A CO-DESIGNED VIRTUAL MACHINE FOR

INSTRUCTION-LEVEL DISTRIBUTED PROCESSING

by
Ho-Seop Kim

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the
UNIVERSITY OF WISCONSIN—MADISON

2004

© Copyright by Ho-Seop Kim 2004

All Rights Reserved

Abstract

A current trend in high-performance superscalar processors is toward simpler designs that
attempt to strike a balance between clock frequency, instruction-level parallelism, and power
consumption. To achieve this goa, the thesis research reported here advocates a microarchitecture
and design paradigm that rely less on low-level speculation techniques and more on simpler,
modular designs with distributed processing at the instruction level, i.e., instruction-level distributed
processing (ILDP).

This thesis shows that designing a hardware/software co-designed virtual machine (VM)
system using an accumulator-oriented instruction set architecture (ISA) and microarchitecture is a
good approach for implementing complexity-effective, high-performance out-of-order superscalar
machines. The following three key points support this conclusion:

An accumulator-oriented instruction format and microarchitecture fit today’s technology
constraints better than conventional design approaches. The ILDP ISA format assigns
temporary values that account for most of the register communication to a small humber of
accumulators. As a result, the complexity of the register file and associated hardware
structures are greatly reduced. Furthermore, the dependence-oriented ILDP ISA format
allows simple implementation of a complexity-effective distributed microarchitecture that is
tolerant of globa communication |latencies.

The accumulator-oriented instruction format and microarchitecture result in low-overhead

dynamic binary trandation (DBT): Because the underlying ILDP hardware provides aform

of superscalar out-of-order processing, the dynamic binary translator does not need to

perform aggressive optimizations often used in previous co-designed virtual machine

i
systems. As a result, the dynamic binary trandation overhead is greatly reduced compared
to these systems.

The co-designed VM system for ILDP performs similarly to, or better than, conventiona

superscalar processors having similar pipeline depths while achieving lower complexity in

key pipeline structures. This reduction of complexity can be exploited to achieve either a

higher clock frequency or lower power consumption, or a combination of the two.

This thesis makes two main contributions. First, the mgjor components of a co-designed
VM for ILDP are fully developed: an accumulator-based ISA that is designed to support efficient
dynamic binary translation; a complexity-effective accumul ator-based distributed microarchitecture;
a fast and efficient DBT mechanism and hardware-based control-transfer support mechanisms.
Second, performance evaluations and complexity analysis support the key points of the thesis listed
above. A sound evaluation methodology is established, including: a detailed, current-generation
superscalar pipeline simulator that forces timing correctness by design, and a hybrid dynamic binary
trandator/timing simulator framework that allows simple and flexible analysis of a co-designed VM

system.

Acknowledgements

First and foremost, | would like to thank my wife, Sohyun Yu, for being always there.
Without her, | would not have been able to endure the rigors of the Ph.D. study. My daughter,
Hannah, has been the brightest part of my life and made me appreciate the true beauty of life. |
would like to thank my parents, Sang Keun Kim and In Ja Lee for their constant support throughout
my life. When | was struggling in the graduate schoal, | always thought what they would do if they
were in my position. My sister Mi Yeon and brother Ho-Joon have been my best friends since we
were little and | am deeply thankful that they have kept a good company to my parents while | was
studying in Wisconsin. | am very grateful with my parents-in-law, Jang Hee Y u and Chung Ja Cho,
who aways treated me as a son. My brother-in-law, Jae Hoon, helped me many times when he was
staying inthe U.S.

Having the opportunity to do research with my advisor, Jim Smith, was one of the best
things happened in my life. Not only is he one of the greatest minds in computer architecture, but he
has also taught me so many things about research, writing, and life. | am grateful for his constant
support and “loosaly-coupled” research style (as Subbarao Paacharla put it) throughout my
graduate tenure in Wisconsin. | am very thankful to the members of my Ph.D. committee, Jim
Smith, Mikko Lipasti, Mike Schulte, Guri Sohi, and Charles Fischer for their helpful feedback on
my thesis research. Throughout my future career, | hope | can meet the high standards set by the
Wisconsin computer architecture faculties, Jim Goodman, Mark Hill, Mikko Lipasti, Jim Smith,
Guri Sohi, and David Wood.

I would like to thank the students that shared the room 3652. Ashutosh Dhodapkar has been
my best friend and discussion partner in the lab and has never failed to bring alittle fun to the group.

Jason Cantin and Tejas Karkhanis, who inhabited in the back-end of the room with us, provided

Y%
stimulating discussions and occasional fun activities. | have always looked up to Timothy Heil who
never failed to show generous spirit by answering all of my (sometimes not the smartest) questions.
Subbu Sastry helped me with atrace-driven simulator that put my research on ILDP on track. Marty
Licht struggled with me in the early phase of the ILDP research. | wish the best luck to Shiliang Hu,
Kyle Nesbit, Nidhi Aggarwal, and Wooseok Chang. | will miss the little get-togethers we had at
Jim’s house.

| thank the Department of Electrical Engineering staff for their administrative services. My
specia thanks go to Bruce Orchard who has always came through and fixed our computers so we
can get things done. Kevin Lepak, IThyun Kim, and Trey Cain volunteered to administrate the x86
Condor clusters which proved be a great research asset.

This material is based on work supported by the National Science Foundation under Grant
No. EIA-0071924, CCR-9900610, and CCR-0311361, the Semiconductor Research Corporation
under Grant No. 2000-HJ-782 and 2001-HJ-902, Intel Corporation, and International Business
Machines Corporation. | thank Konrad Lai at Intel for equipment support. | also thank Rabin
Sugumar and Sharon Chuang for an internship opportunity at Sun Microsystems.

Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science Foundation, the
Semiconductor Research Corporation, Intel Corporation, and International Business Machines

Corporation.

