

A CO-DESIGNED VIRTUAL MACHINE FOR

INSTRUCTION-LEVEL DISTRIBUTED PROCESSING

by

Ho-Seop Kim

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN—MADISON

2004

© Copyright by Ho-Seop Kim 2004

All Rights Reserved

i

Abstract

A current trend in high-performance superscalar processors is toward simpler designs that

attempt to strike a balance between clock frequency, instruction-level parallelism, and power

consumption. To achieve this goal, the thesis research reported here advocates a microarchitecture

and design paradigm that rely less on low-level speculation techniques and more on simpler,

modular designs with distributed processing at the instruction level, i.e., instruction-level distributed

processing (ILDP).

This thesis shows that designing a hardware/software co-designed virtual machine (VM)

system using an accumulator-oriented instruction set architecture (ISA) and microarchitecture is a

good approach for implementing complexity-effective, high-performance out-of-order superscalar

machines. The following three key points support this conclusion:

· An accumulator-oriented instruction format and microarchitecture fit today’s technology

constraints better than conventional design approaches: The ILDP ISA format assigns

temporary values that account for most of the register communication to a small number of

accumulators. As a result, the complexity of the register file and associated hardware

structures are greatly reduced. Furthermore, the dependence-oriented ILDP ISA format

allows simple implementation of a complexity-effective distributed microarchitecture that is

tolerant of global communication latencies.

· The accumulator-oriented instruction format and microarchitecture result in low-overhead

dynamic binary translation (DBT): Because the underlying ILDP hardware provides a form

of superscalar out-of-order processing, the dynamic binary translator does not need to

perform aggressive optimizations often used in previous co-designed virtual machine

ii

systems. As a result, the dynamic binary translation overhead is greatly reduced compared

to these systems.

· The co-designed VM system for ILDP performs similarly to, or better than, conventional

superscalar processors having similar pipeline depths while achieving lower complexity in

key pipeline structures: This reduction of complexity can be exploited to achieve either a

higher clock frequency or lower power consumption, or a combination of the two.

This thesis makes two main contributions. First, the major components of a co-designed

VM for ILDP are fully developed: an accumulator-based ISA that is designed to support efficient

dynamic binary translation; a complexity-effective accumulator-based distributed microarchitecture;

a fast and efficient DBT mechanism and hardware-based control-transfer support mechanisms.

Second, performance evaluations and complexity analysis support the key points of the thesis listed

above. A sound evaluation methodology is established, including: a detailed, current-generation

superscalar pipeline simulator that forces timing correctness by design, and a hybrid dynamic binary

translator/timing simulator framework that allows simple and flexible analysis of a co-designed VM

system.

iii

Acknowledgements

First and foremost, I would like to thank my wife, Sohyun Yu, for being always there.

Without her, I would not have been able to endure the rigors of the Ph.D. study. My daughter,

Hannah, has been the brightest part of my life and made me appreciate the true beauty of life. I

would like to thank my parents, Sang Keun Kim and In Ja Lee for their constant support throughout

my life. When I was struggling in the graduate school, I always thought what they would do if they

were in my position. My sister Mi Yeon and brother Ho-Joon have been my best friends since we

were little and I am deeply thankful that they have kept a good company to my parents while I was

studying in Wisconsin. I am very grateful with my parents-in-law, Jang Hee Yu and Chung Ja Cho,

who always treated me as a son. My brother-in-law, Jae Hoon, helped me many times when he was

staying in the U.S.

Having the opportunity to do research with my advisor, Jim Smith, was one of the best

things happened in my life. Not only is he one of the greatest minds in computer architecture, but he

has also taught me so many things about research, writing, and life. I am grateful for his constant

support and “ loosely-coupled” research style (as Subbarao Palacharla put it) throughout my

graduate tenure in Wisconsin. I am very thankful to the members of my Ph.D. committee, Jim

Smith, Mikko Lipasti, Mike Schulte, Guri Sohi, and Charles Fischer for their helpful feedback on

my thesis research. Throughout my future career, I hope I can meet the high standards set by the

Wisconsin computer architecture faculties, Jim Goodman, Mark Hill, Mikko Lipasti, Jim Smith,

Guri Sohi, and David Wood.

I would like to thank the students that shared the room 3652. Ashutosh Dhodapkar has been

my best friend and discussion partner in the lab and has never failed to bring a little fun to the group.

Jason Cantin and Tejas Karkhanis, who inhabited in the back-end of the room with us, provided

iv

stimulating discussions and occasional fun activities. I have always looked up to Timothy Heil who

never failed to show generous spirit by answering all of my (sometimes not the smartest) questions.

Subbu Sastry helped me with a trace-driven simulator that put my research on ILDP on track. Marty

Licht struggled with me in the early phase of the ILDP research. I wish the best luck to Shiliang Hu,

Kyle Nesbit, Nidhi Aggarwal, and Wooseok Chang. I will miss the little get-togethers we had at

Jim’s house.

I thank the Department of Electrical Engineering staff for their administrative services. My

special thanks go to Bruce Orchard who has always came through and fixed our computers so we

can get things done. Kevin Lepak, Ilhyun Kim, and Trey Cain volunteered to administrate the x86

Condor clusters which proved be a great research asset.

This material is based on work supported by the National Science Foundation under Grant

No. EIA-0071924, CCR-9900610, and CCR-0311361, the Semiconductor Research Corporation

under Grant No. 2000-HJ-782 and 2001-HJ-902, Intel Corporation, and International Business

Machines Corporation. I thank Konrad Lai at Intel for equipment support. I also thank Rabin

Sugumar and Sharon Chuang for an internship opportunity at Sun Microsystems.

Any opinions, findings and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of the National Science Foundation, the

Semiconductor Research Corporation, Intel Corporation, and International Business Machines

Corporation.

v

Table of Contents

Abstract...i

Acknowledgements ..iii

Table of Contents...v

List of Figures..xii

List of Tables...xv

Chapter 1 Introduction..1

1.1 Background..1

1.2 Instruction-Level Distributed Processing...2

1.2.1 Accumulator-Oriented Instruction Set Architecture..3

1.2.2 Accumulator-Oriented Microarchitecture..4

1.3 Co-Designed Virtual Machine...6

1.3.1 Rationale..6

1.3.2 Dynamic Binary Translation..8

1.3.3 Scope of Study...8

1.4 Thesis, Contributions, and Outline...9

Chapter 2 ILDP Instruction Set Architecture...13

2.1 Motivation..13

2.1.1 Separate Register Sets Based on Usage Patterns...13

2.1.2 Dependence-Oriented Program Execution...15

2.1.3 Accumulator-Oriented Instruction Format Fits the Bill ...16

2.1.4 Observed Program Characteristics...17

2.2 Strand: A Single Chain of Dependent Instructions..21

vi

2.2.1 Strand Formation ...21

2.2.2 Strand Characteristics..22

2.2.3 Dependence Lifetime vs. Variable Lifetime..23

2.2.4 Strand Execution Model ..24

2.3 ILDP Instruction Set Formats..27

2.3.1 Summary of the Virtual ISA – Alpha EV6..27

2.3.2 Considerations for Dynamic Binary Translation...28

2.3.2.1 Maintaining Precise Architected State..29

2.3.2.2 Suppressing Code Expansion..30

2.3.3 ILDP Instruction Formats..33

2.3.3.1 Operate Instruction Formats..33

2.3.3.2 Memory Instruction Formats...35

2.3.3.3 Control Transfer Instruction Formats..36

2.3.3.4 Load Long Immediate Formats...39

2.4 Related Work ...40

2.4.1 Execution Paradigms Based on Register Hierarchy ..40

2.4.2 Related Instruction Set Ideas...41

Chapter 3 ILDP Microarchitecture...43

3.1 ILDP Microarchitecture Overview...43

3.1.1 Overall ILDP Pipeline ...43

3.1.2 Speculative Instruction Execution and Replays...47

3.1.3 ILDP Operand Capture Model: A Unique Middle Ground ...49

3.2 ILDP Pipeline Subsystems...54

3.2.1 Front-end Pipeline..54

vii

3.2.1.1 Instruction Fetch and Branch Prediction...54

3.2.1.2 Instruction Decoding and GPR Renaming..54

3.2.1.3 Instruction Ordering Setup and Accumulator Renaming....................................55

3.2.1.4 Instruction Dispatch..56

3.2.2 Processing Element..58

3.2.3 Data Cache...60

3.2.3.1 L1 D-cache Organization Options...60

3.2.3.2 Dynamic Memory Disambiguation...62

3.3 Related Work ...63

3.3.1 Complexity-Effective Superscalar Processor Designs...63

3.3.2 Complexity-Effective Research Proposals...63

Chapter 4 Dynamic Binary Translation for ILDP..66

4.1 Dynamic Binary Translation Framework...66

4.1.1 Operating Modes..66

4.1.2 Translation Unit: Superblocks...67

4.1.3 Superblock Formation Rules..69

4.2 Considerations for Dynamic Binary Translation..70

4.2.1 Maintaining Precise Architected State...70

4.2.1.1 Identifying the Trapping Instruction’s Address..70

4.2.1.2 Restoring Architected State...71

4.2.2 Suppressing Dynamic Code Size and Instruction Count Expansion72

4.3 Binary Translation Algorithm..73

4.3.1 Superblock Construction..74

4.3.2 Inter-Instruction Dependence Setup ..75

viii

4.3.3 Strand Identification ..77

4.3.4 Accumulator Allocation...78

4.3.5 ILDP Instruction Generation..79

4.4 Related Work ...79

4.4.1 Dynamic Binary Translators and Optimizers...79

4.4.2 Co-Designed Virtual Machines..80

Chapter 5 Efficient Control Transfers within a Code Cache System...81

5.1 Superblock Chaining..82

5.1.1 Chaining for Direct Branches..82

5.1.2 Conventional Chaining Method for Indirect Jumps...83

5.2 Supports for Efficient Code Cache Control Transfers...85

5.2.1 Software-based Jump Chaining Methods..85

5.2.2 Jump Target-address Lookup Table...86

5.2.3 Dual-address Return Address Stack...88

5.2.4 Summary of Special Instructions and Jump Chaining Methods..................................92

5.3 Comparisons of Superblock Chaining Methods...93

5.3.1 Identity Translation: Separating the ISA Effect from Chaining93

5.3.2 Superblock Characteristics...94

5.3.3 Branch Prediction Performance...96

5.3.4 I-Cache Performance...99

5.3.5 IPC Performance..100

5.3.6 Summary of Superblock Chaining Methods..102

5.4 Related Work ...103

5.4.1 Profile-based Code Re-layout ..103

ix

5.4.2 Superblock-based Code Cache Systems..104

5.4.3 Superblock Chaining Techniques..105

Chapter 6 Experimental Framework...107

6.1 Objective..107

6.1.1 Limits of the Previous Research Simulators..108

6.2 Simulation Framework...109

6.2.1 Overall Simulation Methodology ..109

6.2.2 Modeling Microarchitectures...110

6.2.3 Modeling Dynamic Binary Translation...112

6.3 Baseline Superscalar Model ...112

6.3.1 Choosing a Baseline Model: IBM POWER4-like Pipeline.......................................112

6.3.2 Pipeline Overview..113

6.3.3 Complexity-Effective Design Trade-Offs..116

6.4 ILDP System Model...119

6.4.1 Modeling Dynamic Binary Translation...119

6.4.1.1 Framework Mode Changes...120

6.4.1.2 Dispatch Table Lookup Mechanism ...120

6.4.1.3 Effect of Dynamic Binary Translation on Caches and Predictors.....................122

6.4.2 Modeling ILDP Pipeline..123

6.5 Evaluation Criteria...123

6.5.1 Performance...124

6.5.2 Simplicity...125

6.6 Related Work ...126

6.6.1 Microarchitecture Simulators...126

x

6.6.2 Code Cache Frameworks...127

Chapter 7 Evaluation..128

7.1 Simulation Setup..128

7.2 Validation of Baseline Model ..129

7.2.1 Idealized Performance Evaluation...130

7.2.2 Effect of Mispredictions and Cache Misses...134

7.2.3 Summary of Baseline Model Evaluation...137

7.3 Evaluation of the ILDP System..138

7.3.1 Machine Configurations ..138

7.3.2 Dynamic Binary Translation Characteristics...140

7.3.3 Performance of the ILDP System..143

7.3.3.1 IPC Performance...143

7.3.3.2 Performance Variations over Machine Parameters...147

7.3.3.3 Reduction of Mini Replays...151

7.3.3.4 Impact of Interpretation Overhead..152

7.3.4 Complexity Comparisons ..153

7.3.5 Summary of the ILDP System Evaluation...155

Chapter 8 Conclusions..156

8.1 Thesis Summary...156

8.1.1 Instruction Level Distributed Processing...156

8.1.2 ILDP Instruction Set Architecture...157

8.1.3 ILDP Microarchitecture...159

8.1.4 Dynamic Binary Translation for ILDP..161

8.1.5 Results and Conclusions..163

xi

8.2 Future Research Directions..166

Bibliography ..169

Appendix: Simulation Setup for Evaluating Control Transfer Support Mechanisms.....................186

xii

List of Figures

Figure 1-1 Spectrum of distributed designs...3

Figure 1-2 High-level view of the ILDP pipeline..5

Figure 1-3 Overview of the co-designed virtual machine in the thesis...7

Figure 1-4 Spectrum of dynamic translation mechanisms...7

Figure 2-1 Type of register values...19

Figure 2-2 Strand formation based on register value classification...21

Figure 2-3 Strand characteristics...23

Figure 2-4 Example code snippet from SPEC CPU2000 benchmark 164.gzip.................................25

Figure 2-5 Issue timing of the example code...26

Figure 3-1 High-level block diagram of the ILDP pipeline...44

Figure 3-2 Spectrum of register operand capture models..50

Figure 3-3 Shadow cycles in load latency speculation..51

Figure 3-4 Scalable dispatch logic for the ILDP pipeline ...58

Figure 3-5 Processing element internals..59

Figure 3-6 L1 D-cache organizations..61

Figure 4-1 Operating modes of the ILDP virtual machine system..67

Figure 4-2 A superblock formation example...68

Figure 4-3 Output register types in superblock-based dynamic binary translation77

Figure 5-1 Control transfers among superblocks...83

Figure 5-2 A code sequence that perform indirect jump target comparison......................................84

Figure 5-3 Software-based jump chaining methods..85

Figure 5-4 Jump target-address lookup table...87

xiii

Figure 5-5 Indirect jump target address prediction rates...89

Figure 5-6 Dual-address return address stack..90

Figure 5-7 Classification of control transfer mispredictions...98

Figure 5-8 Number of I-cache misses..100

Figure 5-9 IPC comparisons between various chaining methods..100

Figure 6-1 High-level block diagram of the baseline pipeline..114

Figure 6-2 Segmented issue queue and bypass network used in baseline model118

Figure 6-3 Top-level simulator loop showing operating modes..120

Figure 6-4 Dispatch table lookup algorithm..121

Figure 6-5 Map of the hidden memory area..122

Figure 6-6 The three components of computer performance..124

Figure 7-1 Ideal baseline pipeline..131

Figure 7-2 Effect of window size and pipeline ineffeciencies...132

Figure 7-3 Effect of memory dependence speculation..133

Figure 7-4 Effect of Alpha NOPs..134

Figure 7-5 Average number of mispredictions and cache misses per 1,000 instructions................135

Figure 7-6 Effect of mispredictions and cache misses..135

Figure 7-7 Average load latency..136

Figure 7-8 Effect of issue logic ...137

Figure 7-9 Breakdown of binary translation components ...142

Figure 7-10 IPC comparisons..144

Figure 7-11 Effect of machine width...147

Figure 7-12 Effect of L1 D-cache size..149

Figure 7-13 Effect of global wire latencies...150

xiv

Figure 7-14 Total CPI breakdown...152

Figure A-1 Simulated pipeline used in the identity translation framework.....................................187

xv

List of Tables

Table 2-1 Alpha ISA program characteristics...17

Table 2-2 Alpha ISA instruction formats..28

Table 2-3 Operate instruction formats...34

Table 2-4 Memory instruction formats..35

Table 2-5 Control transfer instruction formats..36

Table 2-6 Load long immediate formats...39

Table 3-1 Comparison of register renaming/operand capture models...53

Table 3-2 Comparison of ILDP dispatch logic and out-of-order issue logic.....................................57

Table 5-1 Special instructions to reduce register indirect jump chaining overhead..........................92

Table 5-2 Summary of jump chaining methods..93

Table 5-3 General superblock characteristics..94

Table 5-4 Dynamic instruction count expansion rate..95

Table 7-1 Machine configurations used in idealized performance evaluation131

Table 7-2 Simulated machine parameters..139

Table 7-3 Translated instruction characteristics..140

Table 7-4 Translated instruction characteristics, continued ..141

Table 7-5 IPC comparisons...146

Table 7-6 Effect of machine width..148

Table 7-7 Number of total mini replays ..151

Table 7-8 Hardware complexity comparisons...154

Table A-1 Machine parameters used in the identity translation framework....................................188

1

Chapter 1 Introduction

1.1 Background

Moore’s prediction in 1965 [162] that the number of transistors per integrated circuit would

double every couple of years has held true for almost four decades [163], to the point that it is

considered an empirical law. For the more than three decades since the introduction of the first

integrated circuit microprocessor (the Intel 4004 in 1971), ever-shrinking semiconductor technology

has been the driving force behind continuous microprocessor performance improvements. Faster

transistor switching speeds have allowed higher clock frequency designs while bigger transistor

budgets have enabled more microarchitecture techniques to be used to increase instruction level

parallelism (ILP).

Until recently, reducing the number of logic levels per clock cycle, i.e., increasing the

pipeline depth [98][108][28] has been a popular technique for achieving higher clock frequencies

than would be obtainable with technology scaling alone. Considering the long development cycle of

a new generation design1, the deeply pipelined design style was considered a desirable practice

because it allows relatively easy clock frequency ramping, thus ensuring the longevity of the design

[108][222].

There are negatives to this approach though, even neglecting the classic pipeline latch

overhead problem [142]. First, to accommodate relatively increasing memory latencies, deeper

pipeline buffers and more aggressive speculation techniques are required – which in turn make the

1 In the reduced instruction set computer (RISC) heyday of the mid-80s, the objective was a new

processor design every two years; now it takes from four to six.

2

design more complex and harder to validate [242]. Second, on-chip global wire latency has become

relatively worse compared to transistor switching speed [4][30][110][154]. With deeper pipelining,

the negative impact of the global wire latency can only get worse, further reducing the pipeline

efficiency. Finally, power consumption increases with deeper pipelines, be it dynamic (from

excessively high clock frequency) or static (from increased leakage current of low VT transistors)

[101][170].

1.2 Instruction-Level Distr ibuted Processing

As a consequence, an apparent microarchitecture trend is back toward relatively simpler

designs [90] that try to strike a good balance between clock frequency, ILP, and power consumption.

Nonetheless, even this approach faces technology difficulties, global wire latency for example,

albeit to a lesser degree than with very highly pipelined and complex designs. For this reason, the

research here advocates a design principle that relies less on low-level speculation techniques and

more on simpler, modular designs with distributed processing at the instruction level, i.e.,

instruction level distributed processing (ILDP) [216].

To study the full potential of future ILDP architectures, the thesis research considers new

instruction sets that are suitable for distributed microarchitectures. The goal is to avoid the

encumbrances of instruction sets designed in a different era and with different constraints. A newly

designed instruction format distinguishes global and local communication patterns more explicitly

and works to reduce hardware complexity of most major pipeline structures. This leads to, in their

simplest form, microarchitectures that are tolerant of interconnect delays, use a relatively small

number of fast (high power-consumption) transistors, and support both high clock frequencies and

relatively short pipelines.

3

There has been other research on new instruction formats and distributed microarchitectures

[171][224][227] that include similar ILDP concepts such as:

· Considering microarchitecture as a distributed computing problem

· Accounting for communication as well as computation

· Localizing communication to small functional units while managing the overall structure

for communication.

These earlier studies are mostly aimed at achieving higher performance by utilizing tens, if

not hundreds, of distributed processing elements (PEs), especially for potentially high ILP

workloads such as media processing. Unlike the other proposals, the proposed ILDP paradigm will

work well with irregular programs, not just with high ILP programs.

Figure 1-1 Spectrum of distr ibuted designs

1.2.1 Accumulator-Or iented Instruction Set Architecture

The instruction set format used in the thesis is based on the following two rather

fundamental observations. First, a large number of register values are used only once and most of

them are used soon after they are created [86]. Second, instructions with true dependences cannot

Recent designs:
Alpha 21264 [131],
Pentium 4 [109],
POWER4 [228]

Highly
distributed None

Accumulator-oriented
ILDP system in the

research

Previous
generation

designs

Degree of distribution

RAW [227],
GPA/EDGE [171],
WaveScalar [224]

Ad hoc Moderately
distributed

Multiscalar [220],
Trace processor [197],

PEWS [130]

4

execute in parallel (unless value speculation techniques [148][201] are used). If an instruction set

architecture (ISA) is designed to explicitly convey dependence and register usage information, it

would enable simpler implementations of dependence-based distributed microarchitectures that are

complexity-effective and tolerant of global wire latencies.

The ILDP ISA studied in this thesis has a small number of accumulators backed with a

relatively large number of general-purpose registers (GPRs). The instruction stream is divided into

chains of dependent instructions, called strands hereafter, where intra-strand dependences are

passed through a common accumulator. The general-purpose register file is used for communication

between strands and for holding global values that have many consumers. Note that the ILDP ISA’s

emphasis on reduction of global communications by exploiting dependences between instructions is

in stark contrast to the traditional reduced instruction set computer (RISC) ISAs where maximizing

computation parallelism through independences between instructions has a high priority.2

1.2.2 Accumulator-Or iented Microarchitecture

The accumulator-oriented ISA in the thesis is specifically designed for an accompanying

distributed microarchitecture. The overall ILDP microarchitecture shown in Figure 1-2 consists of

pipelined instruction fetch, decode, and rename stages of modest width that feed a number of

distributed processing elements, each of which performs sequential in-order instruction processing.

The instruction set exposes inter-instruction dependences and local value communication patterns to

the microarchitecture, which uses this information to steer chains of dependent instructions to the

sequential PEs. Dependent instructions executed within the same PE have minimum communication

2 In a sense, the role of accumulators (implying serial by default) in the dependence-oriented ILDP

ISA can be thought as a dual of the stop bit (implying parallel unless stated otherwise) in the IA-64

architecture, a long instruction word (LIW) ISA designed for achieving high ILP [118].

5

delay as the results of one instruction are passed to the next through an accumulator. Taken

collectively, the multiple sequential PEs implement multiple-issue out-of-order execution.

Figure 1-2 High-level view of the ILDP pipeline

L1 I-cache

Align,
Decode,

GPR renaming

Steering
(Accumulator

renaming)

A1 A0 A0 A2

A0
A0

GPR Acc

PE0

A1

GPR Acc

PE1

A2

GPR Acc

PE2

GPR Acc

PE3

L1 D-cache
Network

6

1.3 Co-Designed Vir tual Machine

1.3.1 Rationale

For certain applications where binary compatibility is not a major issue (e.g., in some

embedded systems), a new instruction set may be used directly in its native form. However, for

general-purpose applications a requirement of binary compatibility is a practical reality that must be

dealt with. For these applications there are two possibilities, both involve dynamic binary

translation from a virtual ISA (V-ISA) to an implementation ISA (I-ISA). One method is to perform

on-the-fly hardware translation similar to the methods used today by Intel and AMD when they

convert x86 instructions to micro-operations [63][81][98][108][209][210]. However, as will be

shown in later sections, such a translation to an ILDP instruction set requires higher-level analysis

than a simple instruction-by-instruction peephole mapping.3 Hence, the second method relies on

virtual machine software, co-designed4 with the hardware and hidden from conventional software

[217]. The binary translation subsystem in the virtual machine monitor (VMM) software layer maps

existing binaries to the new ILDP instruction set in a manner similar in concept to the method used

by the Transmeta Crusoe processor [60][99][128][140] and the IBM DAISY/BOA projects [9][68]

[69][70][95]. All instructions are translated: applications, libraries, and the operating system –

3 Technically, it is not impossible to implement the strand-oriented translation in a hardware-only

manner, as was proposed in a recent study [199]. However, adding additional control hardware that works at a

higher level than individual instructions is at odds with the overall goal of design simplification.

4 IBM AS/400 series [12] (first introduced in 1988; now iSeries servers) are well-known co-designed

virtual machine systems. The term, “co-design” , is also widely used in embedded design field [75]. As with

the co-designed VM systems, the co-design methodology is used to achieve particular design goals.

7

everything. The translated codes are put into a special hidden memory area and are brought to the I-

cache upon misses. Dynamic binary translation (DBT) can be performed either by a special co-

processor [47][59] or by the main processor itself.

Figure 1-3 Overview of the co-designed vir tual machine in the thesis

Figure 1-4 Spectrum of dynamic translation mechanisms

Pentium Pro/II/III [98],
Athlon/Opteron [63]

Superblock
translation by
DBT/VMM

Direct
implementation

Pentium 4 [109],
rePLay [77]

Most RISC and
previous

generation
CISC* designs

DAISY/BOA [70],
Crusoe/Efficieon [60],

ILDP

Instruction-
by-instruction
translation by

hardware

Superblock
translation by

hardware

* : Complex Instruction Set Computer

Virtual machine monitor (including DBT subsystem)

 Translated
 code in
 hidden
memory

 Processor front-end
(including I-cache)

 Distributed
 Processing
 Element 0

(incl. D-cache)

 PE 1

PE n-1

Legends:
V - ISA instructions
I - ISA instructions
Data value communication
Performance feedback

V-ISA program

8

1.3.2 Dynamic Binary Translation

Dynamic binary translation converts instructions from a source ISA to a target ISA. In the

co-designed VM paradigm, these are the V-ISA and I-ISA, respectively, and only the V-ISA is an

existing instruction set for which conventional software exists. A DBT system also profiles program

run-time behavior and dynamically optimizes blocks of frequently executed instructions.

The main objective of DBT in this research is identifying instruction inter-dependences and

making register assignments that reduce intra-processor communication. This information is carried

by the accumulator-oriented I-ISA and is used by the microarchitecture to steer instruction strands

to the sequential PEs.

A key consideration in the design of a DBT system is the overhead resulting from the time

it takes to translate; any time spent translating is time not spent executing the source program. In

this thesis, the emphasis in the DBT system design is on simplicity; because the underlying

hardware is a form of dynamic superscalar, it can be relied upon to provide code scheduling. An

important difference from the two most notable co-designed VM systems, the IBM DAISY/BOA

and the Transmeta Crusoe processor, is that here binary translation does not require complex

optimizations and scheduling [71] that are used for the VLIW implementations in these systems. On

the other hand, maintaining the original instruction order in the translated code helps maintain a

precise trap recovery model [211].

1.3.3 Scope of Study

In this research, the Alpha instruction set is used as the outwardly visible V-ISA. By

implementing all the major parts of a co-designed virtual machine, the research shows that the

resulting ILDP system can achieve high performance through a combination of a high clock

frequency, a moderate depth pipeline, and modest ILP. Simplicity is the key here – not only the

9

hardware complexities but also the dynamic binary translation overheads are reduced by designing

the whole system around the accumulator-oriented instruction set and strand execution model.

However, implementing a fully-working VM system is a huge engineering task and is beyond the

scope of the thesis research. Instead, the thesis concentrates on (1) desired instruction set properties,

(2) overall microarchitecture and key subsystem design, and (3) efficient dynamic binary translation

support. The simplicity advantage will be demonstrated through the reduced complexities of the key

pipeline hardware structures and a simple, fast dynamic binary translation algorithm, and

instructions per cycle (IPC) performance is shown to be better or similar than comparable

superscalar processors.

1.4 Thesis, Contr ibutions, and Outline

The thesis supported by this research is that designing a hardware/software co-designed

virtual machine system using an accumulator-oriented instruction set and microarchitecture is an

effective approach for implementing complexity-effective, high-performance out-of-order

superscalar processors. I defend this thesis by arguing the following three key points:

· The accumulator-oriented instruction format and microarchitecture fit today’s technology

constraints better than conventional design approaches: The ILDP ISA format assigns

temporary values that account for most of the register values to a small number of

accumulators. As a result, the complexity in the register file and associated hardware

structures are greatly reduced. Furthermore, the dependence-oriented ILDP ISA format

allows simple implementation of a complexity-effective distributed microarchitecture that is

tolerant of global communication latencies.

· The accumulator-oriented instruction format and microarchitecture results in low-overhead

dynamic binary translation: Because the underlying ILDP hardware provides a form of

10

superscalar out-of-order processing, the dynamic binary translator does not need to perform

aggressive optimizations as used in previous co-designed VM systems. As a result, the

dynamic binary translation overhead is greatly reduced compared to these systems.

· The co-designed virtual machine system for instruction-level distributed processing

performs similarly to or better than conventional superscalar processors of similar pipeline

depth while achieving lower complexities in key pipeline structures: This reduction of

complexity can be exploited to achieve either higher clock frequency or lower power

consumption, or a combination of the two.

My thesis makes two main contributions. First, I develop three key components of a co-

designed virtual machine system for instruction-level distributed processing: an accumulator-based

instruction set architecture designed to support efficient dynamic binary translation, a complexity-

effective accumulator-based distributed microarchitecture, and a fast and efficient dynamic binary

translation mechanism and hardware-based mechanisms for supporting control-transfers.

Second, I present performance evaluations and complexity analysis of the co-designed

virtual machine system to illustrate its benefits and provide support for its use in future processor

designs. With respect to the second contribution, a rigorous evaluation methodology was

established including: a detailed, current-generation superscalar pipeline simulator with emphasis

on correct timing and a hybrid dynamic binary translator/timing simulator framework that allows

simple and flexible analysis of a co-designed VM system.

