placement of threads in
different configurations and the comparison of differ-
ent primitives with each other. Synchronization is
hard but with the right information about the hard-
ware, what synchronization primitives to use and ap-
plication level technical knowledge, one can design
scalable system well.

References
[1] C. A. Mack, “Fifty years of moore’s law,” IEEE

Transactions on Semiconductor Manufacturing,
vol. 24, no. 2, pp. 202–207, May 2011.

[2] “Intel R© xeon R© processor e5 v3 product
family - processor specification update, intel,
september 2016.” [Online]. Available: http:
//www.intel.com/content/dam/www/public/
us/en/documents/specification-updates/
xeon-e5-v3-spec-update.pdf

[3] S. Bell, B. Edwards, J. Amann, R. Conlin,
K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,
J. Brown, M. Mattina, C. C. Miao, C. Ramey,
D. Wentzlaff, W. Anderson, E. Berger, N. Fair-
banks, D. Khan, F. Montenegro, J. Stickney, and
J. Zook, “Tile64 - processor: A 64-core soc with
mesh interconnect,” in 2008 IEEE International
Solid-State Circuits Conference - Digest of Tech-
nical Papers, Feb 2008, pp. 88–598.

[4] A. Baumann, P. Barham, P.-E. Dagand,
T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania, “The multiker-
nel: A new os architecture for scalable multicore
systems,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Prin-
ciples, ser. SOSP ’09. New York, NY, USA:
ACM, 2009, pp. 29–44. [Online]. Available:
http://doi.acm.org/10.1145/1629575.1629579

[5] D. Wentzlaff and A. Agarwal, “Factored
operating systems (fos): The case for a scalable
operating system for multicores,” SIGOPS
Oper. Syst. Rev., vol. 43, no. 2, pp. 76–
85, Apr. 2009. [Online]. Available: http:
//doi.acm.org/10.1145/1531793.1531805

[6] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein,
M. Wu, Y. Dai, Y. Zhang, and Z. Zhang,
“Corey: An operating system for many
cores,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, ser. OSDI’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 43–57.
[Online]. Available: http://dl.acm.org/citation.
cfm?id=1855741.1855745

[7] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich, “An analysis of linux scalability
to many cores,” in Proceedings of the 9th
USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’10.
Berkeley, CA, USA: USENIX Association,
2010, pp. 1–16. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1924943.1924944

[8] X. Yu, G. Bezerra, A. Pavlo, S. Devadas,
and M. Stonebraker, “Staring into the abyss:

14

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-v3-spec-update.pdf
http://doi.acm.org/10.1145/1629575.1629579
http://doi.acm.org/10.1145/1531793.1531805
http://doi.acm.org/10.1145/1531793.1531805
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dl.acm.org/citation.cfm?id=1855741.1855745
http://dl.acm.org/citation.cfm?id=1924943.1924944
http://dl.acm.org/citation.cfm?id=1924943.1924944

An evaluation of concurrency control with
one thousand cores,” Proc. VLDB Endow.,
vol. 8, no. 3, pp. 209–220, Nov. 2014. [Online].
Available: http://dx.doi.org/10.14778/2735508.
2735511

[9] M. Berezecki, E. Frachtenberg, M. Paleczny,
and K. Steele, “Many-core key-value store,” in
Proceedings of the 2011 International Green
Computing Conference and Workshops, ser.
IGCC ’11. Washington, DC, USA: IEEE Com-
puter Society, 2011, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/IGCC.2011.6008565

[10] G. M. Amdahl, “Validity of the single processor
approach to achieving large scale computing
capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser.
AFIPS ’67 (Spring). New York, NY, USA:
ACM, 1967, pp. 483–485. [Online]. Available:
http://doi.acm.org/10.1145/1465482.1465560

[11] M. D. Hill and M. R. Marty, “Amdahl’s law
in the multicore era,” Computer, vol. 41,
no. 7, pp. 33–38, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MC.2008.209

[12] T. David, R. Guerraoui, and V. Trigo-
nakis, “Everything you always wanted to
know about synchronization but were afraid
to ask,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Prin-
ciples, ser. SOSP ’13. New York, NY, USA:
ACM, 2013, pp. 33–48. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522714

[13] “musl libc.” [Online]. Available: http://www.
musl-libc.org

[14] “gnu libc.” [Online]. Available: https://www.
gnu.org/software/libc/

[15] H. Franke, R. Russell, and M. Kirkwood, “Fuss,
futexes and furwocks: Fast userlevel locking
in linux,” in AUUG Conference Proceedings,
vol. 85. AUUG, Inc., 2002.

[16] R. H. Arpaci-Dusseau and A. C. Arpaci-
Dusseau, Operating systems: Three easy pieces.
Arpaci-Dusseau Books Wisconsin, 2014, vol.
151.

[17] D. Molka, D. Hackenberg, R. Schöne, and W. E.
Nagel, “Cache coherence protocol and memory
performance of the intel haswell-ep architec-
ture,” in Parallel Processing (ICPP), 2015 44th
International Conference on. IEEE, 2015, pp.
739–748.

[18] A. Intel, “Introduction to the intel quickpath in-
terconnect,” White Paper, 2009.

[19] V. Trigonakis, “Ccbench.” [Online]. Available:
http://lpd.epfl.ch/site/ccbench

[20] MongoDB, “MongoDB,” https://www.
mongodb.org/.

[21] D. Dice, “atomic fetch-and-add vs compare-
and-swap | Oracle David Dice’s Blog.” [On-
line]. Available: https://blogs.oracle.com/dave/
atomic-fetch-and-add-vs-compare-and-swap

[22] “Bpf compiler collection - bcc.” [Online].
Available: https://github.com/iovisor/bcc

15

http://dx.doi.org/10.14778/2735508.2735511
http://dx.doi.org/10.14778/2735508.2735511
http://dx.doi.org/10.1109/IGCC.2011.6008565
http://doi.acm.org/10.1145/1465482.1465560
http://dx.doi.org/10.1109/MC.2008.209
http://doi.acm.org/10.1145/2517349.2522714
http://www.musl-libc.org
http://www.musl-libc.org
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
http://lpd.epfl.ch/site/ccbench
https://www.mongodb.org/
https://www.mongodb.org/
https://blogs.oracle.com/dave/atomic-fetch-and-add-vs-compare-and-swap
https://blogs.oracle.com/dave/atomic-fetch-and-add-vs-compare-and-swap
https://github.com/iovisor/bcc

Figure 28: Timeline when relative critical section size is 100

16

Figure 29: Timeline when relative critical section size is 10000

17

Figure 30: Timeline when relative critical section size is 1000

18

	Introduction and Motivation
	Synchronization Background
	Basic Hardware Artifacts
	Higher level Synchronization Primitives

	Experimental Setup
	Hardware
	Basic Hardware Artifacts
	Higher level primitives
	Applications

	Observation and Results
	Basic Hardware Artifacts
	Higher level primitives
	How do synchronization primitives behave as critical section size varies?
	Performance scaling as the number of threads increase
	Impact of thread placement on performance
	Variation of max and min overheads as number of threads vary
	Comparison of different primitives with each other

	Applications
	Write Throughput
	Read Throughput

	Related Work
	Future Work
	Conclusion