Table of Contents

AADSITBCL. ...t R R R R Rt R e Rt R Rt R R e n et ne e nre s [
ACKNOWIEAGEMENTS ...ttt sttt et st e e et e s ae et e sbeenaesbesaeentesaeensestesneesesreennens iii
TADIE Of COMLENES.......eetieee ettt b e bt b e s e et s e bt nb e b nnennen e e eneas %
RS o T U= Xii
LISt OF TADIES. ...ttt bbb XV
Chapter 1 INETOOUCTION......cuiitieieeieee et nr e n e 1
11 [F 0 (0 | (01 0o S 1
12 Instruction-Level Distributed ProCeSSING.......ccccoveiriririnieniesiesieeee et 2
121 Accumulator-Oriented Instruction Set ArchiteCture...........c.ccoveeererenerseneeseeseenes 3
1.2.2 Accumulator-Oriented MiCroarChite@CtUre.............ccuiirirerieriereeeeeeeeeee e 4

13 Co-Designed Virtual MaChiNe ..o 6
131 REHONBIE ...ttt ettt n et an e 6
1.3.2 Dynamic Binary Translation...........occoeoeieieieinesinesese e 8
G TG TS o0 o =Y o 0 (U o |V 8

1.4 Thesis, Contributions, aNd OULTINE.ccueiii e sre e e s s srre e e 9
Chapter 2 ILDP Instruction Set ArChitECIUIE.........ccveveeieeiirer e 13
21 IMIOTIVLTON ...ttt b bbbt nn et 13
211 Separate Register Sets Based on Usage Patterns...........cooeverereeieeeninencsee e 13
2.1.2 Dependence-Oriented Program EXECULION............cccveiiiieeienecieesie e 15
2.1.3 Accumulator-Oriented Instruction Format Fitsthe Bill ... 16
2.1.4 Observed Program CharaCteristiCs.........coviiiieieiieeie et st sne s 17

22 Strand: A Single Chain of Dependent INStruCtions...........cccceeviieeveiecese e 21

221 SUANA FOIMELION ...ttt sn e 21
222 SraNd ChalaCLENIStICS ... c.veveeeeeeeeeieei ettt et 22
2.2.3 Dependence Lifetime vs. Variable Lifetime.........ccccooiiieeiiiiccese e 23
224 Strand EXECULION MOGEcoiiiiiiiiiciiiciicese e 24
23 ILDP INSIrUCION SEE FOMMELScouevieiieieeieee et 27
231 Summary of the Virtual ISA —AIPhAEVG........ccceeeiiceee e 27
2.3.2 Considerationsfor Dynamic Binary Transationccocceerereinieninencneseseeeenes 28
2321 Maintaining Precise Architected State........cceoevevieie v 29
2322 Suppressing Code EXPanSION........ccceieeeereieeiee e seeste e eie st s sre s see e e sne e 30
2.3.3 ILDPINSIrUCLION FOMMEES.......cveeeieeieeiiniesiesieseeee et 33
2.3.3.1 Operate INStrUCtioN FOMMALS.......cceevueiiiierieiecee e sre e ae et ee s nreenas 33
2332 Memory INStruCtion FOIMELS..........coeuereeeiriesesiesiesieee e 35
2.3.3.3 Control Transfer INStruction FOrMELS..........c.ceeveerieirieinieincesee e 36
2334 Load Long Immediate FOrMELS.........ccccovrerireniinieniesieieeeeeese s 39

24 S = 1= 0 Yo USRS 40
24.1 Execution Paradigms Based on Register Hierarchycccoceveviiieveseccese e 40
242 Related INSIrUCion SEL TAEASccveueieirieieseeee s 41
Chapter 3 ILDP MiCroarChiteCLUIE..........cccueiviceeie ettt ne e 43
31 ILDP MicCroarChite€Cture OVEIVIBW............couerieeeeeeeiisiesie st see et sne e en e 43
311 Overal ILDP PIPEIING ..ot 43
3.1.2 Speculative Instruction Execution and REPIAYS.........cccoceeveiieieeii i 47
3.1.3 ILDP Operand Capture Model: A Unique Middle Groundccccoecvvveeennseecnnnnns 49
3.2 ILDP Pipeling SUBSYSIEMS.......cccviiiicieeie sttt ettt st st nne s 54

321 Front-end PIPEIiNE.......ccoiiieeeeee e 54

3.21.1 Instruction Fetch and Branch PrediCtion.............cooeincincincineecencee 54
3.21.2 Instruction Decoding and GPR RENAMING.........cccoviiierieiieiiinesesiesieseeseeeeeeien 54
3.21.3 Instruction Ordering Setup and Accumulator Renaming..........ccccceveevevveivennenne. 55
3.21.4 INStrUCtioON DISPAICHcueevieieie e 56
3.2.2 Processing ElEMENt........ccoiiiiieeieee et 58
323 DA CACNE. ...ttt 60
3231 L1 D-cache Organization OPLiONS.........ccccueirererieriensenieeeieesese e seeseeeenens 60
3.23.2 Dynamic Memory Disambiguation............cccceeeueieneeiesieeie e 62

3.3 REGEA WOTK ...ttt sttt sttt 63
3.31 Complexity-Effective Superscalar Processor DESIQNS.......cooveeerereernrieneeninseenaeneens 63
3.3.2 Complexity-Effective Research PropoSalS..........ccccceiiieeieiicieeseseesee s s 63
Chapter 4 Dynamic Binary Translation fOr ILDPccooiiiiiiiniieeeeeesesese e 66
4.1 Dynamic Binary Trangdation FrameworK...........cccceieeveiiceeie s 66
411 OPEraiNg MOUES.......ccoiuiieieieieeeee sttt r e n e 66
4.1.2 Trandation Unit: SUPErDIOCKSooiiiiiiiiee e 67
4.1.3 Superblock FOrmation RUIES............coiiieeiiiiceece et 69
4.2 Considerations for Dynamic Binary Tranglaion...........ccccovrerenereieienenese e 70
4.2.1 Maintaining Precise Architected State...........cccevviiiieiiiicse e 70
4211 ldentifying the Trapping INStruction’s AdAreSs..........coovereirienineneseseeeeeens 70
4212 Restoring ArchiteCted SEALE..........ccooirirerieieeieires e 71
4.2.2 Suppressing Dynamic Code Size and Instruction Count Expansionccceenee.. 72
4.3 Binary Tranglation AlQOItNM ..o 73
4.3.1 SuperbloCK CONSITUCTION........cceeiiiiieie ettt reeras 74