The thesis is organized as follows. The ILDP instruction set format is central to the thesis

and is described in Chapter 2. First, a strand execution model is developed based on the

observations on typical compiled code characteristics. After DBT-specific ISA requirements are

discussed, the implementation-specific ILDP ISA formats are presented. Chapter 3 starts with an

11

overview of the accompanying ILDP microarchitecture and compares its unique operand capture 5

model to two prevalent superscalar models. Specifics of the ILDP microarchitecture are described

afterwards. The dynamic binary translation mechanism, a key component of the virtual machine

monitor layer, is explained in Chapter 4. The chosen unit of translation, the superblock (a straight-

line code sequence with a single entry point and multiple exit points), and its formation rules are

explained and then followed by discussions of two key issues in any DBT system: precise state

reconstruction and dynamic code expansion. The actual DBT algorithm for the ILDP I-ISA is

presented at the end of the chapter. Efficient support mechanisms for translating control transfer

instructions are crucial to the performance of any code cache system6. For this reason, the topic is

given a separate treatment in Chapter 5. In this chapter, problems with conventional superblock

chaining mechanisms are identified. Combinations of specialized software/hardware mechanisms

are proposed and evaluated separately from the rest of the thesis using an identity translation

framework. This is to help understand the effect of the dynamic code re-layout that comes free with

any superblock-based code cache system, separated from the ISA translation effect. Chapter 6

describes the experimental framework used in the thesis. This chapter not only discusses the

modeling methodology of the ILDP co-designed VM system but also gives a detailed description of

5 In modern pipelined designs, operand values can be obtained by accessing the designated data

storage (e.g., the physical register file) in a pipeline stage or by constantly monitoring the bypass network. In

the thesis, the term operand capture is used to represent both methods.

6 Most dynamic translators and optimizers place frequently executed translated/optimized codes in a

main memory area. Typically the term translation cache [70] is used for this memory area in ISA-translation

systems while the term fragment cache [15] is used in optimization-only systems. Throughout the thesis,

“code cache” is used as a general term for both translation cache and fragment cache. Because the ILDP VM

system involves ISA translation, the term “ translation cache” is sometimes used as well.

12

the baseline superscalar processor model. Some important complexity-effective design choices

commonly employed in the current generation superscalar processor designs are also described for

complexity comparisons. The evaluation of the ILDP system is presented in Chapter 7. Here,

evaluation of the baseline superscalar processor model is first performed. These experiments serve

two purposes. First the pipeline model, shared with the proposed ILDP microarchitecture, is

validated. Second, the experiments help in understanding the performance bottlenecks in current-

generation processor designs. The performance evaluation of the ILDP system consists of two main

components; DBT-related characteristics and the overall IPC performance compared to the baseline

superscalar pipeline. The simplicity advantages of the ILDP co-designed VM paradigm are

showcased via complexity comparisons with respect to the conventional baseline microarchitecture.

Emphasis is placed on reduced complexity of key pipeline structures and reduced translation

overheads. Finally Chapter 8 summarizes the research and concludes the thesis. Further research

opportunities are suggested at the end.

The thesis covers many different aspects of processor design, so a single chapter is not

adequate to present all related work. Therefore each chapter, other than the final two, contains a

related work section that is specific to the topics discussed in the chapter.

13

Chapter 2 ILDP Instruction Set Architecture

The accumulator-oriented ILDP instruction set architecture is the centerpiece of this thesis

research. Freed from the features of legacy ISAs introduced many decades ago, the thesis uses an

instruction format that is well suited for today’s technology constraints (thereby facilitating efficient

hardware implementations) and yet it is a simple target for a dynamic binary translation system.

In this chapter, temporal locality of register values and inter-instruction dependences, two

of the most fundamental properties of compiled programs, are re-examined in the context of today’s

technology constraints. The combination of these two properties leads to a strand-oriented execution

model and a dependence-based, accumulator-oriented instruction format. A short code snippet,

extracted from a benchmark program, is used to illustrate the overall idea of the execution model

and the instruction format. Some of the representative characteristics of the chosen V-ISA that are

relevant to the research are presented, and this is followed by discussions of precise state

maintenance and dynamic code expansion in the context of dynamic binary translation. The ILDP

ISA formats are designed to handle both of these issues well. The chapter ends with descriptions of

the ILDP ISA formats in tabular form. Related execution paradigms and ISA ideas are listed at the

end of the chapter.

2.1 Motivation

2.1.1 Separate Register Sets Based on Usage Patterns

Most existing ISAs do not distinguish between register value usage types and have only one

level of register hierarchy. This simple flat model made good sense when ISAs were developed

14

decades ago [178]. On-chip registers were supposed to be small and fast enough for the intended

level of pipelined designs at the time.

Today’s typical high-performance superscalar processor designs [206][215] put lot of

pressure on register files and associated structures. Dynamic register renaming (to remove false

dependencies; further explained in section 3.1.3) requires physical register files to have more

elements than architected, i.e., logical registers. Superscalar execution requires more access ports to

the register file. Deeper buffering within the pipeline exacerbates these difficulties further because

more physical register file entries are needed to support increased numbers of in-flight instructions.

All in all, today’s on-chip register file have become bigger and relatively slower.7

Reducing the pressure on the register file and associated hardware structures being one goal,

the thesis research started with an observation that there is high locality in register usage patterns in

most programs. It is well known that a large number of register values are used only once and most

of them are used soon after they are created [86]. If these temporary register values can be offloaded

to separate “scratchpad” registers, even a small number of registers will be sufficient for most

instructions because the volatile scratchpad registers may be recycled quickly. Remaining register

values that have long lifetimes can then be kept in another set of “backup” registers, most probably

larger in number than the volatile scratchpad registers, but still less than in equivalent conventional

designs. Therefore, this type of register organization will effectively reduce complexity pressure on

both the number of ports and entries of the physical register file. Furthermore, the register renaming

7 Although the physical register file itself can be pipelined to accommodate the increased access

latency using more internal bypasses, it leads to increased shadow cycles as will be shown in Figure 3-3,

reducing the effective issue window size and wasting energy in case of latency mis-speculation [138][164].

15

bandwidth requirement is also effectively reduced because fewer register instances are now

renamed to the non-volatile register file.

2.1.2 Dependence-Or iented Program Execution

In general, instructions with true dependences cannot execute in parallel. Traditionally this

fundamental property has been considered a hindrance to higher performance through ILP. An

advantage of the reduced instruction set computer (RISC) paradigm is that a finer granularity ISA

allows for increased parallelism between simpler instructions [229], through static scheduling by a

compiler or dynamic scheduling by out-of-order execution hardware mechanisms. Prevalence of

this idea led some implementations of complex ISAs, such as x86 to adopt a dynamic

decomposition technique that transforms a complex external ISA instruction to multiple, simpler

internal format instructions, sometimes called micro-operations [63][98][108][209][210].

One disadvantage of the fine-grain instruction execution model is that it tends to increase

complexity pressure on the pipeline [137]. For example, even a temporary value that is used once is

assigned a register entry and needs to be communicated from the producer to the consumer

operation through the shared bypass network. As a reaction, some newer designs try to suppress the

expansion of a complex instruction to a minimum number of pipeline stages [63][129], while others

go as far as re-combining multiple dependent finer-granularity instructions into a coarse grain

instruction [90][116][137]. One common idea behind these newer approaches is that if dependences

are unavoidable, why not exploit them to reduce pipeline complexities?

The dependence-oriented microarchitecture studied by Palacharla, Jouppi, and Smith [175]

employs dependence relationships to simplify the complexity-critical instruction issue pipeline

stage. In their work, the traditional out-of-order issue window is replaced with multiple first-in,

first-out (FIFO) buffers. Dependent instructions are steered to the same FIFO and only the

16

instructions at the FIFO heads need to be checked for issue. If the processor back-end functional

units are clustered based on the FIFOs, most register value communication will happen within the

same cluster and the frequency of long latency inter-cluster communications will be kept low.

2.1.3 Accumulator-Or iented Instruction Format Fits the Bill

If instruction sets were designed to convey dependence and register usage information more

explicitly, it would be much simpler to implement dependence-based distributed microarchitectures

that are complexity-effective and tolerant of global wire latencies. In other words, today’s

technology constraints would be better served with instruction sets that are designed according to

the following principles:

· Provide separate register sets for temporary values which are used a small number of times

and for values that have long lifetimes or many users.

· Provide a way of explicitly expressing inter-instruction dependences and their lifetimes.

An instruction set with a small number of accumulators and a relatively large number of

general purpose registers (GPRs) fits these principles nicely. Chains of dependent instructions,

strands, are associated with the same accumulator. After the first instruction in a strand writes to a

given accumulator, each subsequent instruction reads and overwrites the same accumulator with a

newly produced value for use by the next instruction in the strand. Values that have long lifetimes

or are used multiple times are assigned to general purpose registers. In a distributed

microarchitecture, an entire strand can be steered to the same cluster and instructions in the strand

are then issued in order. A new strand is steered to a non-empty FIFO buffer if the last instruction in

the FIFO was explicitly marked as an end-of-strand (i.e., it is now safe to overwrite previous

strand’s accumulator). An important requirement is that the instruction set semantics should be

close enough to a traditional ISA to facilitate efficient dynamic binary translation.

17

2.1.4 Observed Program Character istics

With an eye toward accumulator-based instruction sets, the thesis research started with

manual inspection of frequently executed code sequences from the SPEC CPU2000 integer

benchmarks [105] compiled for Alpha EV6 ISA. Soon it became evident that the dependence

relationships between register value producers and consumers are not as complex as a typical RISC

ISA may imply (with two input and one output registers). A trace-driven functional simulator was

developed to quantify this observation. Alpha NOPs were removed from the trace before collecting

the statistics in Table 2-1.

Table 2-1 Alpha ISA program character istics

Benchmark
Alpha instruction

count

% of instructions with
zero or one input register

operand

% of loads
without

immediate

% of stores
without

immediate

164.gzip 3.25 billion 55.09 43.6 50.6

175.vpr 1.47 billion 51.16 34.9 29.1

176.gcc 1.77 billion 62.38 34.8 15.8

181.mcf 210 million 57.74 30.4 11.9

186.crafty 4.07 billion 54.34 27.0 13.4

197.parser 3.92 billion 57.68 44.8 22.2

252.eon 89.7 million 55.83 15.7 15.4

254.gap 1.11 billion 61.60 44.9 27.1

300.twolf 238 million 50.48 41.5 31.2

The fraction of instructions that have zero or one source register operand ranges between 50

to 62%. Loads, branches, jumps, and integer instructions with an immediate operand belong to this

category. This suggests that many instructions are members of rather “ thin” chains of dependent

instructions, and there are relatively few dependence intersection points in programs.

18

Another interesting program characteristic is that there are a substantial number of memory

access instructions that do not require address calculation. These instructions account for 15.7 to

44.9% for loads, 11.9 to 50.6 % for stores. Therefore, it can be inferred that a memory instruction

format without address calculation has a good potential for lowering the average L1 D-cache load-

to-use latency by bypassing the address adder. IA-64 architecture, a relatively new ISA (introduced

in early 1990s), employs this feature [118].

To further understand register usage patterns, register values are classified as follows:

· Local: register values that are used only once

· No-user: produced but not used by any instruction

· Static global: used multiple times by the same static instruction, e.g., loop-invariant values

· Communication global: used multiple times but not by the same static instruction

Local values are natural targets for accumulators that are accessed only locally inside a

processing element. No-user values come from high-level program semantics; for example, a

function’s return value or some of its input arguments might not be used depending on the context.

Also aggressive compiler optimizations, e.g., hoisting instructions above conditional branches,

sometimes result in unused values [36]. Regarding global values, it is important to understand the

difference between static and communication global values for distributed microarchitectures. In

general, static global values tend to have long lifetimes and large number of consumers. These

values are almost always immediately available from the register file when they are needed. On the

other hand, communication global values tend to have relatively short lifetimes and smaller

numbers of consumers compared to static global values. They are usually used fairly soon after

being produced and hence, can have exposed inter-cluster communication latency if their producers

and users are in different clusters.

19

0%

20%

40%

60%

80%

100%

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ars
er

25
2.e

on

25
4.g

ap

30
0.t

wolf

No user

Static global

Comm. global

Local

(a) Output register value

0%

20%

40%

60%

80%

100%

16
4.

gzip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.

cr
aft

y

19
7.

par
se

r

25
2.e

on

25
4.g

ap

30
0.t

wolf

No input register

1 or 2 static
global(s)

0 local, 1 or 2
comm global(s)

2 locals

1 local, 1 comm
global

1 local, 1 static
global

1 local

(b) Input register value

Figure 2-1 Type of register values

Figure 2-1 shows the fraction of register values for each of the aforementioned classes. First,

in Figure 2-1(a) about 70% of all produced values are local, confirming similar studies by others

[37][86]. Instructions that do not produce register values, such as stores and conditional branches,

20

are not included. Figure 2-1(a) also shows that only about 20% of the produced values should be

placed in global registers (which suggests relatively low global register write bandwidth).

The input register value profile shown in Figure 2-1(b) helps quantify the complexity of

register dependence graphs in the collected program traces. The constant zero register (R31 in

Alpha ISA) is treated as an immediate value and hence, is not counted as a register. The top two

categories, where instructions do not have communication global or local values as input, do not

affect overall performance (assuming static global values are always available immediately). Here,

the Alpha load immediate instructions (LDA/LDAH) with the constant zero register as an input

(similar to MIPS LUI instruction) and unconditional branch instructions (BR/BSR) are examples of

the no input register category. The bottom two categories which have one local and zero

communication global input value will not see any global communication latencies either. It is the

three remaining categories in the middle that have a potential for having exposed global

communication latencies due to communication global values. Note that in the fourth category (two

locals), it is necessary to consider one of the two local input values as communication global – a

dependence intersection point.

Figure 2-1(b) is pessimistic, however, in the sense that it considers all uses of a produced

communication global value as communication global. When strands are identified, the first

consuming instruction of a produced communication global value is allowed to continue the strand.

This consumer instruction reads the value from the local accumulator. Another important point is

that only those communication global values that happen to be on the program critical path might

affect the program execution cycles [82]. That is, many register value communications can be

hidden by parallel execution of multiple strands.

21

2.2 Strand: A Single Chain of Dependent Instructions

A strand is a single chain of dependent instructions and identifies the dependence chain’s

lifetime. The most important aspect of strand formation is the separation of local and global values

because, in effect, it drives strand formation itself. When a source program is directly compiled to

an accumulator-oriented ISA, a (static) compiler will perform dependence lifetime analysis and

determine which values can safely be considered as local. In a dynamic binary translation system,

the V-ISA (Alpha in the thesis) register usage patterns are first collected over a given translation

unit before strand identification and accumulator assignments are performed.

2.2.1 Strand Formation

Two strands, carried by accumulators, denoted as An and Ak respectively, are shown in

Figure 2-2. Each node represents a single instruction. A value that is used by both strands is also put

in a GPR (denoted as Rj in the figure).

Figure 2-2 Strand formation based on register value classification

 Static global

Communication
global

local

Ri

Rj

Ak

Ak

Ak

Ak

An

An

An

An

local

22

A strand is formed by the following rules:

· A strand is started with an instruction that has no local input values

· An instruction that has a single local input value assigned to a strand is added to the

producer’s strand

· If an instruction has two local input values, then two strands are intersecting. One of the

strands has its local value converted to a communication global

· There is only one user of a produced value inside a strand

· Once all strands are identified within the given compilation/translation unit, the last

instructions in each strand are marked as end-of-strand.

2.2.2 Strand Character istics

Figure 2-3 shows two of the most important strand characteristics from the program traces.

In Figure 2-3(a), average strand size is shown to be 2.54 Alpha instructions. Note that there are

many single-instruction strands that do not contribute much to the total number of instructions but

affect the average strand size significantly. These single-instruction strands include unconditional

branch and jump instructions, and instructions whose produced values are not used.8 If the single-

instruction strands are ignored, the average size of strands is 3.04. It is also interesting to see how

strands end (Figure 2-3(b)). About 35 to 70% of the strands end with conditional branch resolution

and store address/value calculation. About 20 to 45% produce communication global values.

8 An important characteristic of the single-instruction strands is that by definition, they start and end

a strand at the same time. As a consequence, they can be steered to any available FIFO and any subsequent

instructions can be steered to the same FIFO at the same cycle.

23

0

0.5

1

1.5

2

2.5

3

3.5

4

16
4.

gzip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.

pars
er

25
2.e

on

25
4.g

ap

30
0.t

wolf
AM

Avg. strand size Avg. strand size excluding single-instruction strands

(a) Average strand lengths in Alpha ISA programs

0%

20%

40%

60%

80%

100%

16
4.

gzip

17
5.

vp
r

17
6.

gcc

18
1.

m
cf

18
6.

cr
aft

y

19
7.

par
se

r

25
2.

eon

25
4.

gap

30
0.t

wolf

comm. global

static global

no user

no output
(misc)
no output
(store)
no output
(cond. branch)

(b) Strand end profiles

Figure 2-3 Strand character istics

2.2.3 Dependence Lifetime vs. Var iable L ifetime

There are only a finite number of accumulators available in a given instruction format.

Therefore it is necessary to allocate accumulators to the identified strands. If the register allocator

runs out of free accumulators, a strand is chosen to be terminated and its accumulator is “spilled” to

24

a general register. This can be compared to the traditional register allocation where a variable’s

lifetime is assigned to register(s) [169]. Here a dependence’s lifetime is assigned to an accumulator.

There will be certain differences in optimization strategies between an ILDP ISA compiler

and the traditional RISC compilers such as the one used to generate the Alpha binaries used in the

thesis. Most optimizing RISC compilers try to increase parallelism between instructions by applying

aggressive instruction scheduling techniques at the expense of increased register pressure. Too

aggressive instruction scheduling, however, may not be beneficial in the accumulator ISAs because

these parallel strands increase the accumulator pressure [92]. For that reason, it is probably better to

rely on the underlying out-of-order superscalar hardware to achieve efficient code scheduling than

forcing an ILDP compiler to schedule instructions aggressively.

2.2.4 Strand Execution Model

Figure 2-4 shows an Alpha code sequence dynamically translated into the accumulator-

oriented ILDP ISA. It can be seen that there are four strands running in the code snippet, ranging

from one to five Alpha instructions9. Local register values are shown in bold letters in Figure 2-4(b).

Other values are global. A dotted arrow represents a value communication between two strands.

9 One might get the impression that the strand assignment in the example is sub-optimal. For

example, if the second xor instruction were assigned the accumulator 0, the long strand 0 (now 6

instructions) would seem to have a better chance of tolerating communication latency from the sr l

instruction to the second xor instruction. This particular assignment shown in the example came from the

precise state maintenance requirement of the dynamic binary translation – the R3 register of the second load

is a live-out value that needs to be saved in a GPR anyway. Nonetheless, the parallel issuing of multiple

strands works to hide this possible exposure of communication latency.

25

Note that the last conditional branch instruction is translated to a combination of a

conditional branch and an unconditional branch for code cache chaining reasons; chaining is

explained in Chapter 5 in more detail.

Figure 2-4 Example code snippet from SPEC CPU2000 benchmark 164.gzip

10 For load instructions, the first register is the destination data register; for other operation type

instructions, the result data is written to the right-most register.

 i f (n) do {

 c = cr c_32_t ab[((i nt) c ^ (* s++)) & 0xf f] ^ (c >> 8) ;

 } whi l e (- - n) ;

(a) C source code

L1: l dbu r 3, 0[r 16] L1: R3 <- mem[R16] L1: R3 (A0) <- mem[R16]

 subl r 17, 1, r 17 R17 <- R17 – 1 R17(A1) <- R17 – 1

 l da r 16, 1[r 16] R16 <- R16 + 1 R16(A2) <- R16 + 1

 xor r 1, r 3, r 3 R3 <- R1 ^ R3 R3 (A0) <- R1 ^ A0

 sr l r 1, 8, r 1 R1 <- R1 >> 8 R1 (A3) <- R1 >> 8

 and r 3, 0xf f , r 3 R3 <- R3 & 0xf f R3 (A0) <- A0 & 0xf f

 s8addq r 3, r 0, r 3 R3 <- 8* R3 + R0 R3 (A0) <- 8* A0 + R0

 l dq r 3, 0[r 3] R3 <- mem[R3] R3 (A0) <- mem[A0]

 xor r 3, r 1, r 1 R1 <- R3 ^ R1 R1 (A3) <- R3 ^ A3

 bne r 17, L1 P <- L1, i f (R17 ! = 0) P <- L1, i f (A1 ! = 0)

 P <- L2

L2: L2: L2:

(b) Alpha assembly
code10

(c) Equivalent RTL notation (d) Translated ILDP ISA code

26

Figure 2-5 Issue timing of the example code

Figure 2-5 shows a possible issue timing of the translated instructions within FIFOs. Here four

accumulators are used (A0 through A3). The ILDP instructions are steered to four different PEs

(FIFOs). The instruction in the next loop iteration is shown in dotted boxes. It can be seen that the

strands issue relatively independently, except where two strands converge to form inputs to the

second xor instruction (denoted by the dotted arrows for GPR R3 and the straight-line arrows for

accumulator A3).

R1 (A3) <- R1 >> 8

R3 (A0) <- mem[R16]

R3 (A0) <- R1 ^ A0

R3 (A0) <- A0 & 0xf f

R3 (A0) <- 8* A0 + R0

R3 (A0) <- mem[A0]

Issue cycle

0

1

2

3

4

R17(A1) <- R17 – 1

R16(A2) <- R16 + 1

R1 (A3) <- R1 >> 8

R1 (A3) <- R3 ^ A3

FIFO 0 1 2 3

R3 (A0) <- mem[R16]

R3 (A0) <- R1 ^ A0

R3 (A0) <- A0 & 0xf f

R3 (A0) <- 8* A0 + R0

R3 (A0) <- mem[A0]

R17(A1) <- R17 – 1

P <- L1, i f (A1 ! = 0)

P <- L1, i f (A1 ! = 0)

R1 (A3) <- R3 ^ A3

27

2.3 ILDP Instruction Set Formats

2.3.1 Summary of the Vir tual ISA – Alpha EV6

Even among the RISC ISA families, the Alpha ISA is known for being a relatively

minimalist design [214]. The ISA format was designed to be regular and orthogonal and hence, is

simple to decode. All instructions are 32-bits wide. There are 32 integer and 32 floating-point

registers, both 64-bits wide. Frequently executed instruction types such as memory and control

transfer11 instructions are given a range of op-code space and do not require secondary function

field decoding. All instructions have a maximum of two input operands12 and one or zero output

operand. There is only one addressing mode: r egi st er + of f set . There is no explicit

condition code or special link register.

Conditional branches compare the input register operand value to zero. If necessary, a

separate compare instruction is used for comparisons with a register values. Function calls can be

made either with an unconditional branch (BSR) or an indirect jump (JSR). In fact, all indirect

jumps have the same ISA semantics; save a return address, PC + 4 to the output register and set

PC to the input register value. They only differ in branch prediction hints – JSR, as well as BSR,

gives the hardware a hint to push the return address onto a return stack (if the implementation has

that feature) while RET is used as a hint to pop the return stack for the next fetch address. There is

no conditional jump.

11 Following the Alpha ISA convention the term branch is used for a control-transfer instruction

whose target address is fixed. A register-indirect jump finds the target address by reading a specified register.

12 Conditional move instructions can be considered to have three inputs in certain implementations.

28

Table 2-2 Alpha ISA instruction formats

31 26 25 21 20 16 15 0

Opcode Ra Rb Di spl acement or Funct i on Code

(a) Memory Instruction Format

31 26 25 21 20 0

Opcode Ra Br anch Di spl acement

(b) Branch Instruction Format

31 26 25 21 20 16 15 13 12 11 5 4 0

Opcode Ra Rb 000 0 Funct i on Rc

(c) Integer Operate-Register Instruction Format

31 26 25 21 20 13 12 11 5 4 0

Opcode Ra Li t er al 1 Funct i on Rc

(d) Integer Operate-Literal Instruction Format

31 26 25 21 20 16 15 5 4 0

Opcode Ra Rb Funct i on Rc

(e) Floating-Point Operate Instruction Format

31 26 25 0

Opcode PALcode

(f) PALcode Instruction Format

Being such a fine-grain ISA, Alpha architecture does not allow much freedom in

implementing the ISA semantics. All registers have to be maintained as the architected state even

though many of them are simply artifacts of compilation from high-level language program

semantics.

2.3.2 Considerations for Dynamic Binary Translation

Designing an instruction set specifically for a hardware-software co-designed virtual

machine system requires certain unique considerations. Due to the dynamic binary translation

29

nature of the paradigm, the range of optimizations allowed is often limited; this is made even harder

when strict binary compatibility is required. On the other hand, co-design of special instructions and

hardware support mechanisms (including special registers) allows a new degree of design freedom.

2.3.2.1 Maintaining Precise Architected State

The precise trap recovery mechanism is a fundamental aspect of any co-designed VM

system because it must provide exactly the same trap behavior as the V-ISA semantics define.

Maintaining precise architected state is made relatively easy by the fact that the DBT system in the

thesis does not reschedule instructions; hence values are produced in the same order as the original

program. However, with an accumulator I-ISA this is not sufficient because some V-ISA GPR

values are held in accumulators and may be overwritten prior to a trap. One possible solution is to

add copy-accumulator-to-GPR instructions before instructions that overwrite an accumulator

holding a value that will be live at a potential trap location. This is a fairly expensive solution,

however, in terms of added instructions (as was shown in the early study [134]) and is not used in

the thesis.

An alternative to adding explicit copy instructions as just suggested is to embed GPR

updates into the I-ISA format. The resulting I-ISA format needs more bits to designate the result

GPRs, so the number of instruction types that can be accommodated with 16-bit format is

substantially reduced compared to the simple accumulator I-ISA format in the early study [133].

However, removal of copy-accumulator-to-GPR instructions, i.e., the decrease in the total number

of instructions, works to offset the increase in the average instruction length.

In the finalized ILDP ISA format, every instruction producing a V-ISA result specifies a

destination GPR to maintain architected state. Keeping the destination GPR identifier helps

implement a simple precise trap recovery mechanism without affecting performance much. In the

ILDP microarchitecture, a separate register file – off the critical path – is maintained solely to keep

30

the V-ISA GPR state for precise traps. Only the values needed for later computation, i.e.,

communication, are actually written to the “working” physical registers in PEs. This is possible

because the I-ISA format distinguishes destination register types (further explained in section 2.3.3).

2.3.2.2 Suppressing Code Expansion

Without special care, it is very easy for dynamically translated codes to have a larger

effective memory footprint than the original code. The ILDP I-ISA in the research was designed to

help suppress dynamic code size and instruction count expansion by using the following means:

· Stay as close as the V-ISA format: First and foremost, the ILDP I-ISA maintains the serial

nature of the V-ISA semantics, unlike VLIW-based I-ISAs which inevitably introduce

NOPs to fill the unused instruction slots. The ILDP I-ISA keeps one-to-one mapping for

most instructions. However, there are some cases where a V-ISA instruction has to be

converted into multiple I-ISA instructions. For example, when a source instruction has two

global input register values, one of the inputs has to be converted into an accumulator by

introducing an extra copy-GPR-to-accumulator instruction because the ILDP I-ISA

instruction can only have one global input register specifier. Similarly, a conditional move

instruction is decomposed into two ILDP I-ISA instructions.

· Provide a small number of instruction sizes: A variable-length instruction format

complicates the instruction boundary detection somewhat, but the predecoding stage, which

is employed anyway for identifying the possible control transfer points within an I-cache

line, can be used for this purpose as in recent x86 implementations [226]. After

experimenting with variety of alternatives, copy and NOP instructions along with four of

the most frequently executed memory instructions without address calculation were

assigned to 16-bit formats.

31

· Allow dynamic micro-operation cracking by hardware: In the early stage of the research,

all memory instructions with non-zero address offset values were decomposed into an

effective address calculation instruction and an actual memory access instruction

[133][134]. Later it became clear that the benefits of bypassing address calculation for the

single memory instruction were being offset by these extra effective address calculation

instructions. Instead, most memory instructions with non-zero offset values stay as single

instructions; they are kept as a single entity in most parts of the pipeline and are issued

twice by the issue FIFO – a dynamic cracking mechanism. This is in line with the recent

x86 implementations that try to keep internal instruction format at coarser-grain level as

much as possible to reduce pressure on key pipeline buffers [63][90].

· Compromise immediate and function field widths: In general, an ILDP I-ISA instruction

uses extra mode bits and 6-bit GPR identifiers so certain compromises in other bit-fields

are unavoidable. The biggest goal being limited instruction count expansion, care was taken

to maintain a one-to-one instruction mapping as much as possible. Except for the integer

operate immediate formats, the immediate fields are reduced to make room for this extra

information. For operate instructions, the function field and even the op-code encoding, to

some extent, are re-organized for this purpose while the immediate literal width is kept 8-bit

wide. If the immediate value in a memory or branch instruction exceeds the reduced size

limit, the binary translator tries to decompose the V-ISA instruction into multiple I-ISA

instructions first. If that is not possible, a trap-to-interpreter instruction is used as a final

safety net.

· Use specialized instructions or registers if necessary: As stated earlier, the co-design

paradigm combines specialized instructions and hardware support mechanisms. Most of the

specialized instructions in this research are control transfer related and will be explained

32

further in the following section and Chapter 5. One important point is that there is a tension

between the number of special instructions and the finite op-code space. Care was taken to

limit the number of specialized instructions. On the other hand, the general purpose register

identifier is expanded from 5 bits to 6 bits to accommodate the special registers only

available to the virtual machine monitor software layer. Of the 32 additional register

designators, only 8 registers are actually used; this limits the number of logical registers

which determines the minimum number of physical registers.

