
Quantifying Memory Overheads of OS in Big Data

Stacks
CS744: Big Data Systems – Group 18

Pradeep Kashyap, Karan Talreja, Anshu Raina

Memory Allocation Schemes and Overheads

Evaluation

References
[1] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new OS architecture for scalable multicore

systems. In SOSP, 2009.

2] J. Giceva, G. Zellweger, G. Alonso, and T. Rosco. Customized OS support for data-processing. In DaMoN, 2016.

Design/Contributions

Motivation

Demand Paging (DP) in general is good for a generic OS

because of poorly written applications / frameworks. DP

can have an adverse effect on applications which use

their memory efficiently. Applications accessing most of

their allocated memory would be preempted from

processor (due to page faults) in a non-deterministic way

based on application’s memory access patterns. In our

experiments, we are analyzing the overheads of DP on

big data frameworks like Map-Reduce, Spark, and Flink

to figure out whether it makes sense to always use DP

for these frameworks.

▪ Linux uses Binary Buddy Allocator algorithm for page allocation

which divides memory into large blocks of pages.

▪ In DP, when the application tries to access the memory location

which was requested before, OS takes a minor page fault.

▪ Eager paging allocates the memory right away which gets rid of

minor page faults at the cost of memory overhead.

▪ The major parameters that we have captured to analyze the overheads

are time spent in kernel, number of page fault exceptions, and size and

number of memory allocations.

▪ We use an event based scheme to capture statistics. When an event like

page fault or memory allocation occurs, our module is notified with an

event ID and certain values. Based on these event IDs, we store statistics

for applications.

▪ We developed a general kernel framework for analyzing memory

allocation profile for arbitrary big data workloads.

▪ The framework tracks an application process hierarchy side stepping the

issues seen using tools such as ftrace.

▪ The amount of memory allocated by kernel for

these applications is highest using O9 scheme

followed by O0. Note that O0 allocates pages of

4KB and O9 allocates pages of 2 MB.

▪ The dominance of O9 scheme shows that the

kernel prefers larger sized pages for these

applications.

▪ Kernel allocates a small fraction of requested

pages depending on the access pattern of the

application.

▪ The gap between accessed memory and requested

memory is larger for streaming frameworks as

compared to batch analytics frameworks.

▪ We propose eager page allocation for O0 scheme

since it reduces the number of page faults

dramatically without incurring significant memory

overhead.

▪ Results show that we can get up to 99% page fault

reduction with at most 25% memory overhead by

doing eager O0 allocation.

Conclusion/Future Work
▪ Demand Paging is not always useful. While OS does a good job of allocating memory to applications, it may not be very

good for big data frameworks in terms of performance penalty incurred for page faults.

▪ Eager paging can remove minor page faults but with memory overhead. Since O0 has largest number of page faults with

least page size, eager O0 allocation gives huge benefits in terms of reduction of page faults with very less memory

overhead.

▪ In future, we hope to analyze other overheads pertaining to file systems, networks etc. for big data applications.

Event based mechanism to collect statistics

-50

0

50

100

150

200

250

300

Flink Spark GraphX Spark ML Spark SQL Hive/MR

S
iz

e
 (

G
B

)

Framework

Kernel Memory Allocation vs
Application Demand

Total Kernel Allocation (GB) Total User Demand (GB)

89%

95%

92%

96%

99%

Flink Spark GraphX Spark ML Spark SQL Hive/MR

%
 P

a
g

e
 F

a
u

lt
 R

e
d

u
c

ti
o

n

Framework

% Reduction of Page Faults by Eager O0
Allocation

19%

15%
16%

25%

16%

Flink Spark GraphX Spark ML Spark SQL Hive/MR

%
 M

e
m

o
ry

 O
v
e

rh
e

a
d

Framework

% Maximum Memory Overhead for
Eager O0 Allocation

0

10

20

30

40

50

60

70

80

90

100

Flink Spark GraphX Spark ML Spark SQL Hive/MR

%
 M

e
m

o
ry

 S
iz

e

Framework

% Memory Size for Different Allocation
Schemes

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9