4.3.2 Inter-Instruction DePendenCe SELUPcoeieeirirene e 75

4.3.3 Strand 1dentifiCationcccerreirieiirieisieese s 77
4.3.4 AcCUMUIGLOr ATTOCEIION.c.ceeeieeieeieeiisiestest ettt 78
4.35 ILDP INSIrUCE ON GENEIAION........ccviuirieiieiisieisieesie et 79
4.4 REIBIEA WOTK ...ttt 79
441 Dynamic Binary Trandators and OptimiZErS.........ccceeererererieneeiesesesesee s 79
442 Co-Designed Virtual MaChings...........cceeceiiieeieiice sttt 80
Chapter 5 Efficient Control Transfers within a Code Cache System.........ccccvvevineneneneeneenenn 81
51 SUPErDIOCK ChalNINg.....ccvi ittt sreene b e e e 82
5.1.1 Chaining for DIireCt BranCheS.........coiiieiiiiiiece et st 82
512 Conventional Chaining Method for INdireCt JUMPS..........ccoerereerieiinineneseseeseeeeeenes 83
5.2 Supports for Efficient Code Cache Control Transfers.........cocevvvvveveieceseseece e 85
521 Software-based Jump Chaining Methods.............cceoiriiiiireneeee e 85
5.22 Jump Target-address LOOKUP Table........ccccoviieieiiieiese ettt 86
5.2.3 Dual-address Return Adress SACK.........ccvieiierieieiresisesies s 88
524 Summary of Special Instructions and Jump Chaining Methods............c.ccoceveieiieene. 92
5.3 Comparisons of Superblock Chaining Methods...........ccccvveiiiiice e 93
5.3.1 Identity Trandation: Separating the ISA Effect from Chainingc.ccocvveveienvennne. 93
5.3.2 SuperbloCKk CharaCleriStiCS........ciiieiiiiiieieie ettt st nre s 94
5.3.3 Branch Prediction PerformanCe...........coeieieieneieinescsesies e 96
534 1-CaChe PErfOrmManCecooiiiieeieeiese e 99
535 IPC PEOIMANCE........ooeiiiiiicieteeteese et 100
5.3.6 Summary of Superblock Chaining Methods.............cccoiiiiiieieiceeees 102
54 (R = =0 VAT PSS 103

54.1 Profile-based Code RE-AYOUL..........ccooiiiiiiieiceee e 103

5.4.2 Superblock-based Code Cache SysStems..........ccvceevieiiciece e 104
5.4.3 Superblock Chaining TEChNIQUES...........oiiiiiiiecieeee e 105
Chapter 6 Experimental FrameWOrK.........cocvioueiiiieie sttt st s 107
Bl OBJECHIVE veeveeeeeeeeeeeeeeeeeee e e ee e se e seseeee s eeseees e seses e es s eeseee s ees e es e seseses e seseeeseeee s 107
6.1.1 Limitsof the Previous Research SImUIaLOrsS..........cccuveririeriiiienieeeeeese e 108
6.2 SIMUIATiON FramEWOTKcccoiiiieiiee s 109
6.2.1 Overal Smulation MethodOIOgYcccerererrerieieeiresene e 109
6.2.2 Modeing MiCroarChiteCIUIES..........ccueiuieiieieee ettt 110
6.2.3 Modeling Dynamic Binary Trandalioncccccceeeviiiciieie st 112
6.3 Baseline Superscalar MOGE ..o 112
6.3.1 Choosing aBaseline Model: IBM POWER4-like Pipeling.........cccccevviveceieceenene, 112
6.3.2 PIPEINE OVEINVIEW. ..ot 113
6.3.3 Complexity-Effective Design Trade-OffS........ccoceeiiiiciece e 116
6.4 ILDP SyStEM MOGELooeieeceeeceees ettt nnee e e 119
6.4.1 Modeing Dynamic Binary Trangationccceoeirinineneneneeieeesesese e 119
6.4.1.1 Framework Mode ChangesS.........cccciiiieiieiiiiese ettt 120
6.4.1.2 Dispatch Table Lookup MeChaniSMcceeiirerineieicieesese e 120
6.4.1.3 Effect of Dynamic Binary Trandation on Caches and Predictors..................... 122
6.4.2 MOdEing ILDP PIPEIINE. ..ot 123
6.5 EVAIUBLION CrITEITAL ..c.veveeeeeeeeeee st 123
6.5.1 PEIfOMMENCE. ..ottt 124
B.5.2 SIMPIICITY et 125
6.6 (R = =0 VAT PSSR 126

6.6.1 MicroarChitECIUrE SIMUIBLOIS.uvveeeeeeeeeeeeeeee e e e et e e ettt e e e e e eeae e eeeeeesaessraeeeeeesseaaanns 126