33

2.3.3 ILDP Instruction Formats

The ILDP instruction formats are shown in the following sections. Note the use of mode

bits; they are used to identify:

· If the instruction terminates a strand (end-of-strand)

· If the destination register value needs to be written to a working physical register (that is, if

Rd needs to be renamed)

· Which register values should be used as inputs to the ALU; sometimes used with

ext ensi on (that is, extended mode) bits

Head-of-strand information is implicitly encoded with either mode bits or the op-code itself.

For example, a copy (from an accumulator to a GPR) instruction always starts but can never end a

strand.

2.3.3.1 Operate Instruction Formats

A challenge with the operate instruction format is that there are many different

combinations of input operand value types – an accumulator, a GPR, and an immediate value.

Another complication is that many operate type instructions such as subtractions are not

commutative, i.e., the left-hand-side operand can not be swapped with the right-hand-side operand.

To accommodate these requirements, the 4-bit mode field and 2-bit ext ensi on field (for non-

immediate formats) are used. GPR op I mmedi at e type operation complicates the instruction

format design and hence, is not supported.

34

Table 2-3 Operate instruction formats

15 10 9 7 6 5 0

Opcode Acc M Rd

Mode[6] : f l oat i ng- poi nt ?
Al ways st ar t - of - st r and

(a) Copy Format

31 26 25 23 22 21 20 5 4 0

Opcode Acc
Mo
de I mmedi at e (Li t er al) Rd

Mode[22] : End- of - st r and?
Mode[21] : Save Rd?
I f Mode[22: 21] == 10, Rd += 32 (VMM r egi st er)
Cannot be st ar t - of - st r and

(b) Load Short Immediate Format (used for LDA/ LDAH)

31 26 25 23 22 19 18 17 16 11 10 6 5 0

Opcode Acc Mode Ext R Func Rd

(c) Integer/Floating-Point Operate Register Format

31 26 25 23 22 19 18 11 10 6 5 0

Opcode Acc Mode I mmedi at e
(Li t er al) Func Rd

Mode[22] : End- of - st r and?
Mode[21] : Save Rd?
Mode[20: 19] Ext [18: 17]
00: R1 op R2 00: R1 == R2
 St ar t - of - st r and 01: R2 == Rzer o
 10: R1 == Rzer o
 11: R1 == R2
01: Acc op R 11: i nval i d R, ot her wi se val i d R
10: R op Acc 11: i nval i d R, ot her wi se val i d R
11: Acc op I mm - - : used as I mmedi at e[18: 17]

(d) Integer Operate Immediate Format

35

2.3.3.2 Memory Instruction Formats

Ra and Rd represent the address and data registers, respectively. Note that depending the on

Mode[19] value, a long memory instruction can either generate an effective address calculation

instruction dynamically or not.

Table 2-4 Memory instruction formats

15 10 9 7 6 5 4 0

Opcode Acc Mo
de Rd

Mode[6] : End- of - st r and?
Mode[5] : Load: Save Rd?, St or e: Reser ved
Cannot be st ar t - of - st r and

(a) Short Memory Format

31 26 25 23 22 21 20 5 4 0

Opcode Acc
Mo
de I mmedi at e (Di spl acement) Ra

Mode[22] : Use Ra?
Mode[21] : Check al i gn?
Cannot be end- of - st r and
St ar t - of - st r and i f Mode[22] == 1

(b) Effective Address Calculation Format (same as Load Short Immediate Format)

31 26 25 23 22 19 18 13 12 6 5 0

Opcode Acc Mode Ra I mmedi at e
(Di spl acement) Rd

Mode[22] : End- of - st r and?
Mode[21] : Load: Save Rd?, St or e: Reser ved
Mode[20] : Use Ra?, ot her wi se use Acc
Mode[19] : Use Of f set ?

(c) Long Memory Format

36

2.3.3.3 Control Transfer Instruction Formats

Table 2-5 Control transfer instruction formats

31 26 25 23 22 21 20 0

Opcode Acc 10 I mmedi at e (Di spl acement)

Cannot be st ar t - of - st r and
Al ways end- of - st r and

(a) Conditional Branch Format

31 26 25 21 20 0

Opcode Rsave I mmedi at e (Di spl acement)

Al ways st ar t - of - st r and
Al ways end- of - st r and
Rsave += 32 (VMM r egi st er)

(b) Unconditional Branch Format

31 26 25 23 22 19 18 17 16 11 10 6 5 0

Opcode Acc 1110 00 Rdest Func Rsave

Mode[22] : 1 (End- of - st r and)
Mode[21] : 1 (Save PC+4 t o Rsave)
Mode[20: 19] : 10 (Use bot h Rdest and Acc)

 (c) Conditional Jump Format (same as Register Operate Format)

31 26 25 23 22 19 18 17 16 11 10 6 5 0

Opcode Acc Mode 11 Rdest Func Rsave

Mode[22] : 1 (End- of - st r and)
Mode[21] : 1 (Save Rsave)
Mode[20: 19]
00: R1 op R2 (R1 == R2; St ar t - of - st r and)
10: R op Acc (i nval i d R)
ot her wi se: r eser ved

(d) Predicted Jump Format (same as Register Operate Format)

37

There are several things to note about control transfer instruction formats:

· The displacement field of a conditional branch contains the difference between the

instruction’s PC + 4 and the target translation address, one-bit right-shifted.

· Unconditional branches are used to close a translation unit as in Figure 2-4(d). If the next

translation exists at the time of translation, the displacement is set up properly according to

the target address and Rzer o (a constant zero register) is used for Rsave. If not, the

difference between the instruction’s PC + 4 and the starting address of the dispatch table

(a hash table that maps source binary program counter values to translated binary program

counter values) lookup code is used for the displacement. When this place-holder

instruction is executed, the instruction’s PC + 4 is saved to a VMM register (Rsave +

32) and control is transferred to the dispatch table lookup code. If the target is found by the

table lookup, the saved address in the VMM register is used to identify the place-holder

instruction that needs to be replaced with an unconditional branch instruction with a proper

displacement value. This replacement action is often called a “patch” in dynamic optimizers

and binary translators. Note that V-ISA unconditional branch instructions are either

eliminated (for BR in the Alpha ISA) or converted to load-immediate instructions (for BSR)

due to the code re-layout effect of the superblock-based translation. The slight change in the

unconditional branch instruction semantics (save PC + 4 t o a special VMM register) is

intended to provide a fast, single-instruction mechanism for branching to the dispatch table

lookup code.13

13 HP Dynamo, which does not have the luxury of specialized instruction support, uses a four

instruction “stub” code [14] for each branch whose target was not found at translation time. A place-holder

38

· A conditional jump is generated as a place-holder for a V-ISA conditional branch whose

branch target was not found in the translation cache at the time of the translation. By

convention, Rdest is set to a special VMM register that contains the starting address of the

dispatch table lookup code. The instruction’s PC + 4 is saved to Rsave; If the translated

target address is found by the lookup, the Rsave value is used to identify the conditional

jump for patching. The Func field contains an abbreviated form of the original V-ISA

instruction’s op-code and is used to generate the Opcode field of the replacement

conditional branch instruction for the place-holder conditional jump. As with the slight

change in the unconditional branch semantics, the introduction of a conditional jump

instruction is intended to provide a fast, single-instruction mechanism for branching to the

dispatch table lookup code.

· The semantics of the ILDP predicted jump instruction are slightly different from the

conventional definition – a conventional jump always jumps to the target. Here, if the jump

target address prediction is not correct, the next sequential instruction is executed. The DBT

system always generates a backup unconditional branch to a separate dispatch lookup code

for indirect jumps, right after a predicted jump instruction. The predicted jump instruction,

and related hardware support mechanisms are further discussed in section 5.2.

instruction branches to the stub code; control is finally transferred to the dispatch lookup code using the stub

as a springboard.

39

2.3.3.4 Load Long Immediate Formats

Table 2-6 Load long immediate formats

47 42 41 38 37 32 31 0

Op F Rs I mmedi at e (Si de t abl e
addr ess)

(a) Load Address Instruction

63 58 57 54 53 48 47 0

Op F Rs I mmedi at e (Sour ce r et ur n PC)

(b) Save Return Address Instruction

95 90 89 86 85 80 79 32 31 0

Op F Rs I mmedi at e (Sour ce r et ur n PC) I mm. (t r ansl at ed
r et ur n PC)

(c) Push Dual-address Return Stack Instruction

A load long immediate instruction can have three different combinations of a 48-bit Alpha

V-ISA address and a 32-bit ILDP I-ISA address. The first type, a load address instruction, is used to

keep track of a side table of potentially excepting instructions (PEIs) associated with the translation.

Trap recovery using side tables is described in section 4.2.1. The remaining two types are used for

translating a function call instruction. A source function call instruction is decomposed into two

parts: (1) to save the return address, (2) to branch or jump to the target address. Load long

immediate instructions are used to save the V-ISA return address (PC + 4 of a V-ISA function call

instruction) into a register. Pushing a return stack using these two instruction types is described in

section 5.2.3.

40

It is true that this operation can be implemented using a sequence of multiple load short

immediate instructions (equivalent to LDA/ LDAH in the Alpha ISA) but a typical general-purpose

load (short) immediate instruction does not contain a hint to push the return stack.

2.4 Related Work

2.4.1 Execution Paradigms Based on Register Hierarchy

Franklin and Sohi studied register value usage locality in [86]. Multiscalar [220] and Trace

processors [197][233] exploit this locality by separating the live-in and live-out values (assigned to

global registers) from the locally dead values (assigned to local registers contained in distributed

clusters) inside a task or trace (an collection of multiple basic blocks). Although the research here

shares some objectives (such as reducing the complexity of key pipeline subsystems) with those

previous studies, there are many important differences. Most importantly, both Multiscalar and

Trace Processors pursue the parallelism between tasks/traces that span multiple basic blocks. As

such, global and local values are separated based on their liveness within those task/trace

boundaries. In contrast, the instruction set presented here distinguishes register values based on their

degree of use as well as their lifetimes. This leads to the identification of strands (of several

instructions) that can run in parallel. In general, this thesis research does not pursue ILP as

aggressively as in those paradigms. Therefore, hardware-intensive and complex-to-verify

speculation techniques are not used in the thesis, other than the most essential ones such as branch

prediction.

There has been plethora of proposals on program execution models based on the idea of

dependence-based instruction steering for cluster microarchitectures. Palacharla, Jouppi, and

Smith’s work [175] suggested dispatch-stage instruction steering to multiple issue FIFO buffers to

41

reduce issue window complexity. Although the thesis shares dependence-based dispatch-stage

steering idea with their work, the objective here is to reduce the complexity of all key subsystems in

the pipeline by starting afresh with a new (but not radically different) instruction format specifically

designed to fit modern technology constraints. In the Multicluster model [79], the global registers

that are replicated in the distributed clusters are statically selected based on a heuristic. The stack

and global pointers in the compiler calling convention belong to the global registers. All other

registers, i.e., local registers are statically partitioned (e.g., the even-numbered registers in a cluster

and the odd-numbered in another). If not all registers of an instruction are in the same cluster, a

master copy (for actual computation) and a slave copy (for communicating a required register value

to the master cluster) of the instruction are dispatched to each cluster. It is the static nature of their

register partitioning that practically mandates a specialized register allocation algorithm in a

compiler. The PEWS model [130] can be thought as a data-dependence-driven version of the

Multiscalar paradigm, combined with a trace cache. A trace pre-processing unit identifies intra-trace

register dependences. Live-in and live-out registers are assigned a register queue (containing

multiple versions of an architected register) entry; locally dead values are not assigned an entry.

However, the register queue has to provide enough versioning entries for all architected registers

the ISA defines – a newly introduced complexity-critical logic. Complex memory versioning

techniques are also used to pursue aggressive ILP.

2.4.2 Related Instruction Set Ideas

Lozano and Gao [150] tried to reduce register pressure by allocating short-lived register

values to architecturally visible reservation stations. Recent studies by Butts and Sohi observed

similar program characteristics as in this chapter and suggested microarchitectural techniques to

dynamically eliminate “useless” instructions [36] and to predict value communication patterns [37].

42

In the work of Martin, Roth, and Fischer [153], the end of a register value’s lifetime is explicitly

encoded in instructions. In contrast, the ISA presented here encodes the end of the dependence’s

lifetime in instructions.

The instruction set in the research is very much inspired by the S. Cray scalar ISAs (just as

the 1980s microprocessor RISCs were). However, in a sense, the accumulator-oriented instruction

set in the research follows the Cray ISAs more closely than the microprocessor-based RISCs. In

particular, the ISA in the thesis uses hierarchical register files with a very small number of registers

at the top of the hierarchy, variable length instructions, and in-order instruction issue (albeit within

individual processing elements). Even though the technology was quite different when Cray’s

designs were undertaken, the issues of interconnect delays, power consumption, and design

complexity were of critical importance, just as they are today, and will continue to be in the future.

In effect, the accumulator-oriented ILDP ISA is a cross product of two Cray-2 designs. One is an

abandoned Cray-2 design [53] that had a single renamed accumulator and a general register file of

512 elements. The completed Cray-2 design [54] had 8 integer registers, 64 lower level registers,

and used conventional three-operand instructions.

Other ISAs that explicitly model inter-instruction communications, such as the Grid

Processor Architecture [171] or RAW [146][234], can be considered as different ways of

implementing ILDP. Those systems are primarily designed to maximize microarchitecture

scalability for high ILP applications such as multi-media processing. As such, their ISA semantics

are radically different from conventional ISAs. To facilitate efficient dynamic binary translation, the

ILDP instruction set in this research is rather evolutionary in comparison.

43

Chapter 3 ILDP Microarchitecture

The strand per accumulator concept of the ILDP ISA is reflected in the moderately

distributed ILDP microarchitecture. The microarchitecture consists of a pipelined front-end of

modest width that feed a number of distributed processing elements (PEs). Each PE contains an

instruction issue FIFO, a local accumulator and local copy of register file, and other functional units.

Taken collectively, the multiple sequential PEs implement a form of multiple-issue out-of-order

instruction processing.

This chapter starts with the overview of the ILDP microarchitecture. A unique combination

of a physical register file based register renaming model and a capture-before-issue operand capture

model is described, and then compared with the conventional register renaming and operand capture

models used in typical superscalar designs. This is followed by detailed descriptions of key pipeline

subsystems and discussion of several L1 D-cache organization options. Related work on existing

complexity-effective processor designs and research proposals complete the chapter.

3.1 ILDP Microarchitecture Overview

3.1.1 Overall ILDP Pipeline

Figure 3-1 shows a high-level block diagram of the ILDP pipeline. The boxes represent

pipeline stages. The arrows represent instructions flowing through the pipeline; think of these lines

as pipeline “ lanes” . The thick vertical lines represent the pipeline buffers where instructions can be

stalled waiting for the resources to be available. Various replay and cache miss paths are shown

with dotted lines.

44

Figure 3-1 High-level block diagram of the ILDP pipeline

On an I-cache miss, translated ILDP instructions are fetched from the translation cache in

hidden memory to the I-cache. The average number of instructions fetched in a cycle will be higher

than with conventional processors due to the code re-layout that is a byproduct of superblock-based

binary translation (superblocks and associated code re-layout effects are described in section 4.1.2).

Predecoded instruction boundaries are used to break instruction words into individual instructions in

the align stage. Instruction formats are recognized using the opcode field in the decode stage and

used to further extract the variable-width mode field. The renaming stage renames only GPRs. The

Fetch

Align

Branch
Predict

Branch
Addr
Calc

Rename

Register
Read/
Issue

Execute

D-cache
Access

Load
Miss

Queue

(b) Branch Misprediction Replay

(c) Mini Replay

(d) Load-Store Ordering Replay

L2 cache
Access

D$
Hit

D$ Miss

L2$
Hit

MSHR

Memory
Access

L2$ Miss

Retire

Write
Buffer

Fetch
Miss

Queue

I$
Miss

Pre-

decode

(a) Fetch Redirection for
Predicted Taken
Branch

Dispatched to
Other PEs

Steer

Dispatch

Register
Write

Memory
Addr
Calc

Decode

45

accumulators are not renamed in this stage; they undergo a simpler type of renaming as a byproduct

of steering to the sequential PEs.

The steering logic maps strands of GPR-renamed instructions to one of the FIFO issue

buffers, depending on the accumulator to be used. Any instruction that has an accumulator as an

output, but not as an input, is steered to the first empty FIFO; consequently, the logical accumulator

is renamed to the physical accumulator. Any later instruction that uses the same accumulator as an

input is steered to the same FIFO. Whenever all the FIFOs are non-empty and a new accumulator is

called for, the steering process uses a heuristic to choose a FIFO to use next. Once their accumulator

numbers are converted to corresponding FIFO numbers, instructions are dispatched to their

distributed back-end FIFOs. Each FIFO feeds a sequential processing element with its own internal

physical accumulator.

The instructions in a FIFO form a dependence chain, and therefore issue and execute

sequentially. When the GPR value of the FIFO-head instruction is available, the instruction issues

and begins execution. The functional units can be single or multi-cycle, but in general do not

require pipelining. Because accumulator values stay within the same PE, they can be bypassed

without additional delay. However, GPRs are kept coherent and values produced in one PE must be

communicated to the others. This will take additional clock cycles. The network for communicating

GPR values can be a bus, a ring, or point-to-point. Multiple bus interconnects are used in the

evaluation. The bandwidth requirements are modest and, as will be shown later, performance is

relatively insensitive to this latency.

L1 D-cache can be organized in several different ways based on the required degree of

distribution. For highly clustered configurations, L1 D-cache is replicated across the PEs. Less

aggressive configurations can choose to share cache read ports among multiple FIFOs. Combined

46

store data values from the write buffer (WB), as well as line fill data from the L2 cache, are

broadcast to the replicated D-caches to keep their contents coherent.

Memory data can also be forwarded from the store queue (STQ) to load instructions. For

fast lookup, the STQ is replicated for each L1 D-cache read port. Every load instruction consults the

STQ after issue for possible forwarding or conflicts with preceding stores. STQ entries as well as

other ordering enforcement buffer entries are allocated prior to the out-of-order dispatch stage and

use separate paths from the main dispatch lanes. Every issued store instruction checks the load

queue (LDQ) for possible conflicts with younger load instructions that were issued before the store

instruction. The LDQ is relatively insensitive to the latency and is shared by the PEs. A simple PC-

base memory dependence predictor is used to limit the number of costly memory ordering replays.

Regarding the L2 cache and the bus interface, there is no fundamental difference between

the ILDP pipeline and conventional out-of-order superscalar pipelines. Multiple requests arbitrate

for the unified, single-ported, write-back, write-allocate L2 cache. Normally, the load miss queue

(LMQ) is given the highest priority because most often it is the missed loads that are on a program’s

critical path. The fetch miss queue (FMQ) is assigned the second highest priority. A combining

write buffer15 holds retired stores to the write-through, no-write-allocate L1 D-cache until a preset

“watermark” threshold is reached. To avoid long starvation, WB watermarks and watchdog

timeouts are given priority over an FMQ timeout, which in return is given a higher priority than

LMQ requests. The arbiter runs at the L2 cache’s operating frequency, usually a fraction of the core

pipeline’s frequency.

15 Use of a combining WB makes the memory ordering model of the ILDP pipeline the same as or

weaker than Processor Consistency model [108]. A snooping policy on the LDQ will further determine the

ordering model.

47

A missed request for the L2 cache is assigned a combining miss status history register

(MSHR) entry, as well as a possible replacement copy-back request. The memory bus interface runs

at the fraction of the L2 cache frequency.

3.1.2 Speculative Instruction Execution and Replays

Modern high-performance processors invariably contain a certain number of speculative

execution mechanisms. This is mostly for achieving higher performance, but some speculation

mechanisms also help ease the design of the pipeline, especially the data cache access mechanisms

[242]. The ILDP pipeline contains a number of speculation loops. Some of the more important

speculation loops in Figure 3-1 are explained below.

(a) Fetch redirection for predicted taken branches: Even if a control transfer instruction is

correctly predicted, it still takes multiple cycles to redirect fetch. Combined with fetch-

width-unaligned addresses of branch instructions and their targets, this reduces the effective

fetch bandwidth16.

(b) Branch misprediction replay: The ILDP pipeline redirects fetch as soon as a mispredicted

branch or jump is found in the execute stage. Then, register renaming is blocked until the

16 Some of the techniques used by modern high performance processor designs with non-trivial

pipeline depth to reduce the number of fetch bubble cycles include: (1) predecode I-cache lines with control

transfer and instruction boundary information, (2) limit I-cache associativity and size to keep its pipelining

depth to a moderate level, (3) use fast but inevitably less accurate next fetch address predictors such as a line

predictor [131]. In general, the impact of the fetch bubble cycles is more critical for variable-length ISA

processors [64][98].

48

mispredicted instruction retires and hence, the machine state is up-to-date.17 The distributed

nature of the ILDP pipeline leads to out-of-order resolution of control transfer decisions.

(c) Mini replay: A mini replay causes previously issued instructions to reappear in the issue

buffer and issue again after a preset number of cycles, but do not flush the entire pipeline.

Although mini replays are less costly compared with full replays, they still affect

performance and more importantly, waste energy. The ILDP pipeline can generate a mini

replay in the following scenarios: (1) when a load instruction hits an older, address-

matching store instruction in the STQ but the store instruction’s data is not yet available, (2)

when a load address conflicts with a L1 D-cache line fill operation, (3) when the LMQ

cannot accept an incoming missed load instruction due to conflict or capacity limit.

(d) Load-store order ing replay: In the ILDP microarchitecture in the thesis, load instructions

are allowed to issue speculatively without waiting for all older store addresses to be

resolved. In other words, memory dependences are speculated while register dependences

are strictly enforced. If it is found later that a younger load instruction was issued before a

matching older store instruction, all instructions including the offending load instruction are

flushed from the pipeline and fetch is redirected to the offending load instruction’s address.

Both LDQ and STQ can generate this type of replay: (1) when a load finds an overlapping

store in the STQ that cannot forward data due to misalignment of addresses or data size, (2)

17 Some older designs take snapshot of the machine state at certain boundaries, e.g., conditional

branches for faster recovery [241]. This technique is less popular for current-generation designs with non-

trivial pipeline depth due the following reasons: (1) as the machine depth increases, the required snapshot size

also increases [7], (2) the time between branch resolution and retirement can be overlapped with redirection

time up to the register rename stage.

49

when a store finds a matching, younger load in the LDQ that has already issued. To limit

the number of these costly replays, a simple dependence predictor that records PCs of the

offending loads is used [131][165]. This predictor entry is cleared after a preset number of

cycles.

Note that prefetches (load instructions into a constant zero register) are properly

recognized; when a prefetch leads to a replay condition, it is simply marked complete and replay is

not performed.

3.1.3 ILDP Operand Capture Model: A Unique Middle Ground

Register renaming is a popular microarchitecture technique that is used to remove false

dependences between instructions, thereby allowing parallel execution of those instructions. There

are two common methods for register renaming used in typical superscalar designs [215]. In the

first, a physical register file, typically larger than the logical register file, is used. A rename table is

used to map a physical register with the current instance of a logical register. Typically, a physical

register that was allocated for an instruction’s result value is freed when the next instruction that

writes to the same logical register is retired from the reorder buffer.

The second model uses the reorder buffer (ROB) for renaming. In this model, typically a

register file that is the same size as the logical register file is used to keep the latest committed

register values. In addition, when an instruction completes execution, its result value is written to its

reorder buffer entry. Here a register value can come from the register file (if the value was retired),

a ROB entry (if the value was computed but the producer instruction is still in-flight), or the bypass

network. A future file [211] style renaming mechanism used in AMD Athlon [64] and Opteron

[129] processors can be regarded as a form of reorder buffer based renaming model in a broad sense.

Here when an instruction is dispatched, it first checks the future file. If the value is not available at

50

the time, the instruction is given a tag of the producer instruction instead. Although instructions do

not check the ROB per se, they do monitor the tags on the result bypass network constantly and

receive the in-flight values from the bypass network.

Theoretically, these two register renaming models can be combined with any of the two

register operand value capture timings: before or after the instruction issue. In reality, designs that

employ the physical register model tend to capture operand values after instruction issue. On the

other hand, designs that use the reorder buffer for renaming tend to capture values before instruction

issue. Figure 3-2 shows a classification of register operand capture models.

Figure 3-2 Spectrum of register operand capture models

There are good reasons behind these tendencies. For the designs that capture register values

after issue, having a single source of operand values (e.g., a physical register file with complete

internal bypasses) in the paths to the functional units makes the physical design of the issue lanes

easier.

Physical register file

Where are in-flight register values kept?

Reorder buffer

When are
register

values
captured?

Before
instruction

issue

After
instruction

issue

MIPS R10000 [241], DEC
Alpha 21264 [131], Intel
Pentium 4 [109], IBM

POWER4/PowerPC 970 [228],
the baseline superscalar pipeline

Intel Pentium Pro/II/III/M
[90][98], AMD Athlon/Opteron

[64][129]
ILDP pipeline in the thesis

No previous design known
to the thesis research

51

Figure 3-3 Shadow cycles in load latency speculation

A problem with this model is that often the instructions that are dependent on a load

instruction are issued before confirming the availability of their operands. If the load misses in the

L1 D-cache, some instructions in the “shadow” cycles, shown in Figure 3-3, capture wrong data.

These instructions need to be pulled back and mini-replayed later. It is not impossible to design a

Register
Read

Issue

Address
Calculation

D-cache
Access 1

D-cache
Access 2

Register
Read

Issue

Execute

Register
Write

Retire

Register
Read

Issue

Execute

Register
Write

Retire

Issue

Register
Read

Pulled back

to IQ

Issue

to IQ

Pulled back

Miss

Register
Read 2

Issue

Address
Calculation

D-cache
Access 1

D-cache
Access 2

Register
Read 2

Register
Read 1

Execute

Register
Write

Retire

Register
Read 2

Register
Read 1

Execute

Register
Write

Retire

Register
Read 1

Register
Read 2

Pulled back

Register
Read 1

to IQ

Pulled back

Miss

Register
Read 1

Issue

Issue

Issue

Issue

Pulled back

Issue

(a) Single-cycle register read: two-cycle shadow

(b) Two-cycle register read: three-cycle shadow

to IQ

to IQ

52

physical register file based machine that issues instructions non-speculatively even for those

dependent on loads but doing so effectively increases the load-to-use latency.

The designs that capture register values before issue – sometimes called data capture

machines [31] – do not suffer this type of mini replay. In return, this type of machine needs to look

for data in multiple places; first the designated register storage (one time lookup), then the bypass

network (continuous monitoring). Therefore it doesn’ t make good sense to use the fairly big

physical register file before dispatching instructions to the reservation stations. The content-

addressable-memory (CAM) style reorder buffer lookup was justifiable in some older designs if the

ROB size was reasonably small [98]; typically the ROB is physically located between the register

renamer and the reservation stations. However, the associative nature of CAM lookup puts a

scalability limit on the ROB in this model. On the other hand, a future file is smaller and faster than

a ROB but only a few percentages of the instructions can pick up their values from the future file.

Therefore the design tends to rely on the bypass network heavily [64]. This leads to a very tight

integration of the reservation stations and the bypass network. For example, if instruction dispatch

takes two cycles, the reservation station needs extra wires to cover the newly introduced

intermediate stage.

Table 3-1summarizes the two models as well as the unique ILDP model where instructions

capture register operand values from the physical register file (or the accumulator) before issuing

from a FIFO. From the table, it can be seen that the ILDP operand capture model combines the best

of both models. The ILDP model does not require load latency speculation and a large fan-out

bypass network.

53

Table 3-1 Compar ison of register renaming/operand capture models

Physical register/capture

after issue model
Reorder buffer/capture before

issue model

ILDP model (physical
register/capture before

issue model)

Renaming Physical register Reorder buffer Physical register, steering

Operand value
sources

Physical register file
Architected register, reorder
buffer, bypass network (or
future file, bypass network)

Physical register file,
accumulator

Operand
lookup

RAM RAM, CAM RAM

Operand
capture timing

After issue Before issue Before issue

Load latency
speculation

Yes No No

Advantage

Physical register file
provides a single unified
source of register values,
RAM access

Lack of shadow cycles allows
simpler mini-replay
implementation and reduction
of total mini replays

No shadow cycle,
simplified operand
capture

Disadvantage

Shadow cycle complicates
mini-replay mechanism;
the number of shadow
cycles increases with the
physical register file
access cycles

Multiple places for operand
lookup complicate physical
design; CAM lookup puts a
scalability limit

Both physical register file
and architected register
file exist

54

3.2 ILDP Pipeline Subsystems

3.2.1 Front-end Pipeline

3.2.1.1 Instruction Fetch and Branch Prediction

As will be shown in Chapter 5, basic blocks are automatically re-laid out in the most

frequently executed order during dynamic binary translation. As a result, the number of taken

branches is reduced. For this type of fetch stream, a wider fetch mechanism coupled with a

(potentially slower) multiple-prediction branch predictor works better than a combination of a

narrower fetch and a fast predictor. This relaxes the timing requirements of the fetch subsystem

(loop (a) in Figure 3-1). There are small differences, mostly from the differences in the control

transfer instruction semantics. For example, even when a return stack is popped for a return

instruction, a branch (direction) predictor is also probed because a return is now conditional in the

translated ILDP code. More details on the control transfer mechanisms are provided in section 5.2.

Multiple instruction sizes in the ILDP ISA do complicate the align stage. Possible

instruction boundaries are now every two bytes, in contrast to every four bytes in traditional RISC

ISAs. To help reduce the complexity of the align stage, instruction boundaries are detected when the

instructions are predecoded for branch hints before being put into the I-cache [226]. The load long

immediate instructions that are larger than four bytes can only be aligned as the first instruction in a

given cycle. This limit helps to reduce the complexity of multiplexed alignment network.

3.2.1.2 Instruction Decoding and GPR Renaming

Once instructions are properly aligned in the fetch buffer, the rest of the front-end pipeline

up to the renaming stage remains largely the same as conventional superscalar designs. One

55

possible complication (compared to the simple Alpha ISA format) is the variable length mode bit

field (plus the extended mode bits for integer operate type instructions). These bit fields carry

lower-level information such as end-of-strand information and the types of the input register

operands. The ILDP ISA format was designed in such a way that this sub-decoding can be

performed at the same time when the GPRs are renamed.

The register rename bandwidth is reduced because the ILDP ISA uses only one input and

one output GPR. Two read ports (one for the input GPR, another for the old mapping of the output

GPR) and one write port (for the output GPR) to the rename table are assigned to each rename lane.

For a 4-way front-end, the ILDP pipeline requires total of 8 read ports and 4 write ports while a

comparable superscalar pipeline requires 12 read ports (two input GPRs per instruction) and 4 write

ports.

3.2.1.3 Instruction Order ing Setup and Accumulator Renaming

Once the GPR dependences are set up by the physical register numbers, a reorder buffer

entry is assigned to each renamed instruction as in conventional out-of-order processors. Other

ordering maintenance buffers such as the register scoreboards and the store queue, however, are

treated somewhat differently because they are located in the pipeline back-end. Furthermore, these

replicated buffer contents must be kept coherent. Note that the instruction dispatch process

(explained in the next section) is a form of out-of-order processing; a logically younger instruction

can be dispatched to its FIFO before an older instruction can be dispatched to a different FIFO. For

this reason, ordering information needs to be sent to the back-end while instructions are still kept in

order (before the dispatch stage). This requires separate paths from the dispatch lanes.

Although mapping of the accumulator of an instruction to a physical accumulator can be

performed as soon as the accumulator identifier is read, the actual renaming is done in the last in-

order pipe stage before the dispatch stage. This is to keep the FIFO occupancy information (sent

56

from the back-end pipeline) as current as possible. As a result, accumulator renaming is done in the

same cycle as the ordering setup process.

Instructions access the accumulator rename table in much the same way as the GPR

renaming. Unlike GPR renaming, however, old mapping information is not needed because the end-

of-strand information is explicitly marked within the instruction. Therefore an ILDP instruction

needs only one read port and a write port to the accumulator rename table.

For those instructions that are start-of-strand (identified in the decode process), a new FIFO

number should be assigned. A simple heuristic is used; if there is a free FIFO available, the

accumulator is mapped to the FIFO. If not, the first FIFO with a dead strand that is not stalled by a

missed load is assigned. If no such FIFO is available, accumulator renaming is stalled. A potentially

better heuristic would be to give priority to the unblocked FIFO among all FIFOs with a dead strand

but that would increase the complexity of the accumulator renamer. Coupled with the end-of-strand

update (freeing a FIFO), the multiple FIFO assignments form a priority encoder chain between the

accumulator-renamed instructions. This is potentially one of the most complexity critical parts of

the pipeline. However, the number of instructions under consideration is fairly small (four in the

evaluation) compared to the typical size (about 8 to 12) of the select logic, a key priority encoder

chain in the conventional out-of-order issue logic.

3.2.1.4 Instruction Dispatch

As with the conventional out-of-order superscalar processors, the selectors (sometimes

called pickers or functional unit ports) representing the execution resources “select” the matching

instructions. In the ILDP microarchitecture, a selector represents an issue FIFO. A key difference is

that the ILDP dispatch logic does not involve the “wakeup” phase in the conventional out-of-order

issue logic [175] because the dispatch logic in the ILDP pipeline works only on the static FIFO

numbers, and hence does not use the dynamically updated “ ready” bits. In a sense, the select phase

57

of the traditional out-of-order issue logic is performed separately by the dispatch stage in the ILDP

pipeline while the wakeup phase is handled by a simple combination of the replicated physical

register file and the accumulator in a PE. Table 3-2 summarizes the differences between the ILDP

dispatch logic and the traditional out-of-order issue logic.

Table 3-2 Compar ison of ILDP dispatch logic and out-of-order issue logic

 Out-of-order issue logic ILDP dispatch logic

Selector represents Functional unit Issue FIFO

Selection criteria Select matching ready instructions
Select instructions with the matching
FIFO number

Function Select plus wakeup Only select

Bandwidth functional unit bandwidth Dispatch lane width

Note that in a typical out-of-order issue logic, the bandwidth of the selection logic is fairly

low, typically one for each functional unit. On the other hand, a FIFO in the ILDP pipeline can

accept as many instructions as the dispatch lane width allows. For this type of selector, a logic style

that scales well with multiple selections is preferred. Here circuit speed is less important due to the

omission of the wakeup phase. A good fit is multiple ring-connected “propagate” style selectors

[106]. Figure 3-4 shows the basic idea and a sample implementation using pre-charged tri-state

buffers. Note that the total latency of the selector does not increase with the number of entries that

can be selected in a cycle.

58

Figure 3-4 Scalable dispatch logic for the ILDP pipeline

3.2.2 Processing Element

Figure 3-5 shows the internals of a PE with a copy of the fully replicated L1 D-cache. As

dependent instructions issue in order, the circuit design complexity is maintained at the level of a

single-issue, in-order pipeline. Note the simplicity of the internal single-cycle bypass. The

replicated GPR has only one read port. The number of write ports is determined by the desired

bandwidth of the global communication network.

Head
pointer

Acc 1

Acc 1

Acc 1 Grant 0

Grant 1

(a) concept

Precharge

Clock

match[i]
is_head[i]

alive[i-1]

alive[i]

grant[i] = !alive[i-1] && alive [i]

(b) a sample implementation using tri-state buffers

59

Figure 3-5 Processing element internals

The instruction at the head of the FIFO reads its GPR value (if available), and moves into

the issue register (IR). If the GPR value is not available, the instruction waits in the IR until the

value becomes available. Hence, the IR is like a single reservation station with a single data value

entry. The three registers A, B, and MA implement a physical accumulator. A single physical

accumulator is used for both integer and floating-point operand types. The computation results are

written to the accumulator and also put into an internal buffer that arbitrates for the bypass network

resources. If the number of entries in the buffer reaches a predefined high water mark, back pressure

is sent to the dispatch stage to block further dispatches to the FIFO.

Note that the data cache is directly fed by the accumulator (the MA register in Figure 3-5)

Therefore, the effective load-to-use latency of those V-ISA load instructions with zero offset is

A
ALU

L1
D$

Memory
ordering
network

Global
communication

network

Internal bypass

B

M
A

Inst. FIFO

immediate

GPR

IR control

STQ

Addr
check

Stores

to Reorder
buffer

Steered
instructions

Addr
gen

60

reduced by a cycle. For those V-ISA loads that do need to calculate the address, there are two

possibilities: (1) a separate address calculation instruction is created by the dynamic binary

translator, (2) one of the ILDP instruction’s mode bits informs the issue hardware to generate an

address calculation micro-instruction dynamically. Due to the nature of the operand capture timing,

load hit/miss speculation is not used at all.

In general, the functional units within a PE do not require pipelining. This will lead to

simpler control logic within the PE and lower latencies for multi-cycle functional units. On the

other hand, overlap between two adjacent strands is allowed in the PE. For example, if the last

instruction in a strand is a load then the next strand can start issue without waiting for the load to

finish. Otherwise, if the load misses in the data cache, it can block the issue of independent

instructions in the next strand for an indefinite number of cycles. In any case, register dependences

are correctly enforced through the coherent GPRs.

3.2.3 Data Cache

3.2.3.1 L1 D-cache Organization Options

Increasing the number of ports to an L1 D-cache is often very difficult [238]. Typically,

conventional superscalar designs use either a fast L1 D-cache with a read port and a write port [108]

or a slower L1 D-cache with two read ports and a write port [228]. Replicating the data cache [72]

as in Figure 3-5 provides a third option: a combination of fast access time and multiple ports.

However, fully replicating the data cache is a more expensive solution in terms of the transistor

budget.

Other researches suggested dynamic partitioning as a way to provide a fast, multi-ported L1

D-cache without fully replicating the cache contents. In these proposals, replication is either

completely prohibited [189] or allowed to some extent [190]. A key requirement is that load

61

instructions are steered to a data cache partition based on the calculated data address. Applying

these ideas to the already distributed ILDP pipeline will result in another steering stage and hence,

the speed advantage of the partitioned cache will probably be lost. In other words, if partitioning of

the L1 D-cache is important, the overall microarchitecture should be built around the memory

dependences, not as in the ILDP microarchitecture that was built around the register dependences.

Instead, more traditional cache sharing schemes can be used if the transistor budget (and

static power consumption) is a concern. Figure 3-6 shows some of the possible data cache

configurations. The last configuration, Figure 3-6(c), is used in the evaluation.

Figure 3-6 L1 D-cache organizations

(c) Four FIFOs sharing a dual-ported D$.

FIFO 0

L1
D$ 0

WB, line fill

Cluster 0

FIFO 1

L1
D$ 1

Cluster 1

FIFO 2

L1
D$ 2

Cluster 2

FIFO 3

L1
D$ 3

Cluster 3

FIFO 0

L1 D$ 0

WB, line fill

Cluster 0

FIFO 1 FIFO 2

Cluster 1

FIFO 3

L1 D$ 1

FIFO 0

WB, line fill

Cluster 0

FIFO 1 FIFO 2 FIFO 3

(a) Fully-replicated, single-ported D$ (b) Two FIFOs sharing a dual-ported D$

L1 D$ 0

FIFO 4

Cluster 1

FIFO 5 FIFO 6 FIFO 7

L1 D$ 1

62

3.2.3.2 Dynamic Memory Disambiguation

The distributed nature of the ILDP pipeline requires a distributed disambiguation solution.

Unlike register dependences which are strictly enforced by the coherent copies of the physical

register file, memory dependences are speculated in the ILDP microarchitecture. It will be shown in

section 7.2 that the performance benefit of memory dependence speculation is substantial. Memory

instructions are issued speculatively without waiting for all older memory instruction addresses are

resolved, and then check the store and load queues later. If an ordering violation is found, the

memory queues generate an ordering replay. A simple PC-based dependence predictor [165] is used

to limit the number of ordering replays. The latency-critical store queue is replicated for each L1 D-

cache read port while the less performance-critical load queue, used for detecting both load-to-load

and store-to-load ordering violations, is shared by the multiple PEs.

Each replicated STQ allocates a store queue entry for each store request sent from the

steering stage. One solution is to communicate the calculated store address to the replicated store

queues over the memory ordering network. A possibly higher performance alternative would let

each copy of the STQ perform store address calculation independently using an extra register read

port and an address calculator (shown in grey in Figure 3-5). However this option mandates GPR

assignment for the address register and hence, complicates the instruction format design and the

ILDP instruction generator in the dynamic binary translator. Therefore, the first option – simple

replicated STQs connected with a separate memory ordering network – is used in the thesis. A small

number of shared busses are used in the evaluation.

63

3.3 Related Work

3.3.1 Complexity-Effective Superscalar Processor Designs

The ZS-1 [213] was an early superscalar design with instructions issuing simultaneously

from two FIFOs, motivated by issue logic simplicity. The RS/6000 [13] used a similar design. The

Alpha 21264 [131] replicated the register file in two execution clusters to reduce the number of read

ports per register file. It takes an additional cycle for a value created in one cluster to be propagated

to the other cluster. An instruction is issued to the cluster where its register value is available earlier

than the other, from a shared issue window [80]. Note that here instructions are steered just prior to

the execution stage, in contrast to the dispatch stage steering in the ILDP microarchitecture. This

was the first attempt by a commercial microprocessor design to explicitly cope with on-chip global

wire latencies and inspired many academic researchers. Current generation processors [129][152]

[198][228] usually have smaller, multiple issue windows to meet aggressive clock cycle time goals.

Many subsystems are heavily pipelined. As such, increased branch misprediction penalties and

design complexity pose serious challenges.

On the cache side, the small number of ports to the L1 D-cache has been one of the primary

factors that limit the issue width of superscalar processors. The Alpha 21164 used a fully replicated

data cache to provide two read ports to the issue logic [72].

3.3.2 Complexity-Effective Research Proposals

Palacharla, Jouppi, and Smith [174] first defined complexity as the critical path delay of a

piece of logic and identified register renaming, wakeup and select logic, and operand bypass

network among others as key complexity-critical subsystems in an out-of-order superscalar design.

64

Instruction fetch bandwidth is a critical element of a high performance processor design.

The fetch mechanisms introduced in [50][187][191] allows multiple sequential basic blocks to be

fetched in the same cycle. Trace cache [177][179][196] is a well-known technique to dynamically

reorganize basic blocks in their most frequent order. Trace caches can also be used to offload

complex instruction decoding from the pipeline’s critical path as in Intel Pentium 4 [109] and the

canceled Fujitsu SPARC64 V design [65]. Other research proposals go even further by rescheduling

instructions within dynamically collected traces. Fill-unit [85], DIF (dynamical instruction

formatting) architecture [172], rePLay [77] belong to that category. In the thesis, dynamic code re-

layout and external ISA instruction decoding (i.e., binary translation) are automatically performed

by the superblock-based dynamic binary translator software. Therefore, (hardware) trace caches that

are hardware-intensive and sensitive to transient traces [195] are not necessary. Instead, a fetch

mechanism geared towards multiple sequential basic blocks is preferred.

Farkas, Chow, Jouppi, and Vranesic [78] studied the effect of the number of ports and size

of the physical register file in out-of-order superscalar processors. To reduce the register file

complexity, techniques based on interleaving [16][79][176][192][231][235] and hierarchy [16][38]

[55][183][192][243] were proposed. Many studies have been performed to find good instruction

steering heuristics for clustered microarchitectures [18][21][42][43][82][175]. Complexity-effective

instruction issue logic is another area where lots of research has been conducted [1][31][32][44][73]

[74][91][106][115][136][137][144][160][188][223]. Compared to these elaborate schemes on

individual subsystems, the ILDP co-designed virtual machine paradigm provides a systematic way

of reducing complexities in most key pipeline structures at the same time.

On the other hand, there is relatively little research on distributed data caches. Rakvic and

Shen [190] proposed a distributed cache scheme that allows some “cachelets” to exist in multiple

partitions. Here, it is not very hard to see that a steering scheme based on the calculated memory

65

addresses works better than another scheme based on the memory instruction’s PC. In contrast, in

Racunas and Patt’s partitioned cache [189], a data cache line can only reside in one partition at a

time. In the pipeline front-end, the memory instruction’s PC is used to probe a steering predictor. If

a memory instruction misses in the steered partition, the corresponding cache line is brought to the

partition and an invalidation request for the cache line is broadcast to other partitions. In these

proposals the entire microarchitecture is designed around the distributed L1 D-cache. As such, these

distributed schemes do not fit well the ILDP pipeline that is distributed around register dependences.

66

Chapter 4 Dynamic Binary Translation for ILDP

In the ILDP co-designed virtual machine system studied in the thesis, a simple and fast

dynamic binary translation (DBT) system within the virtual machine monitor is used to provide

binary compatibility with the existing software. As with the ILDP microarchitecture that is designed

specifically to work with the accumulator-oriented ILDP I-ISA, the dynamic binary translation

system presented here exploits the co-design nature of the paradigm to strike a good balance

between software and hardware, performance and complexity.

In this chapter, the overall dynamic binary translation algorithm and related issues are

discussed. First, dynamically constructed superblocks, the chosen units of translation, are explained

along with the formation rules used in this research. Next, two of the key issues for a dynamic

binary translation system, precise state maintenance and dynamic code expansion, are considered

and the DBT policies to handle these issues are described. The actual translation algorithm for the

ILDP I-ISA is presented next. Related code cache systems such as dynamic optimizers, binary

translators, and co-designed virtual machine systems are listed at the end. The support mechanisms

for efficient control transfers, one of the most important aspects of any code cache system, are

described and evaluated separately in the next chapter.

4.1 Dynamic Binary Translation Framework

4.1.1 Operating Modes

The DBT mechanism in the thesis follows the prevalent “ interpret/profile then

translate/optimize” model used by most dynamic optimizers [14][26][33][34][45][58][62][139]

[159] and binary translators [9][20][46][60][68][143][193][202][232].

67

Figure 4-1 Operating modes of the ILDP vir tual machine system

Figure 4-1 shows three main operating modes (interpretation, translation, and native

execution within the translation cache) of the ILDP VM system. The VM system starts interpreting

the given V-ISA (Alpha EV6 in the thesis) program. When a candidate start instruction for

superblock, a straight-line code sequence with a single entry point and multiple exit points, is

observed to execute a threshold number of times, the interpreted path is followed to generate a

superblock. The superblock is translated into the ILDP I-ISA and placed in the translation cache (a

code cache that holds ISA-translated program codes) in a concealed memory area. If later program

control flow reaches an existing translation, the translated instructions are executed directly from

the translation cache.

4.1.2 Translation Unit: Superblocks

As just noted, the basic unit of translation is a dynamically formed superblock [117]. Other

than “early exit” points (shown in Figure 4-2(b)), there is a single path of control flow within a

superblock. Practically all dynamic optimizers and binary translators use a superblock as their basic

Interpret

Translate

Threshold End of superblock;
Next translation not found

VMM/DBT

Next translation found

Next translation
not found

Original
program
binary

Native
execution

within
translation

cache End of superblock;
Next translation found

Dispatch

table
Control
transfers
within
translation
cache

68

optimization/translation unit because a superblock provides an easy-to-collect and highly repetitive

series of basic blocks.18 The nature of single flow of control also allows simpler implementation of

optimization techniques. Figure 4-2 shows two dynamically collected superblocks chained together

(Chaining is further explained in Chapter 5).

Figure 4-2 A superblock formation example

An important byproduct of this “hot” superblock collection method is that dynamic code re-

layout is automatically performed; i.e., basic blocks that commonly occur in sequence dynamically

are placed together statically (in the code cache), enhancing effective fetch bandwidth.

Like most other software-based translation/optimization frameworks, the code cache system

used in the ILDP DBT allows only one superblock for a given V-ISA starting address. Hardware-

based code cache systems such as trace caches sometimes allow multiple superblocks with the same

18 A notable exception is IBM’s DAISY which uses a tree-style VLIW group [69]. Nonetheless the

tree-group in the DAISY system does not allow control-flow intersection within the translation unit.

Basic
block A

B C

D

Taken path at
the first super-

block formation
time

(a) Original program control flow

Basic
block A

C

D
B

D

(b) Chained superblocks

Path later
became hot

Early exit

69

starting address but different control flows to exist at the same time. An efficient chaining

mechanism that allows fast transfer of control from a superblock to another is used for software-

based frameworks to make up for the lack of partially redundant superblocks.

4.1.3 Superblock Formation Rules

The superblock formation algorithm used in the ILDP DBT system is a slightly modified

version of the Most Recently Executed Tail (MRET) heuristic used in the HP Dynamo system

[14][67]. Differences between the heuristics are marked with an asterisk (*) below. The DBT

system starts interpreting the given V-ISA program. Over the course of interpretation, counters are

maintained for the following possible superblock start candidate instructions:

· Targets of backward conditional branches

· Exit targets of existing translations

· Targets of register indirect jumps* (JMP/JSR/RET in the Alpha ISA)

If the number of times a static candidate instruction is executed reaches a predefined

threshold, the interpreted path is followed to generate a superblock. This heuristic, a form of simple

software speculation, is based on the observation that when an instruction becomes hot, it is

statistically likely that the very next sequence of executed instructions is also hot. Superblock

ending conditions are:

· A backward taken conditional branch is encountered

· Already collected instruction is found again (a cycle)

· A predefined maximum number of instructions is reached

· A register indirect jump* or trap instruction is encountered

70

A newly translated superblock, referred to simply as a translation hereafter, is placed in the

translation cache. If later program control flow reaches an existing translation, the ILDP instructions

in the translation are executed directly on the hardware.

4.2 Considerations for Dynamic Binary Translation

4.2.1 Maintaining Precise Architected State

There are two major issues in precise trap recovery in any dynamic binary translation (or

optimization) systems that execute translated (or optimized) code other than the original program

binary. Although theoretically the first problem of tracking V-ISA PC is part of the overall state

maintenance problem, typically it is handled separately in actual implementations. As will be

explained shortly, the ILDP DBT system does not change the order between translated instructions.

This leads to a simple, fine-grain precise trap recovery model.

4.2.1.1 Identifying the Trapping Instruction’s Address

When a trap condition is encountered, control is transferred to the VMM. The address of the

V-ISA instruction that generates trap must be identified. This is a non-trivial problem because in a

code cache system the architected program counter is not used for actually executing the source

binary code; rather an implementation program counter sequences through translated (or optimized)

code in a code cache. Nonetheless, the trapping instruction’s address, PC, is part of the V-ISA state,

and hence must be recovered correctly. Some of the methods for locating the trapping instruction’s

address are:

· Create checkpoints at translation boundar ies. When a trap is encountered, roll back the

machine state to the last check point and interpret until the trap is reproduced as in

Transmeta Crusoe [60].

71

· Track the star t address of the side table associated with a translation. Use this address

to locate a side table of potentially excepting instructions (PEIs) associated with the

translation. A hardware counter is incremented for each PEI and is used as the index to the

side table in case of a trap. ROAR dynamic optimization framework uses this method [173].

The second method is used in this research. A special load long immediate instruction that

saves the starting address of the associated side table (as a 32-bit immediate) into the specified

register is generated as the first instruction in any superblock.

4.2.1.2 Restor ing Architected State

All V-ISA state must be restored to the point of a trap. Again, there are largely two options

– the state can either be maintained at translation unit boundaries (course-grain) or at each

individual instruction level (fine-grain). As with identifying the trap PC, the ILDP DBT system

maintains architected state at the fine-grain level. In contrast, other co-designed VM systems that

maintain the V-ISA state only at translation unit boundaries, e.g., Transmeta Crusoe [128] and IBM

BOA [9], need to buffer all state changes, including stores, before updating the architected state

with a special commit instruction. With this method, finite pipeline buffer sizes act as the upper

limit on translation unit size. More importantly, the coarse grain model can expose substantial

interpretation overheads in pathological cases such as self-modifying codes [60].

The DBT system in the thesis does not reschedule instructions; hence values are produced

in the same order as the original program. In the finalized ILDP I-ISA format, every instruction

producing a V-ISA result specifies a destination GPR to maintain architected state. As a

consequence, all architected state updates are performed in the same order as the source program

binary. On the other hand, the translated instructions are executed out-of-order at the strand-level in

the underlying ILDP microarchitecture. Nonetheless, their order (as in the translated code) is

maintained by the reorder buffer and other hardware-based ordering maintenance mechanisms. A

72

separate register file, off the critical path, is maintained solely to keep the V-ISA GPR state for

precise traps. Only the values needed for later computation, i.e., communication, are actually

written to the performance-critical “working” physical registers in PEs. This is possible because the

I-ISA format distinguishes destination register types (refer to section 2.3.3 for the description of the

mode bits). Note that this scheme works in a different way from Transmeta Crusoe’s

working/shadow registers [99][140] where all register writes go to the working register file.

4.2.2 Suppressing Dynamic Code Size and Instruction Count Expansion

In general, in a system that supports a complete binary compatibility, dynamically

removing source instructions that may affect the V-ISA state is very difficult or downright

impossible. Combined with the fact that the translated I-ISA instruction contains more

microarchitecture specific information, it is not too hard to see a tendency for effective code

footprint expansion in a co-designed VM system. This is one of the most important aspects of any

ISA translation systems because with more instructions to execute, it becomes harder to even match

the performance of the native implementation.

In conjunction with the helper features provided by the ILDP I-ISA in section 2.3.2.2, the

DBT system tries to limit code expansion via the following principles:

· Use 16-bit format if possible: Even though certain number of extra copy instructions are

unavoidable due to the limited operand type combinations, their effects can be reduced

through the use of a shorter instruction format. Also the use of 16-bit memory instructions

(LDQ16/ LDL16/ STQ16/ STL16) wherever possible contributes to suppress the code size

expansion further.

· Keep one-to-one instruction mappings as much as possible: Most ILDP instruction

formats use extra mode bits and 6-bit GPR identifiers so certain compromises in other bit-

73

fields are unavoidable. Typically the immediate values used in programs are smaller than

the maximum values allowed by the bit field width defined by the V-ISA. In relatively rare

cases where the immediate value exceeds the reduced size limit, either the source

instruction is decomposed into multiple instructions (if possible) or a trap-to-interpreter

instruction is used as a final safety net. When a memory instruction must be decomposed

into an effective-address-calculation (EAC) instruction and an EAC-less memory

instruction, a 16-bit memory instruction can be used to limit code size expansion for most

of the time.

· Exploit known V-ISA idioms: To limit the number of extra copy instruction due to the

lack of GPR op I mmedi at e mode, the dynamic binary translator tries to exploit certain

Alpha ISA idioms involving the constant zero register.

· Use specialized instructions to enhance control transfer performance: Translation of

control transfer instructions has a fundamental impact on the overall performance; the

conventional software-only translation method that converts a single control transfer

instruction into an equivalent sequence of multiple instructions not only leads to code

expansion but also negatively affects the related branch prediction performances, especially

for indirect jumps. Use of specialized instruction and hardware support mechanisms are

explained in section 5.2.

4.3 Binary Translation Algor ithm

The major function of the translation process is identifying strands and re-mapping intra-

strand communication values to accumulators. Because of the nature of dynamically constructed

superblocks, there is no need for graph-traversing dependence analysis usually found in static

compilers [169]. Below, major parts of the DBT algorithm are presented in order. Although the

74

algorithm is implemented in the research infrastructure as multiple passes of sequential scans, it is

possible to combine certain passes to a single pass.

4.3.1 Superblock Construction

Once a superblock starting condition is met, candidate V-ISA instructions are interpreted

and collected in a decoded form into a trace structure until the superblock ending condition is

encountered. This intermediate representation (IR) format facilitates efficient dependence setup in

the next step. Special care was taken to implement the decoder efficiently because it is one of the

most time consuming processes as will be shown in section 7.3.2. On a related note, Bala,

Duesterwald, and Banerjia [14] report the decoder takes the biggest chunk of their optimization

framework binary.

When a superblock is being formed, a side table of V-ISA instruction addresses is generated

for the superblock. This side table contains not only the source addresses of the potentially-

excepting instructions but also the source target addresses, i.e., “early exit targets” , of conditional

branches whose alternative control path targets were not found in the code cache at the time of

translation. The side table performs double duty: first, it provides a storage area for the

hardware/software co-designed trap PC identification mechanism. Second, when a conditional jump

instruction (a place-holder for a conditional branch whose early exit target was not found at the time

of the translation) transfers control to a patch code at run time, its source target address is found by

indexing the side table with the conditional jump’s potentially excepting instruction (PEI) counter

number (incremented by the hardware and stored in a special VMM register). If a translated target

exists by then, the conditional jump is replaced with a conditional branch with a fixed offset value –

a “patch” is performed. As was described before, the side table address is tracked by a special load

long immediate instruction, the first instruction in every superblock.

75

These side tables are purely translation overhead and are seldom used. In the initial version

of the DBT framework, side tables were placed next to their associated translations. After the

arrangement was found to have non-trivial negative impact on the translated code’s I-cache

performance, a separate memory area was allocated for the side tables. Refer to Figure 6-5 for the

hidden memory map of the DBT system in the thesis.

4.3.2 Inter -Instruction Dependence Setup

Because of the nature of superblock-based translation algorithm, it is not practical to

separate static global values from communication global values. Instead, a single pass linear scan of

the superblock yields register dependence and usage information. Here, live-in values on superblock

entry and live-out values on all early exits are considered global as well as communication global

values.

One possible alternative is to not consider local values as live-out global values at the early

exit points. This will lead to somewhat higher probability of accumulator assignments within the

translation. However, early exits do happen with non-trivial frequencies (as shown in section 5.3.2)

and there must be a safety net mechanism for maintaining the accumulator values and their

mappings for that. Use of a “ fix-up” code when an early exit is taken is one way to achieve that goal.

With this mechanism in place, some live-in values can be assigned accumulators in a newly chained

superblock (basic blocks B and D in Figure 4-2). However, this on-demand fixing scheme not only

introduces added complexity of fix-up code generation algorithm but also increases the amount of

work the dispatch table lookup code has to do before transferring control appropriately.

For this reason, a rather conservative live-out policy where all potential early exits are

considered as superblock boundaries is used. This policy of maintaining live-in and live-out values

76

in GPRs results in lower utilization of accumulators. Following are the important register value

categories used in the DBT.

· No-user: Outputs register value not used before being overwritten. An instruction whose

output value is not used naturally ends a strand.

· Local: Outputs register value used only once before being overwritten in the same

superblock. These are candidates for assignment to accumulators.

· Temp: Values passed between two decomposed instructions, e.g., conditional moves and

some memory instructions. These are assigned to accumulators.

· L ive-in global: Input register values that are live on superblock entry; assigned to GPRs.

· L ive-out global: Output register values live on superblock exit; assigned to GPRs.

· Communication global: Register values used more than once before being overwritten in

the same superblock; assigned to GPRs. The first use of a communication global value is

considered as a local, i.e. the first user instruction continues the strand.

· Spill global: (a) If an instruction has two local input registers, one is made a spill global

because the I-ISA does not allow two different accumulators in the same instruction. (b) If a

strand has to be terminated to free an accumulator, a local value is converted to a spill

global.

Figure 4-3 shows the output register value types in the translated superblocks. On average,

more than 25% of dynamic instructions have a global output value (live-out and communication

globals). These are the global values that should be written to the latency critical physical register

file. The rest of the produced register values go to the local accumulator. All produced output values

are also used to update the architected register file, off the critical path of the processor pipeline.