6.6.2 Code Cache FrameWOrKS...........ccoiiiirieiiisere ettt 127
Chapter 7 BEVAIUBLION ..ottt 128
7.1 S LU (o RS = (U] o S 128
7.2 Validation of BaseliNE MOGE!ccoeiiiiiiiee e 129
7.2.1 Idealized Performance EValUBLIONcccooerierieiiiineneeseeee e 130
7.2.2 Effect of Mispredictions and Cache MiSSES..........ceciiicieeiiiicie e 134
7.23 Summary of Baseline Model EValuationcccoeirerineniieieeeeeeesese e 137
7.3 Evaluation of the ILDP SYStEM........cccciiieie ettt 138
7.3 1 Maching ConfigUIaionSccocieieiiiieie ettt s re e 138
7.3.2 Dynamic Binary Translation CharaCteristiCS.........ccuvrirerinieneeieeeeeseseseseeseeeeiens 140
7.3.3 Performance of the ILDP SyStEMccocviieiece et 143
7.331 IPC PEIfOrMENCE.......cco ittt 143
7.3.3.2 Performance Variations over Machine Parameters............coovvevncencnnnennne. 147
7.3.3.3 Reduction of Mini REPIAYScoiieiieieieirieseese e 151
7.3.3.4 Impact of Interpretation OVErhead............cccoeviiiieieieiceese e 152
7.34 Complexity COMPAIISONSccccieieeiieiieitesteeieestesreessesaeeeestesseessesseesessesreesessessnensens 153
7.3.5 Summary of the ILDP System EValualion............ccccveiirerineieieeeeseseseseeeeeeens 155
Chapter 8 CONCIUSIONS........ccueeiieiiieieste ettt e e et s re e e e s re e e e s besreebesbesneestesneenenes 156
8.1 TRESIS SUMIMIY ...ttt nn e 156
8.1.1 Instruction Level Distributed ProCeSSING.........ccoeerirerinerinieieeiesesesesie e 156
8.1.2 ILDPInstruction Set ArChiteCIUIe.........ccviviriiiireeisiceriee et 157
8.1.3 ILDP MICIOArChITECIUIE.cvieeueeiieieeie sttt 159
8.1.4 Dynamic Binary Tranglation for ILDPcccoviieiiiiceccee e 161

8.1.5 RESUILS AN CONCIUSIONS.....coiiieeeeeeeeee e e et eeeeee e e e e e e eease e eeeeeesssaasseeeeessssaaasnereeeesssaanns 163

82 Future Research Directions

Bibliography

Appendix: Simulation Setup for Evaluating Control Transfer Support Mechanisms

Xii

List of Figures

Figure 1-1 Spectrum Of diStributed deSIgNS.........coviiiiiireceeee s 3
Figure 1-2 High-level view of the ILDP PIipEliNe..........ccoe e 5
Figure 1-3 Overview of the co-designed virtual machinein thethesis...........cccoevinnnencsccce, 7
Figure 1-4 Spectrum of dynamic translation MEChaNiSMS..........cccceeveiieieere i 7
Figure 2-1 TYPe Of reQIStEr VAIUES........c.coiuiiiecie ittt sttt s re e e e e st sneenenrs 19
Figure 2-2 Strand formation based on register value classifiCation............ccoeoeorninencncncicens 21
Figure 2-3 Strand CharaCleriStICScviieie ettt st besneeaenes 23
Figure 2-4 Example code snippet from SPEC CPU2000 benchmark 164.9Zip.........ccoovvvrereeneeinenens 25
Figure 2-5 Issue timing of the eXxample COUE............ccviieiiieie e 26
Figure 3-1 High-level block diagram of the ILDP Pipeline.........cccoouviiiiineneiceeeese e 44
Figure 3-2 Spectrum of register operand Capture MOAE!S............ccviriiirereneieeeee e 50
Figure 3-3 Shadow cyclesin [oad latency SPECUlAioN...........ccccceeeeieiieiee et 51
Figure 3-4 Scalable dispatch logic for the ILDP PIpelingccooiiiriiiieneieeeeeese e 58
Figure 3-5 Processing element iNtErNalS..........ccooiceeiiiieic ettt s 59
Figure 3-6 L1 D-CaChe OrganiZaLIONS..........coueieueeiriesiesiesieee ettt b s e 61
Figure 4-1 Operating modes of the ILDP virtual machine system............ccccoeoveiicincincinccne 67
Figure 4-2 A superblock formation EXample..........ccciiieiiieeie s 68
Figure 4-3 Output register types in superblock-based dynamic binary translationc.ccceeveee. 77
Figure 5-1 Control transfers among SUPErDIOCKS...........cooiiieiieii i 83
Figure 5-2 A code sequence that perform indirect jump target Comparison...........ccoceveverereereeinenens 84
Figure 5-3 Software-based jump chaining Methods.............cccceii e 85

Figure 5-4 Jump target-address |00KUP tabI€............ooiiieii e 87

Figure 5-5 Indirect jump target address prediClion ralesS.........coovveeieieeiee e 89
Figure 5-6 Dual-address return address SACK.........oviiiiriieieeeeen e 20
Figure 5-7 Classification of control transfer mispredictions...........ccccocveveieceve e 98
Figure 5-8 Number of [-CaChe MISSES........ccoiiiee e e 100
Figure 5-9 IPC comparisons between various chaining methods.............ccoeveieinncnencnciecee 100
Figure 6-1 High-level block diagram of the baseline pipeling........cccovvviieve e, 114
Figure 6-2 Segmented issue queue and bypass network used in baseline modelcccceeneee. 118
Figure 6-3 Top-level simulator loop showing operating MOdES...........ccccveeevevieeieseceese e 120
Figure 6-4 Dispatch table 100Kup algorithmi...........cceeiiiecie e 121
Figure 6-5 Map of the hidden MEeMOrY @r€a...........cocuiiiererieieieie e 122
Figure 6-6 The three components of computer performancecocecvveieeve e s 124
Figure 7-1 Ideal baseling PIPEIINE..........ooi e 131
Figure 7-2 Effect of window size and pipeline ineffeCienCies.........coovvveieeve e 132
Figure 7-3 Effect of memory dependence SPeCUlation..............ccvevrirereneriereeieeesese e 133
Figure 7-4 Effect Of AIPNANOPS..........ooieee e 134
Figure 7-5 Average number of mispredictions and cache misses per 1,000 instructions................ 135
Figure 7-6 Effect of mispredictions and CaChe MISSEScceiiirirerereee e 135
Figure 7-7 AVerage |0ad |EENCY.......cccocieieieiiee sttt st s re e ne e 136
Figure 7-8 Effect Of ISSUE IOQICeiviieieeeeeee et 137
Figure 7-9 Breakdown of binary translation COMPONENESccceirerererenieieeisese e 142
Figure 7-10 IPC COMPAIISONS.cceeiieirieeesteitiestesteseestesteetestesseestesseesestesseessessesnsessesseensessesseensenns 144
Figure 7-11 Effect of Machin@ WitN...........cccooiiiiiiiee e 147
Figure 7-12 Effect of L1 D-CaCh@ SIZEccuviuieeececese ettt s 149

Figure 7-13 Effect of global Wire [alENCIESccvriiiiieeeee e 150

Figure 7-14 Total CPI breakdown...........cccccviieieiiiiese e

Figure A-1 Simulated pipeline used in the identity translation framework

XV

List of Tables

Table 2-1 Alpha | SA program CharaCteriStiCS.........uuiiiriereieieieeee e 17
Table2-2 Alpha I SA iNStrUCtiON FOIMALSccceiuiieece e et 28
Table 2-3 Operate iNStrUCE ON FOMMEES.........coveieeieeeriesie e e 34
Table 2-4 Memory iNStruCtion fFOIMELS...........coiiieeii et nre s 35
Table 2-5 Control transfer iNSErUCtiON FOrMELS..........cccoiriiirieiree e 36
Table 2-6 Load 1ong immediate fOrMBELScoueiiiriiiieriee e 39
Table 3-1 Comparison of register renaming/operand capture Models..........oovevvvvieveieieeseceecieenns 53
Table 3-2 Comparison of ILDP dispatch logic and out-of-order issue logicC.........covvvrerierecnieeenne 57
Table 5-1 Special instructions to reduce register indirect jump chaining overhead...............cc........ 92
Table 5-2 Summary of jump chaiNiNg MELNOCSc.oiiiie e 93
Table 5-3 General superblock CharaCteristiCs.........oviiiiiiriicee e 9
Table 5-4 Dynamic ingtruction count @XPanSsiON FALE...........ccceecreiiereseeieseeeerre e eee e seesre e enesreas 95
Table 7-1 Machine configurations used in idealized performance evaluationc.ccoceeeeveene. 131
Table 7-2 Simulated Maching ParamMELEN'S..........c.ociieeiiiieee et sne e 139
Table 7-3 Translated iNStruction CharaCteristiCS.........uiirriierieieiee s 140
Table 7-4 Translated instruction characteristics, CONtINUEdc.cooerireieieieenesee e 141
Table 7-5 IPC COMPAITSONScccuiiuieieiiecie ettt et st e e e e e sae s be s e e sbesreesesbesseetesseeseestesneensenes 146
Table 7-6 Effect of Machin@ Width ..o 148
Table 7-7 Number of total Mini FEPIAYScc.ecveeece e e 151
Table 7-8 Hardware complexity COMPAIISONS..........coeiuirririerieieisesie s ee s ens 154

Table A-1 Machine parameters used in the identity tranglation framework...........cccccoveveveieennnee. 188

Chapter 1 Introduction

1.1 Background

Moore's prediction in 1965 [162] that the number of transistors per integrated circuit would
double every couple of years has held true for amost four decades [163], to the point that it is
considered an empirica law. For the more than three decades since the introduction of the first
integrated circuit microprocessor (the Intel 4004 in 1971), ever-shrinking semiconductor technology
has been the driving force behind continuous microprocessor performance improvements. Faster
transistor switching speeds have allowed higher clock frequency designs while bigger transistor
budgets have enabled more microarchitecture techniques to be used to increase instruction level
paralelism (ILP).

Until recently, reducing the number of logic levels per clock cycle, i.e., increasing the
pipeline depth [98][108][28] has been a popular technique for achieving higher clock frequencies
than would be obtainable with technology scaling alone. Considering the long development cycle of
a new generation design, the deeply pipelined design style was considered a desirable practice
because it allows relatively easy clock frequency ramping, thus ensuring the longevity of the design
[108][222].

There are negatives to this approach though, even neglecting the classic pipeline latch
overhead problem [142]. Firgt, to accommodate relatively increasing memory latencies, deeper

pipeline buffers and more aggressive speculation techniques are required — which in turn make the

Y In the reduced instruction set computer (RISC) heyday of the mid-80s, the objective was a new

processor design every two years; now it takes from four to six.

2

design more complex and harder to validate [242]. Second, on-chip global wire latency has become
relatively worse compared to transistor switching speed [4][30][110][154]. With deeper pipelining,
the negative impact of the global wire latency can only get worse, further reducing the pipeline
efficiency. Finally, power consumption increases with deeper pipelines, be it dynamic (from
excessively high clock frequency) or static (from increased leakage current of low V transistors)

[101][170].

1.2 Instruction-L evel Distributed Processing

As a consequence, an apparent microarchitecture trend is back toward relatively ssimpler
designs [90] that try to strike a good balance between clock frequency, ILP, and power consumption.
Nonetheless, even this approach faces technology difficulties, globa wire latency for example,
albeit to a lesser degree than with very highly pipelined and complex designs. For this reason, the
research here advocates a design principle that relies less on low-level speculation techniques and
more on simpler, modular designs with distributed processing at the instruction level, i.e,
instruction level distributed processing (ILDP) [216].

To study the full potentia of future ILDP architectures, the thesis research considers new
instruction sets that are suitable for distributed microarchitectures. The goa is to avoid the
encumbrances of instruction sets designed in a different era and with different constraints. A newly
designed instruction format distinguishes global and local communication patterns more explicitly
and works to reduce hardware complexity of most major pipeline structures. This leads to, in their
simplest form, microarchitectures that are tolerant of interconnect delays, use a relatively small
number of fast (high power-consumption) transistors, and support both high clock frequencies and

relatively short pipelines.

3

There has been other research on new instruction formats and distributed microarchitectures
[171][224][227] that include similar ILDP concepts such as:

Considering microarchitecture as a distributed computing problem

Accounting for communication as well as computation

Localizing communication to small functional units while managing the overdl structure

for communication.