The notation “ local
�

 global” represents values that are used only once in the superblock but need

to be saved to a GPR before an early exit. The notation “no user
�

 global” is similar. Once these

77

values are included, the total percentage of instructions that have global output values rises to about

40%.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

1 00 %

bzip
2

cra
fty eon

gap
gcc

gzip
m

cf

pars
er

perlb
m

k
tw

olf

vo
rte

x vp
r

liveout global

comm. global

local -> global

no user -> global

local

temp

no user

no output reg

Figure 4-3 Output register types in superblock-based dynamic binary translation

Those statistics are in contrast to the earlier program trace in section 2.1.4 where only about

20% of instructions were found to produce global output values from program traces (e.g., register

values do not need to be saved at superblock boundaries).

4.3.3 Strand Identification

Based on dependence and input register usage patterns, instructions are scanned and a

strand number is assigned to each instruction. The translator uses an unlimited number of strands

that are later assigned to a finite number of accumulators. Here temp usage is treated the same way

as local. If an instruction has:

· Zero local input registers: a strand is started and a new strand number is assigned to it.

Furthermore, instructions with two global input registers are broken into two accumulator

instructions – a copy-GPR-to-accumulator instruction and a translated source instruction

78

that uses the (local) result of the copy as an input. The copy instruction initiates a strand,

and the source instruction now has one local input register (and is handled accordingly).

· One local input register: assigned the same strand number as the instruction producing the

local value.

· Two local input registers: a heuristic is needed to decide which strand number to be

assigned. For store instructions, the address register is always selected as a temp value. For

other instructions, if one of the input registers is a temp, then the temp producer’s strand

number is assigned to the instruction. Otherwise the number assigned corresponds to the

longer strand up to that point (length is determined by instruction count).

Once all strands are identified within the superblock, the last instructions in each strand are

marked as end-of-strand.

4.3.4 Accumulator Allocation

The strand numbers are converted to finite accumulator numbers. Instead of using a

traditional graph coloring heuristic [169] to assign accumulator numbers to strands, a simple linear-

scan heuristic is used. When the translator runs out of accumulators, a live strand is chosen for

termination and the accumulator is freed. This is done by changing the new end-of-strand

instruction’s output register type from accumulator to GPR at the strand termination point, and

changing the new start-of-strand instruction’s input register type to GPR. A simple, greedy heuristic

that selects the latest alive strand is used.

Although the ILDP I-ISA format allows for up to 8 logical accumulators, a co-designed VM

system can choose to have smaller number of logical accumulators. In any case, the ILDP

microarchitecture has to provide at least the same number of FIFOs as the number of logical

accumulators used. This is to prevent a live-lock situation.

79

4.3.5 ILDP Instruction Generation

Once the accumulator assignment is finished, the source instructions in IR format are

converted to corresponding ILDP instructions. In the process, certain helper instructions such as the

load long immediate for side table tracking, an optional unconditional branch at the end (either to a

shared dispatch code or an existing translation), 16-bit ILDP NOPs for aligning translations at page

boundaries, are introduced. As with the source instruction decoder, the ILDP instruction generator

extensively utilizes shift and mask operations to achieve high speed and a small code footprint.

4.4 Related Work

4.4.1 Dynamic Binary Translators and Optimizers

Most dynamic binary translators translate from one existing instruction set to another, with

code portability as the primary goal. The software-based ISA translators such as DEC FX!32 [46],

Sun WABI [111], HP Shogun [143] and Aries [244], Strata [202], UQDBT [232], Intel IA-32 EL

[20] and dynamic Java compilers such as IBM Jalapeno [11] and Sun HotSpot JVMs [155] belong

to this category. Typically code optimizations are implemented, many of them ISA-specific, and the

performance goal is one of reducing losses; i.e., to come reasonably close to native ISA execution.

Furthermore most existing binary translators are focused on application binary interface (ABI)

translation rather than full ISA translation, as is the case with co-designed VM systems.

Architecture simulators are closely related to binary translation systems – high-performance

simulators such as Embra [240] and Shade [48] typically translate and cache the frequently

executed portions of the simulated program in a code cache.

Dynamic optimization (without ISA translation) can be performed by either software as in

HP Dynamo [15][33], DynamoRIO [34], Mojo [45], Wiggins/Redstone [58], DELI [62], Kistler and

80

Franz [139], Tamches and Miller [225] or a specialized hardware-based optimization framework

such as rePLay [77], fill unit [85][88][122], ROAR [158][173]. The primary objective in this work

is performance improvement, and therefore some of the techniques used, e.g. code re-layout and

optimized code caching, are related to the DBT system in the thesis. Although performance

profiling/feedback [57][104][157][200] and program phase detection [66] mechanisms are

important parts of a dynamic optimization framework, they are beyond the scope of the thesis

research.

4.4.2 Co-Designed Vir tual Machines

Co-designed virtual machines were studied in the IBM DAISY [68][69][70] and BOA

[9][95] projects and are implemented in the Transmeta Crusoe processor [60][99][140], all of which

targeted VLIW implementations. In contrast, the research here is targeted at a simple form of

dynamic superscalar implementation. Rather than trying to maximize instruction-level parallelism

on a static VLIW microarchitecture using aggressive optimization techniques, the ILDP DBT

system simply identifies inter-instruction dependences and encodes the dependence information as

accumulator assignments without changing the original program order. Maintaining the original

instruction order greatly simplifies precise trap recovery. All in all, the ILDP co-designed virtual

machine system in the thesis has less binary translation overheads and has a good chance of

balancing the strengths of hardware and software better.

81

Chapter 5 Efficient Control Transfers within a

Code Cache System

Most dynamic binary optimizers and translators, including the one in the thesis, first map

the source binary code into superblocks then optimizer/translate and place them in a code cache for

repeated execution on the target platform. When executing within a superblock, performance is

enhanced, both because of optimizations that may have been done and because of straight-line

instruction fetching that naturally occurs. For the ILDP dynamic binary translation system that does

not employ aggressive optimization techniques, the automatic code re-layout is a major asset to

offset the interpretation and translation overheads. However, when making transitions from one

cached superblock to another, there is a potential for performance loss. For example, if a dispatch

table lookup mechanism must be invoked before each new superblock can be entered, then all

performance gains would likely be lost (and then some). One commonly used optimization is to

“chain” superblocks together so that one can immediately branch to the next, but this method only

works with direct branches. For indirect jumps, the problem is more difficult and remains a problem

in many systems.

This chapter looks at the popular software-based chaining method used in many code cache

systems and identifies where the performance problems are. Next, hardware/software co-designed

support mechanisms are proposed for efficient control transfers among superblocks being held in a

code cache. To separate the effect of code re-layout and specialized control transfer support

mechanisms from the ISA translation, an identity-translation system is used to evaluate the support

features within the chapter. This is also because that the subject of efficient chaining mechanism is a

general problem for all types of code cache systems, be it a dynamic binary translator or a optimizer.

82

5.1 Superblock Chaining

When a code cache system forms a superblock, it typically places an entry in a dispatch

table, i.e. a hash table that maps source binary program counter values (SPCs) to translated binary

program counter values (TPCs). As a bare minimum, a code cache system can be made to transfer

control between cached superblocks by consulting the dispatch table every time a branch or jump

instruction is encountered. If there is a hit, control is transferred to the mapped superblock in the

code cache via the TPC. Similarly, when the end of a superblock is reached, the dispatch table is

accessed to find the next superblock (if it exists). Typically, this lookup would require several

instructions, including at least two memory accesses, ending in an indirect jump. Obviously this will

lead to substantial overhead. At that point if there is a miss in the dispatch table, control is passed

back to the interpreter. Initially program execution switches between the interpreter and the code

cache frequently, but eventually the program will be executed almost entirely within the code cache.

5.1.1 Chaining for Direct Branches

Fortunately, direct branches, either conditional or unconditional, are relatively easy to

optimize because their (taken) target addresses do not change during program execution.

Superblocks can be chained together so that a direct branch from one superblock to another can be

made directly without relying on SPC-to-TPC mapping. Here chaining for a source branch

instruction is simply a matter of generating a new displacement immediate field (with possible

reversal of branch direction) for the corresponding branch instruction(s) in the mapped superblock.

This type of chaining is commonly done in systems that use code caches and is illustrated in Figure

5-1.

83

Super-
block

Dispatch
Table

Super-
block

Super-
block

Super-
block

Dispatch
Table

Super-
block

Super-
block

Super-
bock

(a) Without chaining (b) With chaining

Figure 5-1 Control transfers among superblocks

5.1.2 Conventional Chaining Method for Indirect Jumps

For indirect transfers, however, the problem is more difficult. Register-indirect jumps have

their target addresses stored in a register, and the register value can change over the program’s

execution. Furthermore, this address is an SPC value, not a TPC value. This means that the original

jump target address being held in a register must be translated every time the indirect jump

instruction is executed, not only when it is translated. The most straightforward solution is to

consult the dispatch table for every indirect jump. Hence indirect jumps still have a significant

performance cost.

To save table lookup overhead for each and every indirect jump, many dynamic optimizers/

translators [14][33][68][240] implement a form of software-based jump target prediction. Typically

a sequence of instructions compares the indirect target SPC held in a register against an embedded

translation-time target SPC. A match indicates a correct “prediction” and the inlined direct branch

84

instruction is executed; if not, the code jumps to the shared (slow) dispatch code. Although the

example in Figure 5-2 shows three sequential predictions, many systems use only one prediction.

Figure 5-2 A code sequence that perform indirect jump target comparison

The software prediction method is of limited value, however. First, if the target address is

not one of the selected addresses, then time is wasted by testing the possibilities, and the dispatch

table lookup has to be performed anyway. The performance cost of a misprediction is high. Second,

there are a number of indirect jumps that are not very predictable using this method. For example

procedure returns often have a number of call sites, and therefore a number of changing targets.

Bruening, Duesterwald, and Amarasinghe [33] identify this indirect jump problem as the highest

overhead in a code cache system and report that a hash table lookup takes 15 instructions, while the

software comparison of the target of an indirect jump takes 6 instructions in the x86 ISA.

Previous code cache systems considered the software prediction technique (along with

partial inlining of jump target code) as an optimization. However, over the course of the research I

have found that this technique is rather a performance limiter, especially for returns, and started

looking for alternative methods.

I f Rx == #addr _1 got o #t ar get _1

El se i f Rx == #addr _2 got o #t ar get _2

El se i f Rx == #addr _3 got o #t ar get _3

El se hash_l ookup(Rx) ; do i t t he sl ow way

85

5.2 Suppor ts for Efficient Code Cache Control Transfers

5.2.1 Software-based Jump Chaining Methods

In Figure 5-3, three different software-based indirect jump chaining options are depicted for

an indirect function call instruction (e.g. JSR in the Alpha ISA). The dispatch table lookup code is

shown in gray. These software-based methods affect the underlying hardware branch predictor

behavior in a negative way as they convert a single indirect jump instruction to a sequence of codes

including multiple control transfer instructions. In Figure 5-3(a), an indirect jump is converted to an

unconditional branch to the shared dispatch code. The target address prediction rate of the register-

indirect jump in the dispatch code is expected to be very poor because all indirect jumps lead to the

same dispatch code and a single BTB entry is required to provide all the target addresses.

Save return SPC

Uncond. branch

Shared
dispatch code

Many target
superblocks

Other
indirect
jumps

(a) No prediction,
shared dispatch

Indirect jump

Compare
embedded SPC
with a register

Cond. branch

Uncond. branch

Construction
time target
superblock

(b) Software prediction,
shared dispatch

(c) Software prediction,
private dispatch

Shared
dispatch code

Many target
superblocks

Indirect jump

If prediction fails

 Cond. branch

Private dispatch
code

Small number
of target

superblocks

Indirect jump

Construction
time target
superblock

Other
indirect
jumps

Save return SPC

Compare
embedded SPC
with a register

Save return SPC

Figure 5-3 Software-based jump chaining methods

86

The conventional indirect jump chaining method based on software prediction is shown in

Figure 5-3(b). Here, the compare-and-branch code reduces the number of times the shared dispatch

code is executed. Hence, the pressure on the BTB entry for the indirect jump in the dispatch code is

somewhat reduced. However, many times the software prediction is incorrect and in that case two

mispredictions can happen – one by the conditional branch in the compare-and-branch code,

another by the indirect jump in the dispatch code. The conditional branch has less impact because

the branch predictor will eventually be trained to predict the branch as not-taken.

An alternative software method (Figure 5-3(c)) is proposed by the thesis: replicate the

dispatch code after every register-indirect jump, thereby allowing “private” target address

prediction in case the superblock construction-time prediction fails. This way the number of

mispredictions by the indirect jump in the dispatch code is reduced. This option trades off

superblock size, which leads to increased I-cache pressure, for a better target address prediction rate.

The private dispatch code concept is similar to the one used in threaded code interpreters [76].

However, I am unaware of any previous proposal or existing system that applies this “ threaded”

technique to a dynamically translated/optimized code cache system.

5.2.2 Jump Target-address Lookup Table

One way to avoid the expensive dispatch table lookup almost entirely is to maintain a

hardware cache of dispatch table entries. This specialized chaining support feature is called the

Jump Target-address Lookup Table (JTLT) in the thesis. The JTLT is maintained by the code cache

manager and always provides a correct translated address if there is a hit. The concept is similar to

the software-managed TLBs used in virtual memory systems [121].

87

Figure 5-4 Jump target-address lookup table

Figure 5-4 shows how a JTLT can be used in conjunction with a BTB as a

checker/predictor pair. An indirect jump instruction’s target TPC is predicted with the normal BTB.

This predicted target address flows through the pipeline with the jump instruction itself, just as in

any other prediction mechanisms. When the jump instruction reads the target SPC from its register,

the JTLT is searched. If there is a hit at an entry that matches the predicted TPC, the prediction is

correct. There are two ways of mispredicting. First, the JTLT itself may miss. In that case, the

hardware alone cannot provide the correct target TPC. The jump is not taken and the next sequential

instruction, a branch to the dispatch code, is executed. Second, even if a JTLT entry is found, its

TPC may be different from the one provided by the BTB. This is a BTB misprediction and fetch is

redirected to the TPC from the JTLT.

If the JTLT is used, a register-indirect jump is not translated to a compare-and-branch code

sequence and remains as an indirect jump. This suppresses dynamic instruction count expansion

Jump
instruction

BTB Jump
instruction
TPC

Next predicted
fetch TPC

Predicted
jump target
TPC

Register
file

Register
identifier

Jump
target
SPC

JTLT

……

Jump
target
TPC

Hit? BTB misprediction:
Redirect fetch to jump
target TPC from JTLT

Match?
No

Yes
BTB prediction is correct

Yes

No

JTLT miss:
Redirect fetch to
the dispatch code

 SPC TPC
 tag TPC

SPC

88

found in software-based prediction techniques. However, the BTB/JTLT pair also has a couple of

weaknesses. First, it requires on-chip storage space. In the Transmeta Crusoe processor a 256-entry

“TLB” [99] is believed to be used for this purpose. Assuming a 32-bit SPC and a 16-bit TPC, a 256-

entry fully-associative JTLT uses 1.5KB of associative memory storage. Second, the BTB/JTLT

pair does not provide a highly accurate return address stack (RAS) [126] type prediction capability

for return instructions.

5.2.3 Dual-address Return Address Stack

Most modern processors use a RAS mechanism, which can predict a return instruction’s

target address very accurately. In a dynamically managed code cache system, however, a

conventional RAS cannot be utilized. First, typically the next instruction in the code cache after a

function call instruction (or an equivalent code sequence) is not the return target instruction.

Therefore there is no simple way for a RAS to find and push the return address (the function call

instruction’s PC + 4 in the Alpha ISA). Second, even if the TPC of the return target instruction

were pushed (and popped for an address prediction) by some means, there is no easy way to verify

if the RAS prediction was correct. This is because the saved return target address is an SPC.

This inability to use a conventional hardware RAS leads to substantial performance loss, as

can be seen in Figure 5-5. It can be seen from Figure 5-5(a) that for non-return indirect jumps, the

conventional software-based prediction technique (described in section 5.1.2) is almost as good as

the dynamically trained BTB. However, returns are a totally different story. Figure 5-5(b) shows

that, compared to a RAS, a BTB (used instead of a RAS) and the software prediction technique

result in 34% and 25% more mispredictions, respectively. Interestingly, the BTB performance is

actually lower than the quasi-static software prediction (due to trashing) in Figure 5-5(b).

89

To solve this performance problem, some even proposed saving the return TPC into the

register [202]; however doing so breaks the precise state maintenance model.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16
4.

gz
ip

17
5.v

pr

17
6.

gc
c

18
1.

mcf

18
6.c

ra
fty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

mk

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

30
0.

tw
olf

A.M
ea

n

p
re

d
ic

ti
o

n
 r

at
e

BTB superblock construction time target address

(a) Non-return indirect jump

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

16
4.g

zip

17
5.

vp
r

17
6.g

cc

18
1.m

cf

18
6.c

ra
f ty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.

tw
olf

A.M
ea

n

p
re

d
ic

ti
o

n
 r

at
e

RAS BTB superblock construction time target address

(b) Return

Figure 5-5 Indirect jump target address prediction rates

90

A specialized RAS mechanism that contains an address pair, consisting of a return address

SPC and its corresponding TPC is shown in Figure 5-6.

Figure 5-6 Dual-address return address stack

There are two ways to push a pair of addresses onto the dual address RAS. The first option

is to use a special push-dual-address-RAS instruction that pushes both return addresses. Finding the

 SPC TPC

Dual-address RAS

Push-dual-address-
RAS instruction

SPC TPC

Save-return-address
instruction

SPC
JTLT

SPC TPC

(a) RAS push

Return
instruction

RAS misprediction & JTLT miss:
Redirect fetch to the dispatch code

Next predicted
fetch TPC Predicted

return
target SPC

Register

file

Register
identifier

Return
target
SPC

JTLT

……

Return
instruction

RAS misprediction:
Redirect fetch to jump
target TPC from JTLT

Match?
No

Yes
RAS prediction is correct

No

SPC TPC

Yes

Return
target JTLT
hit?

SPC

Dual-address RAS

SPC TPC

(b) RAS pop and prediction check

91

return target SPC at superblock construction time is simple (PC + 4 of the function call

instruction). If the corresponding TPC is not found at superblock construction time, an invalid

address is written in the TPC field. Later when the return target superblock is constructed, the

invalid address is replaced with a valid TPC.

Another way to form a return address pair is to consult the JTLT when the original return

target SPC is pushed. With the JTLT, the return target TPC does not need to be embedded as in the

push-dual-address-RAS instruction. When an instruction that saves a return address is encountered,

the JTLT is searched for a matching TPC. If a match is found, a pair of return addresses are formed

and pushed onto the dual-address RAS. Note that a conventional load (short) immediate instruction

pair that saves a return SPC can not be used in this case. Typically, a load immediate instruction

does not contain a hint to push the RAS. Instead, a special save-return-address instruction that

contains only the SPC can be used.

When a return instruction is fetched, the next fetch address is predicted with the popped

TPC. The SPC part of the pair flows down the pipeline with the return instruction and is compared

to the register value. If the two values do not match, a RAS misprediction is detected and fetch

needs to be redirected. If a JTLT is also used, it can be relied upon to provide the correct target TPC.

Otherwise, fetch redirection is accomplished by a branch to the dispatch code. Note that the

semantics of this return instruction are slightly different from the conventional definition – a

conventional return always jumps to the target. Here, if the return prediction is not correct, the next

sequential instruction is executed (or the JTLT sets the next TPC if used and is hit).

With this specialized RAS, a return is not converted to the compare-and-branch sequence.

The dual address RAS dramatically improves the prediction rate for returns and removes many

extra instructions that would have been generated for a single return instruction, like the JTLT does.

92

5.2.4 Summary of Special Instructions and Jump Chaining Methods

Table 5-1 summarizes the special control transfer support instructions in the chapter. It

should be noted that a code cache system can judiciously choose a subset, based on performance

requirements, implementation constraints and hardware budget.

Table 5-1 Special instructions to reduce register indirect jump chaining overhead

Category Instruction Description

Save-return-
address

Saves the immediate value (return target SPC) to a register. Also gives a
hint to the prediction hardware to form a pair of return addresses using the
JTLT and push it onto the dual-address RAS.

Load long
immediate

Push-dual-
address-RAS

Contains two immediate values. Saves the first immediate value (return
target SPC) into a register. Gives a hint to the prediction hardware to push
both the first and the second (return target TPC) immediate values onto the
dual-address RAS.

Predicted-
indirect-jump

Conditionally jumps using a register (contains jump target SPC). If there is
a JTLT miss, does not jump; the next sequential instruction, an
unconditional branch, will branch to the dispatch code.

Conditional
jump

Predicted-
return

Conditionally jumps using a register (contains return target SPC). Gives a
hint to the prediction hardware to pop the return target TPC from the dual-
address RAS. If the RAS prediction is incorrect, either (a) does not jump or
(b) jumps to the target TPC from the JTLT if the optional JTLT is used.

Table 5-2 summarizes the register-indirect chaining methods that are evaluated in this

chapter. Each is named via a pair of terms separated by a period; these are the prediction method for

non-return jumps and for returns, respectively. For example, in the sw_pred.ras method, software

prediction is used for non-return jumps and the dual-address RAS is used for returns.

93

Table 5-2 Summary of jump chaining methods

Description Indirect jump
chaining method Execute dispatch code? Return prediction mechanism Related figures

No_pred.no_pred Always BTB (an jump in dispatch code) Figure 5-3(a)

Sw_pred.sw_pred When SW prediction failed
BTB (a conditional branch plus
an jump in dispatch code)

Figure 5-3(b),
(c)

Sw_pred.ras

When SW prediction failed
(non-return jumps)

When RAS prediction failed
(returns)

RAS
Figure 5-3(b),
Figure 5-6

Jtlt.jtlt When JTLT missed BTB Figure 5-4

Jtlt.ras When JTLT missed RAS
Figure 5-4,
Figure 5-6

5.3 Compar isons of Superblock Chaining Methods

5.3.1 Identity Translation: Separating the ISA Effect from Chaining

In general, superblock chaining methods apply to broader range of code cache systems, not

just to the co-design VM system studied in this thesis. Besides, it makes sense to separate the effect

of ISA translation from the chaining mechanisms so we can understand both mechanisms better. To

serve this goal, an “ identity translation” (where the Alpha ISA is mapped onto itself and no other

translation/optimization is performed) mechanism was built on top of an early version of the

baseline simulator. This baseline configuration without code caching is referred to as original.

Essentially the identity translator is a stripped-down version of the ILDP DBT mechanism

(described in section 6.4.1). More details on the baseline simulator used in this chapter are in the

appendix at the end.

94

On the other hand, it should be noted that a code caching system without any optimization

techniques (other than the automatic code re-layout) is in itself an important design point when

strict binary compatibility is required.

5.3.2 Superblock Character istics

Table 5-3 General superblock character istics

Average number of instructions between
taken control transfer instructions Benchmark

No. of
dynamic
source
instructions

% of
instructions
executed in
code cache

Superblock
completion
rate original code cache

164.gzip 3.25 billion 0.9999 0.76 13.6 27.3

175.vpr 1.44 billion 0.9996 0.58 13.7 28.2

176.gcc 1.77 billion 0.9938 0.73 9.7 19.1

181.mcf 210 million 0.9989 0.70 8.7 10.1

186.crafty 4.07 billion 0.9995 0.55 12.7 30.0

197.parser 3.92 billion 0.9996 0.77 8.1 13.9

252.eon 89.7 million 0.9899 0.88 14.3 23.6

253.perlbmk 3.69 billion 0.9998 0.91 10.4 18.8

254.gap 1.11 billion 0.9978 0.80 9.9 19.2

255.vortex 3.74 billion 0.9991 0.91 10.7 36.3

256.bzip2 4.16 billion 0.9999 0.96 14.0 20.1

300.twolf 238 million 0.9946 0.61 14.5 23.2

Average 0.9977 0.76 11.7 22.5

First consider characteristics of cached code in Table 5-3. From the 3rd column of the table,

it is apparent that all benchmark programs almost always execute within the code cache – even for

these very short (in real terms) benchmark runs. On the other hand, it can be seen from the

superblock completion rates in the 4th column that early exists are not that infrequent. This suggests

that a fast and efficient chaining support for conditional branches can be important. The ILDP I-ISA

provides special place-holder instructions (described in section 2.3.3.3) for those early exits.

95

Of primary interest in this data is the average number of instructions between taken control

transfer instructions in the last two columns. On average, dynamic superblock caching achieves

about a two-fold increase compared to original program execution.

Table 5-4 Dynamic instruction count expansion rate

Benchmark No_pred.no_pred Sw_pred.sw_pred Sw_pred.ras Jtlt.jtlt Jtlt.ras

164.gzip 1.149 1.035 1.000 1.000 1.000

175.vpr 1.182 1.037 1.002 1.002 1.002

176.gcc 1.335 1.162 1.068 1.003 1.003

181.mcf 1.489 1.111 1.005 1.003 1.003

186.crafty 1.249 1.136 1.039 1.001 1.001

197.parser 1.401 1.149 1.043 1.003 1.003

252.eon 1.505 1.231 1.057 1.008 1.008

253.perlbmk 1.613 1.317 1.209 1.010 1.020

254.gap 1.525 1.377 1.171 1.011 1.011

255.vortex 1.422 1.207 1.007 1.000 1.000

256.bzip2 1.098 1.030 1.001 1.001 1.001

300.twolf 1.217 1.090 1.005 1.003 1.003

Average 1.349 1.157 1.051 1.004 1.004

Another important statistic is the number of extra instructions generated by indirect

chaining methods. Table 5-4 shows the dynamic instruction count expansion rates when the

dispatch code consumes 20 instructions. It is obvious that without any register indirect jump

chaining support, as in the no_pred.no_pred method, program performance will be unacceptable

as 35% more instructions have to be executed. Conventional software prediction in

sw_pred.sw_pred method cuts the number to about 16% by executing only the relatively short

compare-and-branch code when the prediction is correct (Both shared and threaded versions result

in the same instruction count expansion). Providing a dual-address RAS reduces another 10.6% of

the total instructions. This is not only because return instructions now seldom reach the dispatch

code, but also because the compare-and-branch code is not generated for a source return instruction.

Similarly, JTLT removes almost all extra instructions for all jumps.

96

5.3.3 Branch Prediction Per formance

Chaining can have a significant effect on a program’s branch prediction characteristics

because it can add extra control-transfer instructions or can even remove some source control

transfer instructions (i.e., unconditional direct branches inside a superblock). For direct conditional

branches, chaining does not change prediction performance significantly. Nonetheless, a lower

number of taken branches and inlined unconditional branches tend to reduce pressure on the branch

prediction hardware. On the other hand, chaining of register indirect jumps does have a large effect

on branch prediction performance, and each scheme exhibits different branch prediction

characteristics. Figure 5-7 shows detailed breakdown of all control transfer mispredictions that are

resolved after the instruction is executed.

Original program

0
2
4
6
8

10
12
14
16
18
20

16
4.g

zip

17
5.

vp
r

17
6.

gc
c

18
1.

mcf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.p

er
lbm

k

25
4.

ga
p

25
5.

vo
rte

x

25
6.b

zip
2

30
0.t

w
olf

A.M
ea

nN
o

. o
f

m
is

p
re

d
ic

ti
o

n
s

 /
1K

 in
s

n
s

return
(RAS)

other indir.
jump
(BTB)

cond.
branch
(BP)

97

S

w
_p

re
d

.sw
_p

re
d

0 2 4 6 8 10 12 14 16 18 20

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.tw olf

A.Mean

No. m is predict ions / 1K insns

target not
found

(dispatch)
indirect
jum

p (B
TB

)

cond.
branch
(B

P)

S

w
_p

re
d

.sw
_p

re
d

 (th
re

a
d

e
d

)

0 2 4 6 8 10 12 14 16 18 20

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.tw olf

A.Mean

No. m is predict ions / 1K ins ns

target not
found

(dispatch)
indirect
jum

p (B
TB

)

cond.
branch
(B

P)

S

w
_p

re
d

.ra
s

0 2 4 6 8 10 12 14 16 18 20

164.gzip

175.vpr

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

256.bzip2

300.tw olf

A.Mean

No. m is predictions / 1K ins ns

target not
found

return
(R

A
S

)

(dispatch)
indirect
jum

p (B
TB

)
cond.
branch (B

P)

98

 Jtlt.j tl t

0
2
4
6
8

10
12
14
16
18
20

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

A
.M

ea
n

N
o

. m
is

p
re

d
ic

ti
o

n
s

 /
1K

 in
s

n
s target not

found

indirect
jump (JTLT)

indirect
jump (BTB)

(dispatch)
indirect
jump (BTB)
cond.
branch
(BP)

Jtlt.ras

0
2
4
6
8

10
12
14
16
18
20

16
4.

gz
ip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
f ty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

w
olf

A.M
ea

n

N
o

. m
is

p
re

d
ic

ti
o

n
s

 /
1K

 in
s

n
s

target not
found

return
(RAS)

indirect
jump (JTLT)

indirect
jump (BTB)

(dispatch)
indirect
jump (BTB)
cond.
branch (BP)

Figure 5-7 Classification of control transfer mispredictions

First, note that the performance impact of register-indirect jump mispredictions was not

very significant (except for 253.perlbmk, a script language interpreter) in the original program

execution. However their effect is exacerbated in a code cache system. The conventional chaining

method, sw_pred.sw_pred, experiences 46% more mispredictions than original. This increase is

mostly due to the mispredictions of the indirect jump in the shared dispatch code. A threaded

version, sw_pred.sw_pred (threaded) reduces this type of mispredictions by 44% thanks to the

99

private dispatch code. However it still generates 23% more mispredictions than original.

Introducing the dual-address RAS further reduces the indirect jump misprediction to the level of

original.

The JTLT also reduces mispredictions by cutting the dispatch code execution frequency.

However, j t l t . j t l t still has 24% more mispredictions than the original program execution. This is

about the same as the best software-based method, sw_pred.sw_pred (threaded). This may seem

surprising at first but it does make sense considering the prediction performance in Figure 5-5

where the BTB prediction rate is actually lower than the software prediction rate for returns.

The best method, jtlt.ras, has 5.6% fewer overall mispredictions than original due to a

reduction in conditional branch mispredictions. This is possible because fewer taken branches

reduce negative interference in the branch predictor pattern history table [186].

It should be pointed out that branch prediction performance comes close to the original

program only after introducing the dual-address RAS. Interestingly, sw_pred.ras produces fewer

mispredictions than jtlt.jtlt, the hardware-intensive technique.

5.3.4 I -Cache Per formance

Another important program characteristic that can be affected by the chaining method is I-

cache performance. Figure 5-8 shows that superblock-based code caching helps reduce I-cache

misses, except for the threaded variant (sw_pred.sw_pred (threaded)) which suffers more I-cache

misses due to the replicated dispatch code. In general, improved I-cache locality by superblock

caching is more than enough to offset increased I-cache pressure from chaining (as is implied by the

dynamic instruction count increase).

100

0

5

10

15

20

25

30

35

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rt

ex

25
6.

bz
ip

2

30
0.

tw
ol

f

A
.M

ea
nN

o
. o

f
i-

ca
ch

e
 m

is
s

e
s

 /
1K

 in
s

n
s

original sw _pred.sw _pred sw _pred.sw _pred (threaded) sw _pred.ras jtlt.jtlt jtlt.ras

Figure 5-8 Number of I -cache misses

Of special interest is the dramatic miss reduction in 164.gzip. Here, code re-layout

eliminates cache thrashing. Although this is a valid optimization, it is probably limited to direct-

mapped caches. If 164.gzip is omitted, the best methods that use JTLT show a 6.3% I-cache miss

reduction. (24.3% if 164.gzip is included).

5.3.5 IPC Per formance

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

164.gzip 175.vpr 176.gcc 181.mcf 186.crafty 197.parser 252.eon 253.perlbmk 254.gap 255.vortex 256.bzip2 300.tw olf H.mean

IP
C

original sw _pred.sw _pred sw _pred.sw _pred (threaded) sw _pred.ras jtlt.jtlt jtlt.ras jtlt.ras (retain NOPs)

Figure 5-9 IPC comparisons between var ious chaining methods

101

Figure 5-9 shows overall performance in terms of the original source IPC. Note that the x

axis starts from 0.8. This is to highlight the differences between chaining methods. The results show

that the conventional indirect jump method that relies on software prediction (sw_pred.sw_pred)

performs poorly, resulting in 14.6% IPC loss. Here, improved fetch bandwidth is offset by the

chaining overhead, mostly due to increased branch mispredictions and extra instructions.

Interestingly, this result contradicts previous results of HP Dynamo [15] where a 6% speedup is

obtained just through superblock code caching. I believe the following factors contribute to the

difference in results:

· Efficiency of hardware prediction mechanisms: the PA-8000 processor, used in [15], does

not predict indirect jumps and always stalls fetch until the target address is resolved [107].

Hence, converting a register-indirect jump to the software prediction compare-and-branch

code greatly reduces fetch stall cycles in the PA-8000. In contrast, the simulated pipeline

model predicts jump target with a BTB and does not stall fetch, so a similar benefit is not

realized. This is confirmed by [33]: where the Dynamo system was ported to a Pentium II

platform (which does predict indirect jump targets with a BTB), resulting in substantial

slowdowns due to indirect jumps – even worse than what is reported here.

· Differences in the superblock formation algorithm: the superblock construction algorithm

used in this research stops constructing a superblock whenever an indirect jump is

encountered. Hence some straight-line fetch optimization opportunities across highly

repetitive indirect jumps are not exploited.

Returning to Figure 5-9, a threaded version, sw_pred.sw_pred (threaded), performs

3.2% better than the conventional sw_pred.sw_pred, showing that indirect jump prediction

performance improvements more than offset any losses in I-cache performance when replicated

102

dispatch code is used. Even this best performing software-only method still lags original program

performance by 11.4%.

It is only after specialized hardware mechanisms are introduced that the identity-translation

code cache system outperforms original program execution. Referring to jt l t . j t l t , the introduction

of the JTLT greatly enhances performance both by suppressing extra instructions and in improving

predictor performance. As a result, j t l t . j t l t achieves a 4.6% performance improvement over

original.

However, even more important is the effect of the dual-address RAS. This is evident in the

sw_pred.ras method; 2.1% IPC improvement is achieved without requiring any extra on-chip

storage as in the JTLT. This is a 15.4% improvement over the best performing software-only

method (and a 19.6% improvement over the conventional method, sw_pred.sw_pred). Finally,

combining both the JTLT and dual-address RAS (jt l t . ras) results in a 7.7% IPC improvement over

original.

Next consider the effect of Alpha NOP removal in superblocks. The benefit can be seen by

looking at the performance of jtlt.ras (retain NOPs). If not removed, these NOPs put more

pressure than necessary on the fetch mechanism and reduce effective fetch bandwidth. The results

show that 1.5% of the total 7.7% IPC improvement comes from NOP removal in superblocks.

5.3.6 Summary of Superblock Chaining Methods

From the identity translation experiment, it became obvious that the lack of accurate return

prediction is one of the biggest performance limiter in code caching systems. It turned out that the

dual-address return address stack is a cost-effective solution to enhance the performance of a code

caching system. The jump target-address lookup table – a hardware cache of the dispatch table –

also helps to further reduce the chaining overhead. On the other hand, it was shown that a dynamic

103

threaded code technique can be applied to improve the software-based jump prediction method

when specialized hardware support is not an option.

Note that the techniques studied in this chapter can be used in many code caching systems.

For the co-designed VM systems for ILDP, the full set of specialized hardware mechanisms is used.

Other systems can judiciously select the most cost-effective mechanisms. Even the strictly software-

based code cache systems can benefit from the dynamic threaded code technique.

5.4 Related Work

5.4.1 Profile-based Code Re-layout

Profile-guided code positioning was first introduced by Pettis and Hansen [181] to move

infrequently executed code out of the main body of the program and allow a higher fraction of

instructions fetched into the I-cache to be useful. This basic block arrangement also improves the

accuracy of dynamic branch prediction mechanisms [186]. Ramirez, Larriba-Pey, Navarro,

Torrellas, Valero [184] used the term “software trace cache” for this static compiler optimization

technique which does not involve any caching by itself.

Regarding (hardware) trace caches [108][177][179][196], they also cache superblocks, not

really “ traces” in the Multiflow [149] sense. A trace cache uses hardware rather than software to

form superblocks and to manage the storage. This difference results in a trade-off: trace caches do

not require chaining because the hardware access mechanism is based on source PCs. However,

total cache size and maximum allowable superblock size are limited by the amount of on-chip, near-

processor storage. It should be noted that (hardware) trace caches and (software) superblock-based

code caches are not mutually exclusive. For example, many of the code cache systems

[26][33][34][45][232][237] run on a Pentium 4 processor [108] that employs a trace cache.

104

RePLay [77] can be considered an aggressive extension of the trace cache. By converting

highly predictable conditional branches into assertions, rePLay increases the average superblock

size to the level of software-based code cache systems for more dynamic optimization opportunities.

5.4.2 Superblock-based Code Cache Systems

There are a variety of systems that use code caching techniques, most of them using

superblock as the basic unit within the code cache. First, there are transparent optimization systems

that do not perform binary translation, but instead focus on dynamic optimizations. These systems

include: Dynamo [15][33], Wiggins/Redstone [58], Mojo [45], and ROAR [159][173]. Another set

of systems rely on code caching as part of a sandboxing framework for program analysis and

security enhancement. These systems include DELI [62] and DynamoRIO [34]. As with the

dynamic optimizers, these systems do not perform binary translation.

A second important class of systems performs binary translation from one conventional ISA

to another (as well as optimization). For example, Strata [202], UQDBT [232] are designed to be

retargetable to multiple target platforms. HP Shogun [143] is used to provide binary compatibility

for the existing ISA programs on a platform that executes a new instruction set.

The Transmeta Crusoe Processor/Code Morphing Software [60] and IBM BOA [9] perform

dynamic binary translation from an existing ISA to a proprietary ISA with performance or power

efficiency (or both) as a goal. These systems use a code cache to hold translated superblocks.

Finally, high performance high-level language virtual machines (e.g., Java VM) that also

use superblock-based code caching technique are emerging [26][237].

105

5.4.3 Superblock Chaining Techniques

It is widely believed that Embra machine simulator [240] first introduced the software-

based translation-time jump target prediction technique. Since then most high performance dynamic

optimizers [14][33][159] and binary translators [70] use a similar chaining technique.

The dual-address RAS studied in this chapter can be thought as a logical extension of the

FX!32’s (software-only) shadow stack mechanism [46][112], taking advantage of the co-designed

VM paradigm. An IBM technology disclosure by Gschwind [94] discusses a similar idea. In this

chapter, an alternative return address pair construction method utilizing JTLT was proposed as well

as detailed performance studies.

A hardware cache of dispatch table entries and associated instructions have been proposed

previously. In Silberman and Ebcioglu’s work [207] a SEARCH_SWI TCH_TABLE instruction

queries the cache with the target SPC in a register; the target TPC is written to another register upon

a hit. The next DYNAMI C_GOTO instruction reads the latter register and jumps to the TPC. A

similar mechanism is proposed by Gschwind [93]. However, this method is undesirable in systems

where no scratchpad register (for keeping the target TPC) is available to the code cache manager. It

appears that the “Translation Lookaside Buffer” in Crusoe [128] is also a hardware cache of

dispatch table entries. It is not clear, however, exactly how the mechanism is used from the publicly

available patent document.

ROAR from University of Illinois [159] is an interesting hybrid system. Although the code

cache is placed in memory, the transition between native execution and interpretation is

automatically performed by hardware. When an optimized superblock is put into the code cache, its

starting TPC is explicitly written into the branch target buffer by the optimizer software. The next

time a corresponding branch instruction is fetched, control is transferred to the optimized

superblock by the BTB. This system also uses the software jump target prediction technique;

106

however when the software prediction fails, program control falls back to the source indirect jump

instruction. Therefore no dispatch table lookup is performed. Sooner or later, the program will again

reach an optimized superblock. A limitation of this approach is that its application is restricted to

dynamic optimization. Many dynamic binary translation systems, such as co-designed virtual

machines and high level programming language virtual machines, cannot use a hardware interpreter

(for executing out-of-code-cache instructions efficiently).

107

Chapter 6 Exper imental Framework

An accurate experimental framework that faithfully models the system under study is one of

the most important parts of computer architecture research. It is especially important for the type of

study in this thesis because, by definition, the research encompasses many different aspects of

computing, e.g., instruction sets, microarchitectures, and binary translation, at the same time. This

requirement led to a development of a set of self-complete simulation infrastructures, much of them

built from scratch.

This chapter describes the overall experimental framework used in the thesis. First,

requirements of the simulation infrastructure are identified and the overall experimental

methodology is described. Next, the chosen pipeline model – largely modeled after IBM POWER4

– and associated design trade-offs and speculation mechanisms are described. The ILDP virtual

machine system simulation framework builds on this baseline simulator by adding a dynamic binary

translation mechanism and changing the processor pipeline to properly model the ILDP

microarchitecture. Lastly, related publicly available research infrastructures are described.

6.1 Objective

Modeling the entire co-designed virtual machine in great detail is a substantial engineering

task that typically requires many person-years and is beyond the scope of the thesis research.

Instead, the focus of the simulation infrastructure was set to faithful modeling of the baseline and

ILDP microarchitectures and the dynamic binary translation mechanism.

108

6.1.1 L imits of the Previous Research Simulators

The initial comparative experimental studies of the accumulator-oriented ILDP system

against conventional superscalar processors [133][134] were performed on a modified version of

SimpleScalar 3.0C toolset [35]. Although it is true that the toolset, s i m- out or der in particular,

provided a convenient platform to develop a useful research infrastructure, its fundamental

limitation – being an idealized superscalar execution model simulator, not a realistic pipeline

simulator – prevented fair performance and complexity comparisons. Some of the limits of the

toolset are listed below in descending order of importance to the thesis research.

· Lack of adequate memory subsystem modeling: The biggest source of error comes from

inadequate modeling of implementation details and resource limits on caches and various

memory-related buffers. The same observation is made by Perez, Mouchard, and Temam

[180].

· Simplistic pipeline structures: Si m- out or der ’s simplistic 5-stage pipeline model is not

adequate for typical current-generation high-performance superscalar processor designs.19

· Separation of program execution and timing simulation: This can be considered as an

advantage in the sense that it allows quicker development of a timing simulator. However,

this approach is vulnerable to obscure timing bugs as there is no clear way to verify if the

19 A common misconception is that a longer pipeline can be adequately modeled by simply using

larger branch misprediction penalties. This is not completely true because a longer pipeline inevitably

introduces underutilization of pipeline resources. For example, fetch “bubbles” – wasted cycles to redirect

fetch for a predicted taken branch – are one of the well-known inefficiencies for longer pipelines that cannot

be modeled with a larger misprediction penalty alone.

109

modeled timing behavior is correct [39][180][208]. Integrating correctness requirements

into the timing simulator helps to build a precise model [39].

· Idealized execution model: Although the out-of-order superscalar execution model itself

(based on the Register Update Unit (RUU) mechanism [219]) used in s i m- out or der is a

fine one, most current designs make certain complexity-effective trade-offs in one form or

another, mostly to meet the given timing requirements.

All in all, these limitations lead to unrealistically high performance estimates for a baseline

superscalar processor, giving unfair disadvantage to the ILDP system that must model complexity-

effective trade-offs, by definition. To circumvent these limitations, a complete re-write of the

simulation infrastructure was called for.

6.2 Simulation Framework

6.2.1 Overall Simulation Methodology

To meet the goals described in the previous section, it was decided early on that the DBT

functionality should be built into, and tightly integrated with, a microarchitecture timing simulator20.

Although a translating virtual machine system typically goes through many operating mode changes

(interpretation, translation, trap handling, etc.), only the native execution of the translated code

(which accounts for more than 99% of the total instructions as will be shown in section 7.3.2), is

timing-simulated. Other operating modes are modeled at the function level. Nonetheless their

20 Obviously the most accurate way to measure the translation overhead is to run the DBT code,

statically-compiled for the ILDP ISA, on the ILDP timing simulator and measure the number of cycles to

translate collected superblocks. However, it is not very practical to construct a production-quality compiler

that can compile large programs – another substantial engineering task – just for this purpose.

110

effects, e.g., dynamic translation overheads, are taken into account by applying an estimated

average number of cycles per virtual ISA instruction to the total execution time. This is done by

first compiling the whole source code tree of the DBT/timing simulator hybrid framework for the

Alpha ISA, then running benchmarks on the framework as usual and measuring the translation

overhead as the average number of dynamically executed Alpha ISA instructions for translating a

single source Alpha ISA instruction. Assuming that the translator code will have similar IPC

performance as translated codes, this gives a reasonably good estimate of the overhead, albeit

indirectly. This is the same method use in the evaluation of IBM DAISY [70]. Modeling the

operating modes is explained further in section 6.4.1.1.

Other aspects of a co-designed virtual machine system, memory management below the

operating system for example, have an impact on overall performance. However, these issues are

largely orthogonal to the focus of the thesis. Besides, it is not very practical to model all the issues

in a research simulator mostly built from scratch (other than system call emulators and a program

loader). Instead, the thesis research focuses on evaluating the relative performance differences

between conventional superscalar designs and the ILDP VM system. More specifically, the system-

level activities such as program loading and system calls are emulated at a functional level.

6.2.2 Modeling Microarchitectures

The following principles were established in building the detailed microarchitecture

simulator:

· Combine program execution and timing simulation: Maintain data values in all pipeline

structures, e.g., caches, buffers, and bypasses, as well as physical register files. Instructions

flowing within the pipeline capture these data values, for example, from bypasses. When an

instruction is retired, important architected state values associated with the instruction, e.g.,

111

the program counter, result data, dynamically calculated memory addresses, etc., are

compared against their counterparts in a purely functional simulator. A mismatch reveals a

timing modeling error (sometimes complex interaction of multiple timing errors). That is,

even an obscure timing “bug” that could have gone unnoticed in a traditional simulator is

detected as part of the simulation process.

· Model a realistic cache subsystem: The cache hit/miss probe is separated from its timing

behavior. There are many crucial elements such as resource contention that affect effective

cache latency. Constructing a timing model outside the cache modules using finite-size

buffers, such as load miss queue, allows accurate and flexible modeling of cache timing

behavior. Caches also contain actual data values, enforcing correct timing modeling

between closely related buffers.

· Model a realistic, complexity-effective pipeline: Current generation high performance

superscalar designs are surveyed to arrive at a representative pipeline. Important

implementation details such as finite number of register ports and operand bypass network

lanes are modeled. This is important not just for performance evaluation but also for

complexity estimates.

In short, the above requirements force construction of a microarchitecture simulator that

will provide better reference and base platform to develop a detailed ILDP microarchitecture

simulator.

112

6.2.3 Modeling Dynamic Binary Translation

In line with the microarchitecture simulator construction approach, the following principles

were established:

· Implement the DBT algor ithm efficiently: One of the key points of this particular style of

a co-designed VM system is that its binary translation algorithm is simpler and hence faster,

compared to previous systems based on VLIW ISAs. Therefore it is important to build a

fast and fully-working DBT mechanism for measuring the translation overheads accurately.

· Generate actual ILDP ISA translations: Using an immediate representation (IR) format

allows fast development of a flexible translator. A downside of this approach is that it is

relatively easy to introduce (mostly likely unrealistically generous) evaluation errors. To

avoid this pitfall, a concrete, finite-bit-width ISA format is employed. Combined with the

principle of maintaining actual instruction bit values within the simulator, this helps to

enforce correct performance and complexity evaluation.

6.3 Baseline Superscalar Model

This is the first step in the development of the entire research infrastructure. Therefore, the

baseline model was thoroughly examined before the ILDP simulator was built on top of it. Also this

step is important for checking out various replay mechanisms and complexity-effective design

trade-offs.

6.3.1 Choosing a Baseline Model: IBM POWER4-like Pipeline

Building a baseline model starts with choosing a well-designed conventional processor. To

this end, I collected and studied publicly available design documents of recent out-of-order

superscalar processors including the MIPS R10000 [241], DEC Alpha 21264 [131], Intel Pentium

113

Pro [98], Pentium 4 [28][108][152], Pentium M [90], AMD Athlon [63][64], Opteron [129], Fujitsu

SPARC64 V [198], and IBM POWER4 [228]. Of these existing designs, IBM POWER4 was

chosen for the following reasons:

· Modern, complexity-effective design:

· Detailed, publicly available documentation: Many of its complexity-effective design

trade-offs are well documented in depth [228].

· PowerPC RISC ISA: Even though PowerPC ISA is fairly complex for a RISC ISA [214],

it still is closer to Alpha EV6, the virtual ISA in the research, compared with other complex

ISAs such as the Intel x86.

It is important to note that the baseline pipeline is largely modeled after POWER4, and is

not intended to be an exact replica. That is, there are certain differences, mostly due to using a

different ISA (Alpha).21 In general, the baseline pipeline should be considered slightly optimistic –

or forgiving – as compared to real-world designs that have even more strict implementation limits.

6.3.2 Pipeline Overview

Figure 6-1 shows a high-level pipeline diagram of the baseline superscalar processor. As

with Figure 3-1, the boxes represent pipeline stages rather than actual hardware structures. Thick

lines represent instructions flowing through the pipeline; these lines as pipeline lanes. Various

replay and cache miss paths are shown with dotted lines.

21 For example, unlike POWER4, the baseline pipeline does not have a separate (in-order) issue

queue for control transfer instructions. PowerPC ISA uses separate registers for these instructions, which in

turn enables a simple, separate issue path – a complexity-effective design choice.

114

Figure 6-1 High-level block diagram of the baseline pipeline

Instructions are first fetched from an L1 I-cache and scanned for possible control transfers

as they are aligned to maintain the correct fetch order. If a control transfer instruction is found,

branch predictors are consulted, based on an instruction’s associated predecode information. For a

predicted taken conditional branch, the target address is calculated from the PC and immediate field

values. The target address of an indirect jump is obtained from a return stack (for return

instructions) or a branch target buffer (for non-return jump instructions). Alpha ISA NOPs are

properly recognized and removed in the decode stage.

Fetch

Align

Decode

Branch
Predict

Branch
Addr
Calc

Rename

Dispatch

Integer
Issue

Integer
Register

Read

Integer
Execute

Integer
Register

Read

Memory
Addr
Calc

D-cache
Access

Load
Miss

Queue

FP
Register

Read

FP

Execute

FP

Issue

(b) Branch Misprediction Replay

(c) Mini Replay

Shared Int
Register
Queue

Shared FP
Register
Queue

FP
Register
Write

Integer
Register
Write

FP
Register
Write

Integer
Register
Write (d) Load-Store Ordering Replay

L2 cache
Access

D$
Hit

D$ Miss

L2$
Hit

MSHR

Memory
Access

L2$ Miss

Retire

Write
Buffer

Fetch
Miss

Queue

I$
Miss

Pre-

decode

(a) Fetch Redirection
for Predicted Taken
Branch

115

The pipeline uses separate integer and floating-point physical register files for register

renaming; naturally, there are separate register rename maps and associated scoreboards for each

operand type. A conditional move instruction – the only instruction type that requires three input

operands – is decomposed into two micro-instructions in the same way as the Alpha 21264

processor [131]. After register operands are renamed, each instruction is assigned a reorder buffer

entry in the dispatch stage where it is sent to an issue queue based on its source operand type.

Memory instructions are assigned either a load queue or a store queue entry. Precise state

maintenance [211] is achieved through the combination of rename maps, reorder buffer, store queue,

and load queue; all are allocated and de-allocated in program order.

Instructions are issued out-of-order from the appropriate issue queue. Memory instructions

are issued from the integer issue queue because their operand for (address) calculation, an address

register, is always an integer. Note that memory instructions are issued based on the availability of

their address operand alone, and are not constrained by the address resolution of other logically-

older memory instructions.

All issued instructions get their operand values from the physical register file or bypass

network. One exception is store data operands, which are read by the associated store entry within

the store queue, independent of store address resolution. All instructions that produce a same-type

result value as source operand(s) are given two register read ports and a write port – i.e., a lane per

instruction. Similarly, one register read and two write ports (one for possible integer data and

another for possible floating-point data) are reserved for each load instruction lane. An instruction

that reads an integer operand and writes a floating-point result or vice versa is allocated an entry in

a shared register write queue (SRWQ).

After its effective address is calculated, a load instruction probes both the L1 D-cache and

the STQ for possible forwarding. If neither was successful, the missed load is allocated a combining

116

load miss queue entry. When a missed load in the LMQ receives its data, it is put into one of the

shared register write queues. Other than that, the memory subsystem including the L2 cache is

largely the same as the one used in the ILDP microarchitecture.

The system bus interface is the least accurately modeled part of the simulator, mostly due to

the lack of a detailed description of the bus timing behavior. However, given the relatively low L2

cache miss rates found in the SPEC CPU2000 integer benchmarks that are used in the evaluation,

this effect should be small. Nonetheless there are small number of benchmarks that do exhibit large

fraction of L2 cache misses. Slightly aggressive memory latencies are used to make up for the

simple memory bus model.

The speculative nature of the memory instruction issue can sometimes lead to replay

conditions. Note that prefetches (load instructions into a constant zero register) are properly

recognized; when a prefetch lead to a replay condition, it is simply marked complete and replay is

not performed.

6.3.3 Complexity-Effective Design Trade-Offs

The following design trade-offs used in the baseline model are frequently found in modern

designs:

· Separate hardware structures for different operand types: Most instructions use same

type of data for both operands and results. Exploiting this program characteristic allows

relatively smaller hardware structures for the register rename mappers, scoreboards, issue

queues, physical register files, and operand bypass networks. Shared buffers such as

SRWQs take care of the small number of instructions that generate communications

between two largely independent structures, e.g., integer and floating-point register files.

117

· L imited numbers of ports and bypasses: For SRAM-array-based structures such as

register file and caches, latency is linearly proportional to the number of ports [175]. In

general, limiting the number of ports of a given structure reduces the maximum attainable

parallelism. Nonetheless, it is often beneficial to reduce the number of ports, hence

reducing the number of cycles to access that structure, to avoid increasing pipeline

inefficiencies. A well-known example is in physical register file; it is possible to design a

multi-cycle register file with full internal bypasses, but doing so increases the number of

shadow cycles (shown in Figure 3-3) resulting in increased energy waste [138][164].

Limiting the number of ports and bypasses naturally leads to reduction in issue width.

Section 7.2 shows that the resulting performance loss is generally small enough to

encourage this trade-off.

· Simplified issue logic: Modern out-of-order superscalar processors employ segmented

issue logic in one form or another to meet clock frequency goals [63][98][108][131][198]

[228]. It is shown in the next chapter that the effect of segmented issue logic is minimal,

especially in the wake of other events such as L2 cache misses that have an order of

magnitude greater impact on overall performance. Figure 6-2 shows a 4-way segmented

integer issue queue along with operand bypass network used in the baseline model. Note the

large fan-out, i.e., capacitive loading of the bypass network.

118

Figure 6-2 Segmented issue queue and bypass network used in baseline model

· Separate LDQ from STQ: Making data forwarding from an older store to a younger load

at least as fast as an L1 D-cache hit latency substantially simplifies pipeline design [7][242].

Separating LDQ from STQ is a common way to reduce the effective size of the dynamic

memory disambiguation mechanism [98][108][131][198][228]. The downside is that now

there are two places that can generate memory ordering violation replays.

· Reliance on replays: In some cases, checking all conflict conditions before accessing a

structure may complicate the design or even render it impossible. Using speculative

accesses and relying on replays can sometimes provide a simpler overall solution. This is

H

T

T

H

T

H

H/T

Dispatch
Lane 0

Dispatch
Lane 1

Dispatch
Lane 2

Dispatch
Lane 3

Int. Reg.
Read Lane 0

Int. ALU 0

Int. Reg.
Read Lane 1

Int. ALU 1

Mem. Reg.
Read Lane 0

Agen 0

Mem. Reg.
Read Lane 1

Agen 1

From D$
Read Port 0

From D$
Read Port 1

Integer
Issue

Queue

Register
file &
Bypass

Network

Functional
Units

119

especially important for memory-related structures that have uncertainties by definition

[242]. For example, it would not make much sense to have the issue queue check for a

possible LMQ full condition beforehand. The baseline model uses a simple PC-based

dependence predictor [165] (same as the one used in the ILDP microarchitecture) in

conjunction with speculative memory instruction issue.

6.4 ILDP System Model

6.4.1 Modeling Dynamic Binary Translation

The next step after modeling the baseline pipeline was to build an ILDP dynamic binary

translation mechanism. To meet this goal, the DBT mechanism (for interpretation and translation

modes) was first developed and combined with an ILDP ISA functional simulator (for native

execution mode) resulting in a self-complete ILDP VM system model. A timing-accurate ILDP

pipeline model was plugged in to the framework after the functionality of the DBT was fully

verified.

120

6.4.1.1 Framework Mode Changes

Figure 6-3 Top-level simulator loop showing operating modes

Figure 6-3 shows how the operating modes are integrated with a timing simulator at the

highest level of the simulation framework. Note that the pipeline is flushed between mode changes.

6.4.1.2 Dispatch Table Lookup Mechanism

Even with the specialized hardware support mechanisms discussed in Chapter 5, a control

transfer instruction can sometimes fall through to the ultimate safety-net mechanism commonly

called a dispatch table lookup. This is essentially a hash table search with a source target address; if

there is a match, the corresponding target translation’s start address is returned. Care must be taken

to achieve the highest possible lookup speed to avoid unacceptable slowdowns in certain

pathological cases.

Whi l e (TRUE)
{

i f (cur _mode == MODE_NATI VE)
 cur _mode = mode_t i mi ng_execut e_nat i vel y() ;
el se i f (cur _mode == MODE_I NTERPRET)
 cur _mode = mode_i nt er pr et () ;
el se i f (cur _mode == MODE_TRANSLATE)
 cur _mode = mode_t r ansl at e() ;

}

(a) Upper-most level loop

i nt mode_t i mi ng_execut e_nat i vel y()
{

i l dp_pi pe_r eset () ;
f or (; ;)
{
 / * model L2 cache/ memor y * /

 next _mode = i l dp_r et i r e() ;
 i f (next _mode ! = MODE_NO_CHANGE)
 r et ur n next _mode;

 / * model t he r est of t he pi pe * /

 s i m_cycl e++;
}

}

(b) Pipeline simulator top-level loop

121

Figure 6-4 Dispatch table lookup algor ithm

To accurately model the dispatch table lookup behavior, the dispatch lookup algorithm in

Figure 6-4 was first written and hand-optimized in Alpha assembly language, and then converted to

the ILDP ISA. The resulting lookup code consists of total of 18 Alpha instructions and 22 ILDP

instructions, respectively. An x86 version of HP Dynamo dynamic optimizer [33] reported 15 x86

instructions for the same function.

The dispatch table, the translation cache, and other support data structures in the hidden

memory are shown in Figure 6-5.