These earlier studies are mostly aimed at achieving higher performance by utilizing tens, if
not hundreds, of distributed processing elements (PEs), especialy for potentially high ILP
workloads such as media processing. Unlike the other proposals, the proposed ILDP paradigm will

work well with irregular programs, not just with high ILP programs.

Multiscalar [220],
Trace processor [197],
: Recent designs: PEWS[130]
gzrn:’rﬁfjn Alpha 21264 [131],
designs FE%]WEHRZ [ég%] ' | { Accumulator-oriented RAW [227],
[228])| " |LDP systemiin the GPA/EDGE [171],
research WaveScalar [224]
Moderately Highly
None Ad hoc distributed distributed

Degree of distribution

Figure 1-1 Spectrum of distributed designs

1.2.1 Accumulator-Oriented Instruction Set Architecture

The instruction set format used in the thesis is based on the following two rather
fundamental observations. First, alarge number of register values are used only once and most of

them are used soon after they are created [86]. Second, instructions with true dependences cannot

4

execute in parallel (unless value speculation techniques [148][201] are used). If an instruction set
architecture (1SA) is designed to explicitly convey dependence and register usage information, it
would enable simpler implementations of dependence-based distributed microarchitectures that are
complexity-effective and tolerant of global wire latencies.

The ILDP ISA studied in this thesis has a small number of accumulators backed with a
relatively large number of general-purpose registers (GPRS). The instruction stream is divided into
chains of dependent instructions, called strands hereafter, where intra-strand dependences are
passed through a common accumulator. The general-purpose register file is used for communication
between strands and for holding global values that have many consumers. Note that the ILDP ISA’s
emphasis on reduction of global communications by exploiting dependences between instructionsis
in stark contrast to the traditional reduced instruction set computer (RISC) ISAs where maximizing

computation parallelism through independences between instructions has a high priority.”

1.2.2 Accumulator-Oriented Microar chitecture

The accumulator-oriented ISA in the thesis is specifically designed for an accompanying
distributed microarchitecture. The overall ILDP microarchitecture shown in Figure 1-2 consists of
pipelined ingtruction fetch, decode, and rename stages of modest width that feed a number of
distributed processing elements, each of which performs sequentia in-order instruction processing.
The instruction set exposes inter-instruction dependences and local value communication patterns to
the microarchitecture, which uses this information to steer chains of dependent instructions to the

sequential PEs. Dependent instructions executed within the same PE have minimum communication

2|n a sense, the role of accumulators (implying seria by default) in the dependence-oriented ILDP
ISA can be thought as a dua of the stop bit (implying paralel unless stated otherwise) in the |A-64

architecture, along instruction word (LI1W) ISA designed for achieving high ILP [118].

5

delay as the results of one instruction are passed to the next through an accumulator. Taken

collectively, the multiple sequential PEs implement multiple-issue out-of-order execution.

L1 I-cache

A/

Align,
Decode,

GPR renaming

v

Steering
(Accumulator
renaming)

RO A2 KO
[

PEO ¥ PE1L ¥ PE2 ¥ PE3 ¥

A0
A0 A2]

GPR GPR |] GPR GPR | [AeS

vy T T
o § f :

L1 D-cache
Network

v

Figure 1-2 High-level view of the ILDP pip€dine

1.3 Co-Designed Virtual Machine

1.3.1 Rationale

For certain applications where binary compatibility is not a maor issue (e.g., in some
embedded systems), a new instruction set may be used directly in its native form. However, for
general-purpose applications a requirement of binary compatibility is a practical reality that must be
dealt with. For these applications there are two possibilities, both involve dynamic binary
tranglation from avirtual I1SA (V-ISA) to an implementation ISA (I-ISA). One method isto perform
on-the-fly hardware translation similar to the methods used today by Intel and AMD when they
convert x86 instructions to micro-operations [63][81][98][108][209][210]. However, as will be
shown in later sections, such a trandation to an ILDP instruction set requires higher-level analysis
than a simple instruction-by-instruction peephole mapping.® Hence, the second method relies on
virtual machine software, co-designed” with the hardware and hidden from conventional software
[217]. The binary translation subsystem in the virtual machine monitor (VMM) software layer maps
existing binaries to the new ILDP instruction set in a manner similar in concept to the method used
by the Transmeta Crusoe processor [60][99][128][140] and the IBM DAISY/BOA projects [9][68]

[69][70][95]. All instructions are trandated: applications, libraries, and the operating system —

3 Technically, it is not impossible to implement the strand-oriented translation in a hardware-only
manner, as was proposed in arecent study [199]. However, adding additional control hardware that works at a
higher level than individual instructionsis at odds with the overall goa of design simplification.

*1BM AS/400 series [12] (first introduced in 1988; now iSeries servers) are well-known co-designed
virtual machine systems. The term, “co-design”, is also widely used in embedded design field [75]. As with

the co-designed VM systems, the co-design methodology is used to achieve particular design goals.

7
everything. The translated codes are put into a special hidden memory area and are brought to the |-
cache upon misses. Dynamic binary trandation (DBT) can be performed either by a specia co-

processor [47][59] or by the main processor itself.

V-ISA program

I
¥ Virtual machine monitor (including DBT subsystem)

i 2

Processor front-end
(including I-cache)

memory

Legends:

-—» V-ISA instructions

—» |-ISA instructions

—>» Data value communication
——» Performance feedback

Distributed
Processing
Element O

incl. D-cache

Figure 1-3 Overview of the co-designed virtual machinein thethesis

Most RISC and
previous Pentium Pro/l1/111 [98],| | Pentium 4[109],| | DAISY/BOA [70],
generation Athlon/Opteron [63] rePLay [77] | | Crusoe/Efficieon [60],
CISC’ designs ILDP
_ Instruction- Superblock Superblock
_ Direct _ by-instruction translation by trandation by
implementation tranglation by hardware DBT/VMM
hardware

*: Complex Instruction Set Computer

Figure 1-4 Spectrum of dynamic trandation mechanisms

1.3.2 Dynamic Binary Trandation

Dynamic binary trandation converts instructions from a source 1SA to atarget ISA. In the
co-designed VM paradigm, these are the V-ISA and |-ISA, respectively, and only the V-ISA is an
exigting instruction set for which conventional software exists. A DBT system also profiles program
run-time behavior and dynamically optimizes blocks of frequently executed instructions.