/ * dt _hash_map i s r andomi zed at st ar t t o mi ni mi ze conf l i c t s * /

/ * gener at e hash key f r om t he sour ce PC * /
hash_key = dt _hash_map[(sr c_PC >> 2) & MAX_XC_MASK] ;
di spat ch_t abl e_ent r y = dt [hash_key] ;

whi l e (di spat ch_t abl e_ent r y ! = NULL)
{
 i f (di spat ch_t abl e_ent r y- >sr c_PC == sr c_PC)
 r et ur n di spat ch_t abl e_ent r y- >xl _PC;

 di spat ch_t abl e_ent r y = di spat ch_t abl e_ent r y- >next ;
}

/ * not f ound * /
r et ur n 0;

122

Figure 6-5 Map of the hidden memory area

6.4.1.3 Effect of Dynamic Binary Translation on Caches and Predictors

In general, the timing performance of the DBT is separately evaluated using the estimated

average number of cycles per V-ISA instruction. In reality, the DBT actions affect the performance

of the native execution mode, too, mostly through cache and predictor interference. For example,

dynamically translated code is written to the translation cache as data and in turn, ends up being

cached in the L2 cache, possibly replacing other data. More importantly, if there is a previously

generated translation that happens to share an I-cache line with the newly created one, that I-cache

line has to be invalidated for correct program execution (then cached again when needed later).

Hash key

Hash map
base

 Dispatch entry pointer

Di spat ch
poi nt er base

Translated PC
Source target PC

Di spat ch
t abl e base

Target translation

Tr ansl at i on
cache base

Si de t abl e
base

Source
target PC

Hash
function

Di spat ch l ookup
code base

123

These effects are modeled correctly; otherwise the simulation framework that maintains data values

within caches will fail.

The effect of DBT actions on predictors is not as strongly enforced as caches, though.

Predictors are performance features not correctness requirements. Nonetheless, the hardware dual-

address return stack is properly maintained by the DBT. For example, when a function call

instruction is emulated in interpretation or translation mode, the return stack is explicitly pushed by

the DBT. In general, updating other predictors to reflect the DBT action is not possible.

6.4.2 Modeling ILDP Pipeline

The baseline pipeline simulator is heavily modified to properly model the ILDP pipeline.

The most substantial changes are made in the following areas: instruction scanning/alignment,

accumulator renaming and steering, overall out-of-order execution model, micro-instruction (such

as dynamically generated effective address calculation) handling.

There is one complication from supporting the framework mode change – when a mode

change is needed (by a retiring trap-to-interpreter instruction for example), there is a chance that

some cache transfers may still be in flight. As a result, the pipeline can only be drained after all the

pending transactions are finished (and leave the caches in correct state). This adds extra cycles to

switching between framework modes.

6.5 Evaluation Cr iter ia

The goal of this research is to show that the ILDP paradigm is capable of performing better

than conventional superscalar designs while substantially reducing complexity in key pipeline

hardware structures. The reduction in hardware complexity can be exploited in two ways; higher

clock frequency for better performance or reduced power consumption while still achieving the

124

same level of clock frequency. Or it may be possible to find a better balance between high

performance and low power consumption than conventional design approaches can provide.

Therefore, it is not enough to evaluate only the performance aspect of the ILDP paradigm; the

simplicity advantages of the ILDP system should also be evaluated.

6.5.1 Per formance

In general, performance of a computer system can be modeled with the combination of the

following three factors [212]:

Figure 6-6 The three components of computer performance

Of the three components, typical microarchitecture research concentrates on improving IPC

performance by introducing new microarchitecture techniques. Recently research on improving

clock frequency, has become popular. Most of these microarchitecture research deals with IPC and

sometimes clock frequency estimates.

Realistically estimating achievable clock frequency requires a reasonably low-level

physical design of the entire pipeline using the actual technology parameters. The same is true for

estimating power consumption of a given design. For these reasons, the thesis research does not try

to provide an estimated clock frequency in picoseconds or a power consumption level in watts.

Instead, the thesis concentrates on the instructions per cycle performance and comparative

complexity estimates of ILDP and conventional superscalar pipelines.

Unlike traditional microarchitecture studies, these two factors alone are not sufficient for

the thesis research; the change in the number of dynamic instructions resulting from binary

Execution time = number of instructions * clock cycles per instruction (CPI) * clock cycle time

= number of instructions / (IPC * clock frequency)

125

translation should also be accounted for. In a co-designed virtual machine system that must

maintain strict architectural compatibility, dynamic binary translation often leads to code expansion.

This is partly because the translator can only generate instructions at the same or finer architectural

granularity than the source ISA. The proposed hardware-software co-designed support mechanisms

for suppressing code expansion are evaluated in section 7.3.2.

6.5.2 Simplicity

Admittedly, the simplicity advantage of the ILDP system is harder to quantify compared to

performance. The reduction of complexities in key hardware structures is summarized in a table in

section 7.3.1. The thesis notes that the ILDP microarchitecture provides a unique combination of

physical register file based register renaming model and a capture-before-issue operand capture

model. This new operand capture model leads to a dramatic reduction in mini replays associated

with physical register file based designs while reducing reliance on bypass networks typical in the

machines that capture operands before instruction issue. As a result, a simpler design with less low-

level speculation techniques, such as load latency speculation, is possible. The reduction of mini

replays is shown in section 7.3.3.3.

Another type of complexity reduction comes from simpler translation algorithms compared

with the VLIW-based ones used in previous co-designed VM systems. Measurement of average

number of dynamic instructions in the translator is used as a way to quantify the complexity of the

translation mechanisms.

126

6.6 Related Work

6.6.1 Microarchitecture Simulators

By far the most popular simulator within the computer architecture research community is

the si m- out or der timing simulator from the SimpleScalar toolset [35]. Since its introduction in

1997, many researchers used the simulator as a baseline platform to apply and evaluate new

microarchitecture techniques, almost to the point of abuse. To summarize, the problem is that many

researchers use this simplistic execution model simulator to evaluate microarchitecture ideas that

only make sense within the context of today’s deeply pipelined designs with complex cache and

memory subsystems.

There have been many efforts to correct this situation. Si m- al pha [61] was a detailed-up

version of s i m- out or der ; it was validated against an Alpha 21264 system, and it was shown

that a simplistic simulator can lead to wrong conclusions. Two issues prevented si m- al pha from

being used in this research. First, it still separates timing simulation from program execution.

Second, a 7-stage Alpha 21264 pipeline was not a current-generation design by the time the

simulation infrastructure for this research was constructed. It is believed that the Multiscalar

simulator [220] is the first research microarchitecture simulator that combines program execution

and timing modeling. Phar msi m [39], an evolution from si m- OS system simulator [194], also

does that and goes even further to simulate the whole system including OS actions and I/O device

timing. The latter worked as a disadvantage, however, to integrate a dynamic binary translation

mechanism in a simple and efficient manner.

Recently, two simulators based on Mi cr oLi b [180] that combine program execution and

timing simulation were made public. On the industry side, a production-level performance simulator

127

for Intel Pentium 4 processor [208] uses the same verification technique used by the simulators built

for the this thesis research. I believe the detail level of the baseline simulator is roughly equivalent

to the IBM research’s Tur andot [114], a trace-driven timing simulator that more or less models

the IBM POWER4 pipeline.

6.6.2 Code Cache Frameworks

A simulator performs many of the same functions as a virtual machine. A common way to

speed up a virtual machine is to translate and cache most frequently executed code for native

execution. Hence, most dynamic translation/optimization systems have a similar code caching

framework that switches modes between interpretation, translation (and/or optimization), and native

execution. These related systems are described in section 4.4.

Although there are many code cache systems in both academia and industry, only a few are

publicly available. The DBT framework in the thesis uses a slightly modified superblock

construction algorithm of Dynamo described in [14]. One important research infrastructure that is

publicly available is the DAISY simulator from the IBM research [119]. Although it is a sufficiently

self-complete platform that allows further development, it became apparent that building a simple

dynamic translation mechanism on top of a familiar timing simulator would be much simpler than

modifying the VLIW-based DAISY timing simulator to model the ILDP microarchitecture.

128

Chapter 7 Evaluation

This chapter presents empirical evaluation of the ILDP system. First, the benchmark

programs and other related simulation setup are described. The baseline superscalar model is

thoroughly evaluated and key insights from the experiments are presented. The evaluation of the

ILDP virtual machine system consists of the following: dynamic binary translation characteristics

and translation overhead evaluation, the IPC performance comparison against the baseline

superscalar model and performance variation over machine parameter variations, and complexity

comparisons of the important pipeline hardware structures in the baseline and ILDP pipelines.

7.1 Simulation Setup

To collect statistics, I use the SPEC CPU2000 integer benchmarks [105] compiled for the

Alpha EV6 ISA at the base optimization level (–ar ch ev6 –non_shar ed –f ast). Note

that the –f ast option includes aggressive instruction scheduling, procedure inlining, and loop

unrolling. The compiler flags are the same as those reported for Compaq AlphaServer ES40 SPEC

CPU2000 submission results. DEC C++ V.6.1-027 (for 252.eon) and C V.5.9-005 (for the rest)

compilers were used on Digital UNIX 4.0-1229. Of the three input data sets, the smallest t est sets

are used. This choice was made for the purpose of covering all program phases. Skipping the

initialization phase and simulating only part of program using the r ef input sets, as is frequently

done in microarchitecture research, would likely have exaggerated the benefits of profile-based

dynamic binary translation. All benchmarks were run to completion or 4 billion instructions. For

those benchmarks that finish before 1 billion instructions, the t r ai n input sets were used.

For translation, a maximum superblock size of 200 and a counter threshold of 50 are used.

A smaller superblock size of 50 was also tried but it turned out that this size was not large enough to

129

obtain performance benefits from code re-layout. This observation is in line with the HP Dynamo

report [14]. By default, eight logical accumulators are used. Four and six accumulator results are

also reported.

In this evaluation, an unlimited number of counters for superblock start candidates are used

to simplify the simulation framework design. For programs the size of the SPEC benchmarks,

however, the number of counters is relatively small. Also, the small static code size of the SPEC

benchmarks (all are less than 1 Mbytes except 176.gcc at 2.3 Mbytes) means that they would

comfortably fit into a reasonably sized translation cache. Thus translation cache management is not

required; however other research indicates that this overhead is generally negligible [14]. In fact,

there may be a performance cost in not occasionally flushing translation cache entries. Some

translated superblocks may be sub-optimal because once a translation is put into the translation

cache there is no second chance for forming a different translation starting from the same address in

the current DBT implementation. In Dynamo, for example, the code cache is flushed when there is a

change of program phase (indicated by abrupt increase of superblock generation rate) thereby

evicting infrequent superblocks from the cache and allowing new superblock formation.

7.2 Validation of Baseline Model

The evaluation began with the validation of the baseline superscalar simulator. This is

important in two ways. First, the ILDP system model is built on top of the baseline simulator.

Therefore the baseline model should be validated before the experiments of the ILDP system are

conducted. Secondly, a close investigation of performance bottlenecks in a realistic pipeline model

gives valuable insights in pipeline design trade-offs.

130

7.2.1 Idealized Per formance Evaluation

By construction, it is very difficult for the timing simulators in the thesis to overestimate

performance of the given pipeline design. For example, if some of the bypass timing is modeled too

aggressively, instructions will eventually capture incorrect values. Sooner or later, this error is

uncovered by the “golden” simulator when the first instruction with the erroneous data value retires.

However, it is possible that unrealistically pessimistic timing models can go unnoticed. Hence the

goal of the initial validation was set to prevent underestimation of performance.

To achieve this goal, the baseline pipeline was initially simulated with perfect predictors

and caches. Ideally, this will lead to the estimation of the sustained performance under ideal

conditions (i.e., no miss and replay events). This steady-state performance should approximate the

overall machine width. Once this expected ideal performance level is confirmed, the effects of

transient performance penalties can be applied by introducing non-ideal predictors, caches, and

memory timing models. This methodology is in line with the one used by Karkhanis and Smith

[127].

Figure 7-1 shows the idealized baseline pipeline model. Perfect branch prediction is

implemented with a second functional simulator that provides branch outcomes early in the pipeline.

This simulator was placed in such a way that avoids any fetch redirection bubble cycles. This is to

isolate the effect of discontinuity in the fetch stream created by the taken branches. The functional

simulator also provides memory addresses for perfect disambiguation.

131

Figure 7-1 Ideal baseline pipeline

Table 7-1 Machine configurations used in idealized performance evaluation

 Idealized wide machines Baseline machine (wider issue)

Fetch bandwidth 8

Decode/rename/dispatch
bandwidth

4

Branch/store/other retire
bandwidth

4/4/4 1/1/4

Fetch redirection latency 0 2

Issue window 512, 128, 32 32

Issue logic Fully shared, unified 4 x 8 as in Figure 6-2

Issue width 4 integer, 4 memory, 4 floating-point

Reorder buffer 512, 128, 128 128

Store queue/load queue 512/512, 128/128, 128/128 32/48

Physical register file 512/512, 128/128, 128/128 80/80

Fetch

Single-cycle
fetch redirection

Normal fetch redirection loop

Perfect predictors: no branch misprediction

Align Decode Rename Dispatch Issue
Register

read

Execute/
Addr
calc

D-cache

Register
write-
back

Retire
Write-
buffer

Perfect disambiguation: no memory ordering violation

Perfect D-cache: no mini replays

1st Golden
simulator

2nd Golden
simulator

132

To isolate the effects of the pipeline implementation limits as much as possible, the

machine parameters are set to be sufficiently larger than a typical 4-way superscalar pipeline

configuration. In Table 7-1, the artificially large machine parameters are shown side-by-side to the

corresponding baseline parameters. Note that the issue width, 4 for each functional unit type, in the

right-hand side is still much larger than the actual configuration (2 for each functional unit type)

used throughout the evaluation. This is intended to isolate the effect of the number of functional

units from the idealized performance evaluation. The complete set of parameters for the realistic

pipeline is shown side-by-side with the corresponding ILDP parameters in section 7.3.1.

Effect of window size and pipeline inefficiencies (perfect disambiguation/BP/I$/D$)

0

0.5

1

1.5

2

2.5

3

3.5

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

A
lp

h
a

IP
C

512 128 32 32 (realistic pipeline)

Figure 7-2 Effect of window size and pipeline ineffeciencies

Figure 7-2 confirms the validity of the stead-state performance model. The IPC drop of

about 0.7 in the most aggressive configuration (the leftmost bars in the chart) from the ideal steady-

state IPC of 4 is explained with the following imperfections:

· The instruction fetch stream is limited by the I-cache sub-block size and branch

(mis)alignments within the fetched sub-block.

· Multi-cycle functional unit latencies, especially the three cycle load-to-use latency.

133

Note the relatively small performance difference (less than 3%) between an idealistically

wide pipeline configuration with a 32-entry, unified issue queue and the realistically configured

pipeline. To some extent, this shows the complexity-effectiveness of the modeled pipeline.

Effect of memory dependence speculation (perfect BP/I$/D$)

0

0.5

1

1.5

2

2.5

3

3.5

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

A
lp

h
a

IP
C

Speculative load issue No memory ordering speculation

Figure 7-3 Effect of memory dependence speculation

It is interesting to see the effect of memory disambiguation schemes in Figure 7-3. By

default, the baseline pipeline speculates on the memory dependences (the first bars). In the second

configuration, load instructions are not allowed to issue if there is any older store instruction whose

address has not be resolved yet. To some extent, this confirms the observation by Moshovos and

Sohi [167] that memory dependences can limit the performance of a program substantially. Many

current generation high performance processors allow loads to issue speculatively without fully

checking all older stores.

Finally, Figure 7-4 shows the effect of Alpha ISA NOPs. Here the average numbers of

decoded instructions and the retired instructions per cycle are shown. As explained in the previous

chapter, the Alpha ISA NOPs are recognized and removed in the decode stage. On average, 7% of

the total IPC is lost due to those NOPs.

134

Effect of Alpha NOPs

0

0.5

1

1.5

2

2.5

3

3.5

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.

cra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.

ga
p

25
5.

vo
rte

x

25
6.b

zip
2

30
0.

tw
ol

f

H.m
ea

n

A
lp

h
a

IP
C

Include NOPs (decode IPC) Exclude NOPs (retire IPC)

Figure 7-4 Effect of Alpha NOPs

This is an example of the binary compatibility requirement restricting the performance of

later generation designs. Most of the NOPs were generated by the compiler in an effort to align the

branch/jump target addresses, hoping to improve the fetch efficiency. Even though newer designs

typically have reasonably deep front-end buffers to squash the fetch-induced bubble cycles, their

fetch bandwidths are still artificially reduced by the older program binaries – an unfortunate legacy.

The superblock-based dynamic binary translation naturally removes those NOPs.

7.2.2 Effect of Mispredictions and Cache Misses

Figure 7-5 shows the average number of costly pipeline events, such as branch

mispredictions and cache misses. These events largely determine the overall performance of a

machine [127]. Of these events, the L1 cache misses can be partially hidden by reasonably deep

pipeline buffers and out-of-order processing as long as the misses are not too frequent. In general,

branch mispredictions are relatively more costly than the L1 cache misses. Nonetheless, the L2

cache misses have the biggest effect on the performance if the number of misses is not trivial. From

Figure 7-5, it can be inferred that the performance of 181.mcf will be substantially lower than other

benchmarks.

135

Costly ev ents per 1000 instructions

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0

164
.g

zip

175
.vp

r

176
.g

cc

18
6.cr

afty

19
7.p

ars
er

252
.e

on

253
.p

erlb
m

k

25
4.g

ap

25
5.vo

rte
x

256
.b

zip
2

300
.tw

ol
f

L2$ misses

D$ load
misses

I$ misses

mis-
predictions

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0

181
.m

cf

Figure 7-5 Average number of mispredictions and cache misses per 1,000 instructions

In Figure 7-6, realistic branch predictors, the I-cache, the D-cache, and the L2-cache are

introduced in sequence. It would be interesting to see other combinations such as perfect branch

prediction coupled with imperfect caches. Unfortunately, it is very difficult to use such

combinations because of the way the simulator was built.

Effect of prediction and caches

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

arse
r

25
2.e

on

25
3.p

erlb
m

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

A
lp

h
a

IP
C

perfect disambig/BP/I$/D$/L2$ perfect I$/D$/L2$ perfect D$/L2$ perfect L2$ realistic

Figure 7-6 Effect of mispredictions and cache misses

136

From Figure 7-6, it is apparent that the branch mispredictions limit the overall performance

to the average IPC of about 1.2. Level 1 cache misses do not affect the performance much; this is

mostly due to the small working set sizes of the SPEC benchmark programs. The out-of-order

instruction execution and various pipeline buffers are able to hide most of those miss events for this

workload. However, they are not sufficient to hide L2 cache miss latencies. Those benchmarks that

experience a handful of L2 cache misses per 1,000 instructions show a fairly large performance

drop. The effect of L2 cache misses is responsible for the low performance of 181.mcf, to the point

where the average IPC performance (in harmonic mean) is largely determined by the performance

of that particular benchmark.

Average load latency

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

mcf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.g

ap

25
5.v

or
te

x

25
6.

bz
ip2

30
0.

tw
ol

f

C
yc

le
s

48.3

Figure 7-7 Average load latency

Figure 7-7 shows the measured average latencies of the load instructions. Again, 181.mcf

has an order of magnitude higher average latency. This average load latency was obtained after

introducing combining mechanisms in key memory buffers, i.e., LMQ, WB and MSHR. Typically

cache misses are “bursty” and show certain amount of spatial locality [127]. If the memory buffers

do not perform combining, those characteristics are not exploited and hence, the average load

latency is unacceptably high.

137

Effect of issue logic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

arse
r

25
2.e

on

25
3.p

erlb
m

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

A
lp

h
a

IP
C

8-way wide, back-to-back 4-way wide, back-to-back 2-way wide, back-to-back 2-way wide, pipelined

Figure 7-8 Effect of issue logic

Lastly, the complexity-effectiveness of the issue logic is shown in Figure 7-8. Here the

issue widths for particular functional unit types are varied. For example, in the 2-way wide

configuration, maximum two integer, two memory, and two floating-point instructions can be

issued as in Figure 6-2. The last configuration uses a pipelined issue logic as in POWER4 – there is

one bubble cycle between a single cycle (in terms of the computation latency) instruction and a

dependent instruction. Although wider issue does help in some benchmarks (especially 256.bzip2

which is not constrained by branch mispredictions and cache misses), it may not be worth the added

complexity of the extra bypass network. On the other hand, the effect of back-to-back issue is not

very high (3.7% IPC drop). In other words, the 4-way segmented issue window used in the baseline

pipeline is highly complexity-effective.

7.2.3 Summary of Baseline Model Evaluation

From the experiments on the baseline pipeline that are modeled after current generation

superscalar processors, it is clear that the overall performance is largely determined by the branch

prediction accuracy and the memory subsystem design. In other words, given the prediction and

138

cache performances, it makes better sense to make the “main” pipe relatively simple and reduce the

number of mini replays to reduce energy consumption.

7.3 Evaluation of the ILDP System

7.3.1 Machine Configurations

Table 7-2 summarizes the simulated machine parameters for both the baseline superscalar

processor and the ILDP microarchitecture. The default parameters for the ILDP pipeline are shown

in bold and used throughout the evaluation unless explicitly stated otherwise. In summary, the

default ILDP configuration uses a 4-instruction wide pipeline front-end, 8 logical accumulators, 8-

way FIFOs, a two-way replicated 32KB L1 D-cache organized as in Figure 3-6(c), and 0-cycle

global communication latency.

139

Table 7-2 Simulated machine parameters

 Baseline superscalar ILDP

L1 I-cache Direct mapped, 32-KB, 128-byte line size, 1 shared read/write port

Fully shared, 32-KB 1 or 2 instances, 32-KB or 16-KB

L1 D-cache 2-cycle (3-cycle load-to-use), 2 read ports, 1 write port
4-way set-assoc., tree-style pseudo LRU, 128-byte line size

L2 cache

8-cycle for the critical word, 4 bursts to fill L1 caches,
runs at half frequency of the main pipeline
4-way set-assoc., tree-style pseudo LRU, 1-MB, 128-byte line size, 1 read/write port
8-entry combining LMQ, 12-entry combining WB, single-entry FMQ

Memory interface
96-cycle for the critical L2 cache sub-block, 4 bursts to fill L2 cache line,
runs 8 times slower than the main pipeline
16-entry combining MSHR

Fetch bandwidth 32 byte

Instruction
align/scan

Max 8 instructions Max 16 instructions

Decode/rename
bandwidth

4 instructions 4 or 6 instructions

Branch prediction

16K entry, 12-bit global history g-share predictor
32-entry RAS
512-entry, 4-way set-assoc. BTB
256-entry, 4-way set-assoc. JTLT (ILDP only)
2 predictions per cycle in the decode stage
out-of-order branch resolution, predictors are trained in the retire stage

Store queue Shared, 32-entry shared, 2 CAM ports Local, 32-entry, 1 CAM port

Other ordering
maintenance

buffers

128-entry reorder buffer: 1 branch, 1 store, otherwise 4 instructions per cycle retire
bandwidth
48-entry load queue,
two 80-entry register scoreboards (for integer and fp),

4 * 8-entry int./mem. out-of-order queue
4 * 8-entry fp out-of-order queue

Maximum two instructions are dispatched
to a FIFO in the same cycle,
4, 6 or 8 32-entry single issue FIFO queue

Max 2 int, 2 mem, 2 fp instructions Max 4, 6 or 8 instructions (any type)
Issue queue

Load hit speculation (2-cycle shadow) No load hit speculation

Physical register
file

Shared, 80-entry integer, 80-entry fp Local, 80-entry integer, 80-entry fp

Fully pipelined, fully shared Sequential, local within PE

Functional units
2 integers, 2 fps, 2 L1 D-cache read ports,
1 write port

4/6/8 integers, 4/6/8 fps, 1/2 L1 D-cache
read ports, 1 broadcast write port

140

7.3.2 Dynamic Binary Translation Character istics

Table 7-3 Translated instruction character istics

 Benchmark

Total number
of dynamic
Alpha
instructions

% of Alpha
instructions
executed in
native mode

Relative
number of
dynamic
instructions

% of copy
instructions

% of effective
address
calculation
instructions

164.gzip 3.25 billion 99.99 1.33 62.97 21.04
175.vpr 1.44 billion 99.94 1.33 55.74 32.62
176.gcc 1.77 billion 98.78 1.32 60.84 36.86
181.mcf 4.00 billion 99.77 1.31 40.13 37.79
186.crafty 4.00 billion 99.36 1.42 45.67 46.66
197.parser 3.92 billion 99.99 1.34 52.66 24.75
252.eon 1.72 billion 99.89 1.35 39.29 46.37
253.perlbmk 4.00 billion 99.96 1.29 49.38 30.93
254.gap 1.11 billion 99.98 1.26 58.01 20.16
255.vortex 4.00 billion 99.40 1.25 50.08 39.51
256.bzip2 4.00 billion 99.90 1.42 57.72 23.86
300.twolf 4.00 billion 99.95 1.35 56.75 19.93

Average 99.74 1.33 57.88 34.84

From the 3rd column in Table 7-3, it can be seen that most of the V-ISA instructions are

executed in the native execution mode. If the percentage falls below 99% as with 176.gcc, the

impact of the interpretation overhead becomes significant. The effect of the interpretation overhead

is evaluated in section 7.3.3.3. The 4th column in Table 7-3 shows the dynamic instruction count

expansion phenomenon. On average 33% more instructions are generated. Copy instructions take

more than half of those extra instructions. A more elaborate ISA format that supports GPR op

I mmedi at e mode could reduce the number of extra copy instructions somewhat. In return, the

instruction decoding would be much more complex. The last column shows that even with the

specialized ISA support for suppressing unnecessary decomposition of a V-ISA instruction into

multiple I-ISA instructions, some memory instructions still generate a separate address calculation

141

instruction. This is due to the reduction of displacement field width from 16-bit (Alpha ISA) to 7-bit

(ILDP ISA).

Table 7-4 Translated instruction character istics, continued

Average instruction
decode rate

Benchmark
Average
instruction
size in bytes Alpha/

baseline
ILDP/
ILDP

Total
translation
cache size

Relative
number of static
instruction
bytes

Number of Alpha
instructions to
translate a source
Alpha instruction

164.gzip 3.50 3.44 3.75 70,972B 1.33 871.25

175.vpr 3.59 3.42 3.72 101,932B 1.37 878.37

176.gcc 3.57 3.25 3.62 2,466,640B 1.31 870.40

181.mcf 3.68 3.17 3.50 35,152B 1.50 896.92

186.crafty 3.47 3.43 3.72 441,276B 1.31 874.64

197.parser 3.60 3.21 3.52 430,920B 1.28 856.33

252.eon 3.68 3.43 3.68 136,608B 1.71 871.13

253.perlbmk 3.58 3.33 3.66 90,940B 1.14 860.20

254.gap 3.58 3.31 3.68 510,472B 1.24 N/A

255.vortex 3.59 3.36 3.72 871,796B 1.23 831.44

256.bzip2 3.59 3.38 3.53 33,424B 1.23 864.87

300.twolf 3.62 3.41 3.73 145,376B 1.14 879.20

Average 3.59 3.35 3.65 1.32 858.5

On the other hand, the average instruction size (shown in the 2nd column in Table 7-4) is

somewhat reduced to 3.59 bytes (from 4 bytes) due to the use of 16-bit instructions. The average

instruction decode rates (shown in the 3rd and 4th columns) are obtained by counting the number of

decoded instructions in cycles when instruction decoding is not stalled. Due to the combination of

smaller average instruction size and the dynamic code re-layout effect, the average number of

instructions that are fetched and decoded in the ILDP system is higher than a comparable

superscalar pipeline.

The 5th column contains the total code size of all translations in the translation cache. The

small working set sizes of the SPEC CPU2000 benchmarks justify the simulation framework design

142

decision to not implement a translation cache management algorithm. The code expansion rate in

the 6th column is the footprint ratio of the all translated code in the translation cache over their

corresponding V-ISA superblocks. On average, the code expansion rate is limited to 1.32. The

VLIW-based DAISY system reported 1.27 to 7.95 code expansion rates for select SPECint95

benchmarks [70].

On average, less than 860 Alpha instructions were executed to translate a single Alpha

instruction (the 7th column in Table 7-4). This number is much less than a quarter of the 4,000+

PowerPC instructions needed to translate a PowerPC instruction to the VLIW architecture, as

reported by the DAISY project [70]. Most of this reduction comes from the simple nature of the

dynamic binary translation algorithm; no aggressive optimization is performed. All in all, the ILDP

dynamic binary translation system achieves fast translation and small translated code size.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

16
4.g

zip

17
5.

vp
r

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.

pa
rs

er

25
2.e

on

25
3.

pe
rlb

m
k

25
5.v

or
te

x

25
6.

bz
ip2

30
0.t

wol
f

Generate ILDP instructions

Accumulator assignment

Strand identification

Dependence setup

Decode Alpha instructions

Figure 7-9 Breakdown of binary translation components

Figure 7-9 shows the breakdown of the binary translation components as number of

dynamic instructions executed in each component. Note that Alpha ISA decoding, even with a

highly optimized code, takes about 17% of the total dynamic instructions. Similarly the Dynamo

project reported that about 25% of the static translator code (total of 265KB) is for decoding the HP

143

PA-RISC ISA [14]. The significance of the source ISA decoding is directly related to the

interpretation overhead.

7.3.3 Per formance of the ILDP System

7.3.3.1 IPC Performance

Figure 7-10 compares performance of the ILDP processor running dynamically translated

ILDP I-ISA code with the conventional baseline superscalar processor running original Alpha V-

ISA binaries. In all charts, the first two bars, baseline Alpha IPC and ILDP Alpha IPC respectively,

represent performance measured with the number of Alpha instructions per cycle. Here all V-ISA

instructions are accounted; the ILDP Alpha IPC is calculated by dividing the all Alpha instructions

(interpreted or natively executed as ILDP instructions) with the total execution time. In other words,

the interpretation and translation overheads were included. An average of 870 cycles and 20 cycles

were used for translating and interpreting a single Alpha instruction, respectively. The effect of

interpretation speed is further discussed in section 7.3.3.3. On the other hand, the ILDP native IPC

(represented by the third bars) is calculated as the number of ILDP instructions executed in the

native mode divided by the cycles spent in the native mode.