The main objective of DBT in this research is identifying instruction inter-dependences and
making register assignments that reduce intra-processor communication. Thisinformation is carried
by the accumulator-oriented I-ISA and is used by the microarchitecture to steer instruction strands
to the sequential PEs.

A key consideration in the design of a DBT system is the overhead resulting from the time
it takes to trandlate; any time spent translating is time not spent executing the source program. In
this thesis, the emphasis in the DBT system design is on simplicity; because the underlying
hardware is a form of dynamic superscalar, it can be relied upon to provide code scheduling. An
important difference from the two most notable co-designed VM systems, the IBM DAISY/BOA
and the Transmeta Crusoe processor, is that here binary trandlation does not require complex
optimizations and scheduling [71] that are used for the VLIW implementations in these systems. On
the other hand, maintaining the original instruction order in the trandated code helps maintain a

precise trap recovery model [211].

1.3.3 Scope of Study

In this research, the Alpha instruction set is used as the outwardly visible V-ISA. By
implementing all the major parts of a co-designed virtual machine, the research shows that the
resulting ILDP system can achieve high performance through a combination of a high clock

frequency, a moderate depth pipeline, and modest ILP. Simplicity is the key here — not only the

9

hardware complexities but also the dynamic binary translation overheads are reduced by designing
the whole system around the accumulator-oriented instruction set and strand execution model.
However, implementing a fully-working VM system is a huge engineering task and is beyond the
scope of the thesis research. Instead, the thesis concentrates on (1) desired instruction set properties,
(2) overall microarchitecture and key subsystem design, and (3) efficient dynamic binary translation
support. The ssimplicity advantage will be demonstrated through the reduced complexities of the key
pipeline hardware structures and a simple, fast dynamic binary trandation algorithm, and
instructions per cycle (IPC) performance is shown to be better or similar than comparable

superscalar processors.

1.4 Thess, Contributions, and Outline

The thesis supported by this research is that designing a hardware/software co-designed
virtual machine system using an accumulator-oriented instruction set and microarchitecture is an
effective approach for implementing complexity-effective, high-performance out-of-order
superscalar processors. | defend this thesis by arguing the following three key points:

The accumulator-oriented instruction format and microarchitecture fit today’s technology
constraints better than conventional design approaches. The ILDP ISA format assigns
temporary values that account for most of the register values to a small number of
accumulators. As a result, the complexity in the register file and associated hardware
structures are greatly reduced. Furthermore, the dependence-oriented ILDP ISA format
allows simple implementation of a complexity-effective distributed microarchitecture that is
tolerant of globa communication |latencies.

The accumulator-oriented instruction format and microarchitecture resultsin low-overhead

dynamic binary trandation: Because the underlying ILDP hardware provides a form of

10

superscalar out-of-order processing, the dynamic binary trandator does not need to perform

aggressive optimizations as used in previous co-designed VM systems. As a result, the

dynamic binary tranglation overhead is greatly reduced compared to these systems.

The co-designed virtual machine system for instruction-level distributed processing

performs similarly to or better than conventional superscalar processors of similar pipeline

depth while achieving lower complexities in key pipeine structures: This reduction of
complexity can be exploited to achieve either higher clock frequency or lower power
consumption, or a combination of the two.

My thesis makes two main contributions. First, | develop three key components of a co-
designed virtual machine system for instruction-level distributed processing: an accumulator-based
instruction set architecture designed to support efficient dynamic binary trandation, a complexity-
effective accumulator-based distributed microarchitecture, and a fast and efficient dynamic binary
tranglation mechanism and hardware-based mechanisms for supporting control-transfers.

Second, | present performance evaluations and complexity analysis of the co-designed
virtual machine system to illustrate its benefits and provide support for its use in future processor
designs. With respect to the second contribution, a rigorous evaluation methodology was
established including: a detailed, current-generation superscalar pipdine simulator with emphasis
on correct timing and a hybrid dynamic binary trandator/timing simulator framework that alows
simple and flexible analysis of aco-designed VM system.

The thesis is organized as follows. The ILDP instruction set format is central to the thesis
and is described in Chapter 2. First, a strand execution model is developed based on the
observations on typical compiled code characteristics. After DBT-specific ISA requirements are

discussed, the implementation-specific ILDP ISA formats are presented. Chapter 3 starts with an

11

overview of the accompanying ILDP microarchitecture and compares its unique operand capture®
model to two prevalent superscalar models. Specifics of the ILDP microarchitecture are described
afterwards. The dynamic binary trandation mechanism, a key component of the virtual machine
monitor layer, is explained in Chapter 4. The chosen unit of trandation, the superblock (a straight-
line code sequence with a single entry point and multiple exit points), and its formation rules are
explained and then followed by discussions of two key issues in any DBT system: precise state
reconstruction and dynamic code expansion. The actua DBT algorithm for the ILDP I-1SA is
presented at the end of the chapter. Efficient support mechanisms for trandating control transfer
instructions are crucia to the performance of any code cache system®. For this reason, the topic is
given a separate treatment in Chapter 5. In this chapter, problems with conventional superblock
chaining mechanisms are identified. Combinations of specialized software/hardware mechanisms
are proposed and evaluated separately from the rest of the thesis using an identity translation
framework. Thisisto help understand the effect of the dynamic code re-layout that comes free with
any superblock-based code cache system, separated from the ISA trandlation effect. Chapter 6
describes the experimental framework used in the thesis. This chapter not only discusses the

modeling methodology of the ILDP co-designed VM system but also gives a detailed description of

® In modern pipelined designs, operand values can be obtained by accessing the designated data
storage (e.g., the physical register file) in a pipeline stage or by constantly monitoring the bypass network. In
the thesis, the term operand capture is used to represent both methods.

® Most dynamic translators and optimizers place frequently executed translated/optimized codes in a
main memory area. Typically the term trandlation cache [70] is used for this memory area in |SA-translation
systems while the term fragment cache [15] is used in optimization-only systems. Throughout the thesis,
“code cache” is used as a general term for both trandation cache and fragment cache. Because the ILDP VM

system involves I SA trandlation, the term “translation cache” is sometimes used as well.

12

the baseline superscalar processor model. Some important complexity-effective design choices
commonly employed in the current generation superscalar processor designs are also described for
complexity comparisons. The evaluation of the ILDP system is presented in Chapter 7. Here,
evaluation of the basdline superscalar processor model is first performed. These experiments serve
two purposes. First the pipeline model, shared with the proposed ILDP microarchitecture, is
validated. Second, the experiments help in understanding the performance bottlenecks in current-
generation processor designs. The performance evaluation of the ILDP system consists of two main
components; DBT-related characteristics and the overall 1PC performance compared to the baseline
superscalar pipeline. The simplicity advantages of the ILDP co-designed VM paradigm are
showcased via complexity comparisons with respect to the conventional baseline microarchitecture.
Emphasis is placed on reduced complexity of key pipeline structures and reduced trandation
overheads. Finaly Chapter 8 summarizes the research and concludes the thesis. Further research
opportunities are suggested at the end.

The thesis covers many different aspects of processor design, so a single chapter is not
adequate to present al related work. Therefore each chapter, other than the final two, contains a

related work section that is specific to the topics discussed in the chapter.

13

Chapter 2 ILDPInstruction Set Architecture

The accumul ator-oriented ILDP instruction set architecture is the centerpiece of this thesis
research. Freed from the features of legacy ISAs introduced many decades ago, the thesis uses an
instruction format that is well suited for today’ s technology constraints (thereby facilitating efficient
hardware implementations) and yet it is asimple target for a dynamic binary transation system.

In this chapter, tempora locality of register values and inter-instruction dependences, two
of the most fundamental properties of compiled programs, are re-examined in the context of today’s
technology constraints. The combination of these two properties |eads to a strand-oriented execution
model and a dependence-based, accumulator-oriented instruction format. A short code snippet,
extracted from a benchmark program, is used to illustrate the overall idea of the execution model
and the instruction format. Some of the representative characteristics of the chosen V-1SA that are
relevant to the research are presented, and this is followed by discussions of precise state
maintenance and dynamic code expansion in the context of dynamic binary translation. The ILDP
ISA formats are designed to handle both of these issues well. The chapter ends with descriptions of
the ILDP ISA formats in tabular form. Related execution paradigms and ISA ideas are listed at the

end of the chapter.

2.1 Motivation

2.1.1 Separate Register Sets Based on Usage Patterns

Most existing |SAs do not distinguish between register value usage types and have only one

level of register hierarchy. This ssimple flat model made good sense when ISAs were developed

14

decades ago [178]. On-chip registers were supposed to be small and fast enough for the intended
level of pipelined designs at the time.

Today's typica high-performance superscalar processor designs [206][215] put lot of
pressure on register files and associated structures. Dynamic register renaming (to remove false
dependencies; further explained in section 3.1.3) requires physical register files to have more
elements than architected, i.e., logical registers. Superscalar execution requires more access ports to
the register file. Deeper buffering within the pipeline exacerbates these difficulties further because
more physical register file entries are needed to support increased numbers of in-flight instructions.
All in all, today’ s on-chip register file have become bigger and relatively slower.’

Reducing the pressure on the register file and associated hardware structures being one goal,
the thesis research started with an observation that there is high locality in register usage patternsin
most programs. It is well known that alarge number of register values are used only once and most
of them are used soon after they are created [86]. If these temporary register values can be offloaded
to separate “scratchpad” registers, even a small number of registers will be sufficient for most
instructions because the volatile scratchpad registers may be recycled quickly. Remaining register
values that have long lifetimes can then be kept in another set of “backup” registers, most probably
larger in number than the volatile scratchpad registers, but still 1ess than in equivalent conventiona
designs. Therefore, this type of register organization will effectively reduce complexity pressure on

both the number of ports and entries of the physical register file. Furthermore, the register renaming

’ Although the physical register file itself can be pipelined to accommodate the increased access
latency using more internal bypasses, it leads to increased shadow cycles as will be shown in Figure 3-3,

reducing the effective issue window size and wasting energy in case of latency mis-speculation [138][164].

15

bandwidth requirement is also effectively reduced because fewer register instances are now

renamed to the non-volatile register file.

2.1.2 Dependence-Oriented Program Execution

In general, instructions with true dependences cannot execute in parallel. Traditionally this
fundamental property has been considered a hindrance to higher performance through ILP. An
advantage of the reduced instruction set computer (RISC) paradigm is that a finer granularity 1SA
allows for increased paralelism between ssimpler instructions [229], through static scheduling by a
compiler or dynamic scheduling by out-of-order execution hardware mechanisms. Prevalence of
this idea led some implementations of complex ISAs, such as x86 to adopt a dynamic
decomposition technique that transforms a complex externa 1SA instruction to multiple, simpler
internal format instructions, sometimes called micro-operations [63][98][108][209][210].

One disadvantage of the fine-grain instruction execution model is that it tends to increase
complexity pressure on the pipeline [137]. For example, even atemporary value that is used once is
assigned a register entry and needs to be communicated from the producer to the consumer
operation through the shared bypass network. As a reaction, some newer designs try to suppress the
expansion of a complex instruction to a minimum number of pipeline stages [63][129], while others
go as far as re-combining multiple dependent finer-granularity instructions into a coarse grain
instruction [90][116][137]. One common idea behind these newer approachesis that if dependences
are unavoidable, why not exploit them to reduce pipeline complexities?

The dependence-oriented microarchitecture studied by Palacharla, Jouppi, and Smith [175]
employs dependence relationships to simplify the complexity-critical instruction issue pip