Perfect I$/D$/L2$

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

arse
r

25
2.e

on

25
3.p

erlb
m

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

IP
C

Baseline Alpha IPC ILDP Alpha IPC ILDP native IPC

144

Perfect D$/L2$

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

16
4.g

zip

17
5.

vp
r

17
6.

gc
c

18
1.

mcf

18
6.c

ra
fty

19
7.

pa
rse

r

25
2.

eo
n

25
3.

pe
rlb

mk

25
4.

ga
p

25
5.v

or
te

x

25
6.

bz
ip2

30
0.t

wol
f

H.m
ea

n

IP
C

Baseline Alpha IPC ILDP Alpha IPC ILDP native IPC

Perfect L2$

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

16
4.

gz
ip

17
5.v

pr

17
6.

gc
c

18
1.

mcf

18
6.

cra
fty

19
7.

pa
rse

r

25
2.

eo
n

25
3.

pe
rlb

mk

25
4.

ga
p

25
5.v

or
te

x

25
6.

bz
ip2

30
0.

tw
ol

f

H.m
ea

n

IP
C

Baseline Alpha IPC ILDP Alpha IPC ILDP native IPC

Realistic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

16
4.

gz
ip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

arse
r

25
2.e

on

25
3.p

erlb
m

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

IP
C

Baseline Alpha IPC ILDP Alpha IPC ILDP native IPC

Figure 7-10 IPC comparisons

145

As with the validation method used for the baseline model, the performance evaluation for

the ILDP system starts with the idealized conditions. In the first chart in Figure 7-10 where perfect

caches are used (but with realistic branch predictors), the ILDP VM system actually outperforms,

albeit with a small margin of 2.8%, the baseline superscalar processor with a comparable pipeline

depth, even without counting the potential clock speed advantage. This IPC performance

improvement comes from a combination of the following factors:

· Enhanced fetch efficiency from dynamic code re-layout

· Increased number of functional units

· Reduction of average L1 D-cache access latency from loads without address calculation

· Dramatic reduction of load-related mini replays

The 18.3% IPC drop in 176.gcc comes mostly from the interpretation overhead, not from

microarchitectural inefficiencies of the ILDP system. This can be seen from the 16.5% higher native

ILDP IPC compared with the native Alpha IPC of the baseline pipeline.

As realistic caches are introduced, the IPC performances of the two systems start to

converge. This is to be expected; in general, a machine’s performance is largely determined by

costly pipeline flushes (such as branch mispredictions) and cache misses (especially L2 cache

misses). An exception to this trend is 186.crafty whose performance characteristic changes from

improvement (with a perfect I-cache) to degradation (with a realistic I-cache). This is explained by

the increased number of I-cache misses (shown in Figure 5-8). Of all twelve benchmarks, 176.gcc

and 186.crafty suffers more I-cache misses. Similarly the performance improvement in 164.gzip

increases from 24.6% (with a perfect I-cache) to 68.6% (with a realistic I-cache) because the code

re-layout effect removes I-cache trashing.

146

Finally, when a realistic L2 cache (and related memory buffers) is used (the last chart), the

average IPC performance is largely dominated by 181.mcf (0.16 IPC) which misses in the L2 cache

often. Table 7-5 contains the same IPC numbers in a tabular form.

Table 7-5 IPC compar isons

Perfect I-cache/D-
cache/L2 cache

Perfect D-cache/L2
cache

Perfect L2 cache Realistic

Bench-
mark Baseline

Alpha
IPC

ILDP
Alpha
IPC

ILDP
native
IPC

Baseline
Alpha
IPC

ILDP
Alpha
IPC

ILDP
native
IPC

Baseline
Alpha
IPC

ILDP
Alpha
IPC

ILDP
native
IPC

Baseline
Alpha
IPC

ILDP
Alpha
IPC

ILDP
native
IPC

164.gzip 1.38 1.72 1.74 1.02 1.72 1.74 0.93 1.47 1.49 0.91 1.43 1.44

175.vpr 1.14 1.26 1.29 1.12 1.25 1.28 0.99 1.08 1.11 0.99 1.08 1.10

176.gcc 1.09 0.89 1.27 0.95 0.75 0.99 0.88 0.70 0.91 0.76 0.57 0.99

181.mcf 1.07 1.11 1.11 1.07 1.11 1.11 0.72 0.69 0.69 0.16 0.16 0.16

186.crafty 1.37 1.51 1.57 1.23 0.97 0.99 1.10 0.92 0.94 1.07 0.88 0.90

197.parser 1.11 1.17 1.20 1.08 1.06 1.08 0.99 1.00 1.03 0.82 0.83 0.85

252.eon 1.43 1.29 1.33 1.26 1.23 1.26 1.17 1.12 1.14 1.17 1.11 1.14
253.perl-
bmk

1.21 1.40 1.42 0.99 1.27 1.28 0.92 1.13 1.14 0.92 1.13 1.14

254.gap 1.20 1.18 1.37 1.06 0.99 1.12 0.99 0.92 1.02 0.65 0.61 0.66

255.vortex 1.55 1.61 1.75 1.15 1.30 1.39 1.08 1.14 1.21 1.01 1.04 1.09

256.bzip2 1.68 1.62 1.62 1.68 1.62 1.62 1.59 1.46 1.47 1.22 1.14 1.14

300.twolf 1.07 1.16 1.17 1.05 1.14 1.16 0.87 0.92 0.93 0.85 0.90 0.91

Harmonic
mean 1.25 1.28 1.37 1.11 1.15 1.22 0.98 0.99 1.05 0.65 0.65 0.69

147

7.3.3.2 Performance Var iations over Machine Parameters

In this section, the ILDP microarchitecture machine parameters are changed to estimate

their impact on the performance. In Figure 7-11, both front-end and back-end widths are varied. The

default configuration (a 4-wide front-end feeding an 8-FIFO-wide back-end) is represented by the

second bar (in black). All configurations use four global buses to keep the physical registers

coherent.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

16
4.

gz
ip

17
5.vp

r

176
.g

cc

18
1.

m
cf

18
6.cr

af
ty

19
7.

pa
rs

er

252
.e

on

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip2

300
.tw

olf

H.m
ea

n

A
lp

h
a

 IP
C

6-way front/8-way FIFO 4-way front/8-way FIFO 6-way front/6-way FIFO
4-way front/6-way FIFO 4-way front/4-way FIFO

Figure 7-11 Effect of machine width

First, the front-end width is increased to 6 instructions (the first bars). This is to make up for

the dynamic instruction count expansion. Some benchmarks, especially 256.bzip2, benefits from

this change. However, increasing the front-end width will invariably increase the complexities of

the rename logic and especially the steering (accumulator renaming) logic and hence, may not be

desirable. On the other hand, the third combination of 6-way front-end and 6-way back-end results

in lower overall performance compared to the default configuration. Note that the fourth

combination of 4-way front-end and 6-way back-end holds up well (a 2.93% IPC drop compared

148

with the default configuration). Reducing the number of FIFOs to four leads to a fairly large

performance loss in some benchmarks. On average, a 7.77% IPC loss is observed for this

configuration. Table 7-6 contains the same IPC performance numbers as the Figure 7-11, but in a

tabular form.

Table 7-6 Effect of machine width

Alpha IPC

8-way FIFO back-end 6-way FIFO back-end 4-way FIFO Benchmark

6-way front-end 4-way front-end 6-way front-end 4-way front-end 4-way front-end

164.gzip 1.44 1.43 1.30 1.27 1.10

175.vpr 1.08 1.08 1.02 1.01 0.89

176.gcc 0.57 0.57 0.57 0.56 0.55

181.mcf 0.16 0.16 0.16 0.16 0.15

186.crafty 0.90 0.88 0.88 0.85 0.81

197.parser 0.84 0.83 0.81 0.80 0.74

252.eon 1.13 1.11 1.06 1.04 0.93

253.perlbmk 1.14 1.13 1.09 1.06 0.96

254.gap 0.62 0.61 0.61 0.60 0.58

255.vortex 1.05 1.04 1.04 1.02 0.96

256.bzip2 1.23 1.14 1.15 1.11 1.04

300.twolf 0.93 0.90 0.88 0.85 0.78

Harmonic
mean

0.66 0.65 0.64 0.63 0.60

149

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

A
lp

h
a

 IP
C

32KB L1D$ 16KB L1D$

Figure 7-12 Effect of L1 D-cache size

The default configuration uses a twice replicated 32KB L1 D-cache to increase the number

of read ports to the issue FIFOs (total of four read ports). Although the silicon area of the L1 D-

cache is becoming less important, especially with rapidly increasing L2 cache size, cache

replication does increase static power consumption due to the transistor count increase. If this is a

concern, a smaller L1 D-cache might be considered. In the second configuration in Figure 7-12, a

twice replicated 16KB D-cache is used to make up for the replication. On average the impact of L1

D-cache size is fairly small (3.25% IPC drop), at least for the type of workloads used in the

experiments.

150

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
te

x

25
6.b

zip
2

30
0.t

wolf

H.m
ea

n

A
lp

h
a

 IP
C

0-cycle 1-cycle 2-cycle

Figure 7-13 Effect of global wire latencies

Figure 7-13 shows the performance impact on adding global communication latencies. On

average, 2.93% and 6.47% IPC losses are observed for a single cycle and two cycle extra latencies,

respectively. This shows that dependence-based strand identification and simple steering based on

accumulator numbers works fairly well to tolerate the inter-PE communication latencies.

This performance loss is somewhat larger than what was reported in the early study using

the collected program traces [133]. This is mostly due to the increased percentage of global values

that are put into the physical registers and kept coherent by the bus network. As was stated in

section 4.3.2 and shown in Figure 4-3, the total percentage of instructions that produce global

output values in the superblock-based dynamic binary translation is about 40%, a substantial

increase compared with about 20% in the program trace study. Here the practical reality of

implementation details such as the strict binary compatibility requirement (resulting in increased

percentage of global values) and the finite bit-field width mandated by the ISA design (resulting

extra copy instructions for GPR op i mmedi at e mode) are limiting the benefit of the dependence

based execution paradigm.

151

7.3.3.3 Reduction of Mini Replays

In section 3.1.3, it was pointed out that the ILDP microarchitecture provides a unique

operand capture model that captures register values from the physical registers (and the physical

accumulators) before instructions are issued. As a result, the ILDP issue logic does not speculate on

the load instruction latency and hence, mini replays due to latency mis-speculation are completely

removed. This leads to dramatic reduction in the number of total mini replays as shown in .

Table 7-7 Number of total mini replays

Number of mini replays per 1,000 instructions
Benchmark

Baseline superscalar ILDP

164.gzip 16.23 0.012

175.vpr 26.77 0.086

176.gcc 11.89 0.071

181.mcf 228.94 0.400

186.crafty 15.67 0.036

197.parser 55.53 0.089

252.eon 9.35 0.026

253.perlbmk 7.64 0.017

254.gap 14.68 0.089

255.vortex 13.75 0.023

256.bzip2 8.01 0.009

300.twolf 45.61 0.162

Average 37.84 0.085

Note that mini replays are used for other reasons. For example, if an issued load instruction

happens to conflict with an incoming L1 D-cache line fill, the load is min-replayed. Note that in the

ILDP microarchitecture, only the next instruction in the FIFO needs to be pulled back (if the next

instruction starts a new strand and was issued). This will allow a simpler implementation of the mini

replay mechanism.

152

7.3.3.4 Impact of Interpretation Overhead

10-cycle interpret latency

0

1

2

3

4

5

6

7

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

erlb
m

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

A.m
ea

n

C
P

I

native execution

translate

interpret

100-cycle interpret latency

0

1

2

3

4

5

6

7

16
4.

gzip

17
5.

vp
r

17
6.

gcc

18
1.

m
cf

18
6.

cr
af

ty

19
7.

par
se

r

25
2.

eon

25
3.

per
lb

m
k

25
4.

gap

25
5.

vo
rte

x

25
6.

bzip
2

30
0.

tw
olf

A.m
ea

n

C
P

I

native execution

translate

interpret

Figure 7-14 Total CPI breakdown

In Figure 7-14, average cycles per instruction (CPI) numbers are used instead of IPC. In the

first chart, the total CPI is calculated using an aggressive interpretation latency of 10 cycles per

source Alpha instruction, while the second chart uses a 100 cycle interpretation latency. From the

153

chart it can be seen that the translation and interpretation overhead is sufficiently low for most

benchmarks. However, some programs do have a large code working set and hence, the virtual

machine overhead of interpretation and translation affects the overall performance of those

programs significantly. Of the simulated SPEC CPU2000 integer benchmarks, 176.gcc belongs to

those programs. When a 10 cycle interpretation latency is used, that particular benchmark spends

2.7% of the total execution time in the interpretation mode. If a 100 cycle latency (rather large for a

simple RISC ISA such as Alpha) is used, 176.gcc spends 21.6% of the total execution time

interpreting newly encountered program codes. In short, the interpreter performance is a very

important part of any code cache systems.

7.3.4 Complexity Compar isons

Finally, Table 7-8 summarizes the complexity reduction in terms of the number of ports,

fan-outs, etc., in hardware structures by showing the baseline superscalar and the ILDP pipelines

side-by-side. It can be seen that the ILDP microarchitecture enjoys reduced complexity in all major

pipeline hardware structures. For example, the register rename read bandwidth is reduced from 12

to 8 for 4-way wide machines. Issue queue design is dramatically changed; for integer instruction

types, a 4-way segmented, 8-entry out-of-order queue that wakes up and selects six instructions in a

cycle is replaced with eight (or fewer. depending on the desired performance level) in-order, single-

issue FIFO buffers. The number of physical register file read ports were reduced from 7 to 1 by

replication. The global result bypass network’s fan-out (i.e., capacitive loading) is reduced from 12

to 8 (or less depending on the number of FIFOs) for integer type results.

154

Table 7-8 Hardware complexity compar isons

 Baseline superscalar ILDP

Rename
bandwidth

(2 for inputs + 1 for output’s old
mapping) * 4 = 12 read ports

(1 for output’s new mapping) * 4 = 4
write ports

(1 + 1) * 4 = 8 read ports

1 * 4 = 4 write ports

Store queue Shared, 32-entry shared, 2 CAM ports Local, 32-entry, 1 CAM port

4 * 8-entry int./mem. out-of-order queue

4 * 8-entry fp out-of-order queue
8 FIFO queue

Max 2 int, 2 mem, 2 fp instructions Max 4, 6 or 8 instructions (any type)
Issue queue

Load hit speculation (2-cycle shadow) No load hit speculation

Shared Local

Integer: 2 * 2 (int) + 2 * 1 (mem addr) +
1 (store data) = 7 read ports

Fp: 2 * 2 (fp) + 1 (store data) = 5 read
ports

Integer: 1 read port

Fp: 1 read port
Physical register

file

Integer: 2 (int general) + 2 (int load) + 1
(shared) = 5 write ports

Fp: 2 (fp general) + 2 (fp load) + 1
(shared) = 5 write ports

Integer: 2 or 4 write ports

Fp: 2 or 4 write ports

Functional units Fully pipelined, fully shared Sequential, local within PE

Integer: { 1(physical register) +
1(ALU)} *[{ 2(inputs)*2(int general)} +
{ 1(input)*2(load)}] = 12

Int load: (1 + 1)*{ (2*2) + (1*2)} = 12

Local: 3 (accumulator register)*1 (shared
by ALUs and D-cache) + 1 (GPR) = 4

Fp load: (1 + 1)*(2*2) = 8

Result bypass
network fan-out

Fp: { 1(physical register) + 1(ALU)} *
{ 2(inputs) * 2(fp issue width)} = 8

Global: 8 fan-out,
4 results are broadcast per cycle

155

7.3.5 Summary of the ILDP System Evaluation

From the experiments on the ILDP system that runs a DBT software layer on top of the

ILDP microarchitecture, the complexity advantage of the ILDP paradigm was demonstrated. There

are two aspects of this. First, the hardware complexity is reduced in most key pipeline structures. In

general, reductions in those areas lead to higher clock frequencies, reduced power consumption and

silicon area. Reduction of the number of mini replays and simplification in the mini replay

mechanism implementation are another areas that show this type of simplifications.

Second, the software complexity (evaluated as the number of instructions required to

perform translation) is reduced in the dynamic binary translator. Compared with a previous VLIW-

based VM system, the DBT algorithm is more than four times faster. Other types of complexity

reduction, such as simpler precise state maintenance, are also achieved.

On average, the overall ILDP system is shown to perform slightly better, even including the

DBT overheads, than a comparable superscalar design. This is made possible by the combination of

many factors, including: improved fetch efficiency from dynamic code re-layout, relatively larger

number of functional units, and reduction of the average L1 D-cache hit latency and the number of

mini replays. Eventually, however, the overall performance of a system is largely determined by the

costly events such as L2 cache misses. Note that this is achieved only after the key virtual machine

overheads, such as chaining of register indirect jumps in the code cache, are removed. On the other

hand, the dependence-oriented ILDP system is shown to tolerate the global communication

latencies fairly well.

156

Chapter 8 Conclusions

8.1 Thesis Summary

In this thesis, I explored a hardware/software co-designed virtual machine (VM) for

instruction-level distributed processing (ILDP). More specifically, I studied and developed three

key parts of the co-designed VM system for ILDP, i.e., an accumulator-oriented implementation

instruction set format, a distributed, dependence-oriented microarchitecture, and a simple and

efficient dynamic binary translation method. Specialized hardware/software support mechanisms

for efficient control transfers in a co-designed VM system were also developed. In the thesis, the

Alpha instruction set architecture (ISA) is used as the virtual ISA (V-ISA) of the co-designed VM

system.

8.1.1 Instruction Level Distr ibuted Processing

Instruction-level distributed processing is a design principle that focuses on simple and

modular designs with distributed processing at the instruction level. In the ILDP point of view,

microarchitecture is considered as a distributed computing problem and communications between

instructions are explicitly accounted for as well as computations. Hierarchy is used to contain local

communications within a distributed processing element (PE) and manage the overall

microarchitecture for global communication between multiple PEs. Previous research

[130][171][197][220][224][227] shares the overall distributed processing idea with the ILDP

research in this thesis. Combining the following three aspects of the thesis research makes the ILDP

paradigm in the thesis unique among the researches on distributed processing. First, the granularity

of distributed processing is maintained at the individual instruction level. Second, the

157

microarchitecture is designed for simplicity, not for pursuing instruction level parallelism (ILP)

aggressively. Third, the semantics of the ILDP ISA used in the thesis is sufficiently close to the

traditional ISAs, thereby allowing simple and efficient dynamic binary translation to be used for

providing binary compatibility with the existing programs.

8.1.2 ILDP Instruction Set Architecture

Most existing instruction set architectures are not a good fit for ILDP because typically they

do not have a notion of communication hierarchy (other than the most basic distinction between

registers and memory). The proposed ILDP ISA in the thesis is based on the following two

observations. First, most register values are used only once and most of them are consumed soon

after creation; these values are labeled as local. The thesis classifies register value types based on

their degree of usage patterns and notes that the dynamic register dependence graph mostly consists

of many short chains of dependent instructions, strands, occasionally intersecting with one another.

About 70% of all produced values in the collected program traces were found to be local. Second,

instructions with true register dependences cannot issue in parallel (unless value speculation

techniques are used).

The ILDP ISA has small number of accumulators on top of a relatively large number of

general purpose registers (GPRs). The ILDP instruction format assigns temporary values that

account for most of the register communications to a small number of accumulators. Only the

remaining values (labeled as global) that have long lifetime or multiple consumers are assigned to a

larger number of general purpose registers. As a result, the complexity of the register file and

associated hardware structures can be greatly reduced.

A strand is a single chain of dependent instructions and identifies the dependence chain’s

lifetime. A strand is started with an instruction that has no local input values. Instructions that have

158

a single local input value assigned to a strand are added to the producer’s strand. If an instruction

has two local input values, one of the two producer strands is terminated by converting its output

value from local to global. There is only one user of a produced value inside a strand. From the

program trace study, the average strand size was found to be 2.54 Alpha instructions. An entire

strand, sharing a common accumulator, is steered to the ILDP microarchitecture and issued in-order.

Strands are issued out-of-order with respect to other strands in different PEs. Accumulator-assigned

local values are communicated locally within a PE to the next instruction in the strand. As a

consequence, the dependence-oriented ILDP ISA format facilitates simple implementation of a

complexity-effective distributed microarchitecture that is tolerant of global communication latencies.

The ILDP ISA format was also designed to be a simple target for a dynamic binary

translation (DBT) system. Two major issues in DBT were addressed in the thesis. First, maintaining

precise architected state is made relatively easier by the decision that the ILDP DBT system in the

thesis does not reschedule instructions; hence the values are produced in the same order as the

original program. However, with an accumulator-based ILDP implementation ISA (I-ISA) this is

not sufficient because some V-ISA values are held in accumulators and may be overwritten prior to

a trap. In the finalized ILDP I-ISA format, every instruction producing a V-ISA result specifies a

destination GPR to maintain architected state. This decision affects the second issue of suppressing

dynamic code footprint expansion because the destination GPR identifier bit field, coupled with

other ILDP-specific bit fields, complicates the ISA format design. Special care was taken to limit

the code expansion. For example, a memory instruction format that informs the hardware to

dynamically crack the instruction into two micro-instructions was introduced. The ILDP I-ISA

includes specialized support instructions for efficient control transfers within a code cache used in

the ILDP VM system. The instruction set also uses small number of instruction sizes to offset the

instruction count expansion typically found in dynamic binary translation systems.

159

8.1.3 ILDP Microarchitecture

The strand concept of the ILDP ISA is reflected in the accompanying ILDP

microarchitecture. The ILDP microarchitecture in the thesis consists of a pipeline front-end of

modest width and a number of distributed PEs, each of which performs sequential in-order

instruction processing. The ILDP instruction format exposes inter-instruction dependences and local

value communication patterns (via accumulator identifiers) to the ILDP microarchitecture, which

uses this information to steer instruction strands to the sequential PEs.

The front-end pipeline in the co-designed ILDP microarchitecture is optimized for fetching

multiple sequential basic blocks in a cycle. This is to exploit the automatic code re-layout effect of

the superblock (a straight-line code sequence with a single entry point and multiple exit points)

based dynamic binary translation. GPRs are renamed to physical registers using a traditional rename

table. The complexity of the rename logic is reduced because an ILDP instruction only uses a

maximum one input GPR and one output GPR. Typical RISC ISA instruction formats use two input

GPRs and one output GPR. Accumulators are renamed, or steered, to the issue FIFO buffers. Unlike

the traditional register renaming, the old mapping for an accumulator is not required because the

accumulator’s end of lifetime is explicitly encoded within an instruction. Before the renamed

instructions are dispatched to the back-end PEs, instruction ordering enforcement buffers, e.g.,

reorder buffer, load queue, and store queue, are assigned. The dispatch logic in the ILDP

microarchitecture performs the select phase of the traditional out-of-order issue logic and hence, can

be made faster. A ring-connected multiple instruction selector logic was developed to fit the

dispatch logic’s unique requirements – a logic style that scales well with multiple selections is

preferred while the circuit speed of the priority encoder is less important due to the omission of the

wakeup phase. The physical registers and replicated register scoreboards within PEs perform the

wakeup phase of traditional out-of-order issue logic.

160

Each PE contains an instruction issue FIFO buffer, a local (physical) accumulator, and a

local copy of the physical register file. The instructions within a FIFO form a dependence chain,

then issue and execute sequentially. Therefore the hardware complexity of a PE is maintained at the

level of an in-order scalar design. Because accumulator values stay within the same PE, they can be

bypassed without additional delay. The physical register files are kept coherent; their values

produced in one PE are communicated to the others through a global communication network. A

small number of shared buses are used in the thesis. Taken collectively, a form of out-of-order

superscalar execution is achieved by parallel execution of multiple strands.

In the ILDP microarchitecture, instructions read the physical register file before being

issued to the functional units. This unique combination of the physical register file based register

renaming model and the capture-before-issue operand capture model works to avoid the load

latency speculation (typically found in a physical register file based machines) without relying

heavily on the bypass networks for operand capturing (as in the machines that rename registers with

the reorder buffer or an equivalent mechanism).

Distributing the L1 D-cache is more difficult than the rest of the pipeline. To avoid memory

address-based load instruction steering – an extra complexity – from the PEs to the L1 D-cache(s),

the ILDP microarchitecture employs a simple combination of sharing and replication for the L1 D-

cache. On the other hand, the distributed nature of the ILDP pipeline back-end requires a distributed

memory disambiguation solution. The memory instructions are issued speculatively, then check the

store and load queues. If an ordering violation is found, the memory queue generates an ordering

replay. A simple PC-based dependence predictor is used to limit the number of ordering replays.

The latency-critical store queue is replicated for each L1 D-cache read port while the less

performance-critical load queue is shared by the multiple PEs. The contents of the replicated store

161

queue are kept coherent via a separate communication network for memory addresses. A small

number of shared busses are used in the thesis.

8.1.4 Dynamic Binary Translation for ILDP

For providing binary compatibility with the existing and future programs, the ILDP system

in the thesis relies on virtual machine software, co-designed with hardware and hidden from

conventional software (including the operating system). The dynamic binary translation subsystem

in the virtual machine monitor (VMM) layer maps existing virtual ISA binaries to the ILDP

implementation ISA codes on the fly.

One important advantage of the ILDP DBT is the fine-grain state maintenance model. The

translated code maintains the same instruction order as the original program; the underlying

hardware does reschedule the instructions dynamically but their order is maintained by the

collection of ordering enforcement buffers such as the reorder buffer and the store queue. As a

result, there is no need to checkpoint the architected state at the translation unit boundaries then roll

back and interpret until the trapping instruction is identified, as in previous course-grain co-

designed VM systems. This will improve the performance of the ILDP co-designed VM system

when a pathologically repetitive trap situation is encountered.

The ILDP DBT system was designed to suppress the code expansion as much as possible.

The DBT system uses the 16-bit instruction format if possible, keeps one-to-one instruction

mappings as much as possible, exploits known V-ISA idioms, and uses special instructions to

suppress instruction count expansion of control transfer instructions.

Unlike previous co-designed VM systems that employed a very long instruction word

(VLIW) hardware, the ILDP VM system uses a simplified form of out-of-order superscalar

microarchitecture that does not depend heavily on aggressive instruction scheduling by the

162

translator. As compared with prior VLIW-based co-designed VM systems, the ILDP VM system

achieves a new complexity balance point that is closer to hardware.

The main objective of the ILDP DBT algorithm is identifying instruction inter-dependences

and making register assignments that reduce inter-PE global communication. First, a dynamic

superblock is constructed by collecting the instructions after the superblock start condition is

satisfied. The collected instructions are then decoded and put into an intermediate representation

(IR) format trace structure. A linear scan of the IR trace is sufficient for setting up the inter-

instruction dependences and register usage patterns within the superblock. Next, strand numbers are

assigned to the dependence chains based on the input register usage patterns. A finite number of

(logical) accumulators are then allocated to the identified strands. The accumulator-assigned IR

instructions are converted to the ILDP I-ISA instructions.

Due to the nature of superblock-based translation, all live-in and live-out values are

considered as global. Regarding the early exit points (conditional branches) in a superblock, all

local values up to an early exit point are converted to global values. This is to avoid complex fix-up

codes that recover accumulator-assigned values to GPRs in the newly generated superblocks and the

shared dispatch table lookup code. As a result, the percentage of global values in the ILDP DBT

rises to about 40% from about 20% in the program trace study.

Over the course of the thesis research, it was found that the traditional superblock chaining

method for register indirect jumps was causing substantial performance loss. This loss comes from

two places: First, a single jump instruction is replaced with a multiple-instruction compare-and-

branch code sequence. If this form of simple software-based prediction is incorrect, control is

transferred to a shared dispatch table (a hash table that maps source binary program counter values

to translated binary program counter values) lookup code, resulting in even more instruction count

expansion. Second, the branch prediction performance is degraded. This is partly due to the sharing

163

of the dispatch lookup code and partly due to the traditional code cache system’s inability to use a

hardware return address stack (RAS). Two hardware support mechanisms, jump target-address

lookup table (JTLT) and dual-address RAS, were proposed and evaluated. Of the two, the simple

dual-address RAS was shown to have the biggest impact on the code cache system’s performance.

8.1.5 Results and Conclusions

A self-complete simulation infrastructure was developed to evaluate the performance and

complexity advantages of the ILDP system. A detailed superscalar microarchitecture simulator that

enforces the correctness by design was constructed. This 4-way wide baseline pipeline is largely

modeled after IBM POWER4 and models common complexity-effective design trade-offs, various

replay mechanisms, and detailed caches and memory subsystems found in modern high

performance out-of-order superscalar processors. The ILDP VM system is modeled by integrating

the DBT mechanism that changes operating modes between interpretation, translation, and native

execution of the translated ILDP codes with a timing simulator that models the ILDP

microarchitecture.

As a first step, the baseline pipeline model was validated. This was done by using perfect

predictors and caches then making sure the IPC performance is close enough to the expected steady-

state IPC performance of 4. During this experiment, it was found that the effect of the instruction

issue window organization and other implementation-specific pipeline inefficiencies is much

smaller than that of the memory dependence speculation. The ILDP microarchitecture design

decisions such as simplified issue mechanisms and use of a memory dependence predictor are in

line with these observations. When realistic predictors and caches were introduced, it was found (as

expected) that the branch prediction performance and the L2 cache latency largely determine the

overall performance. On the other hand, out-of-order execution and deep pipeline buffers were able

164

to hide L1 cache latencies well. Various issue logic organizations were also evaluated. The

POWER4 style 4-way segmented issue logic design was found to be highly complexity-effective,

again confirming the insight that the effect of issue logic is of secondary importance compared with

other subsystems, especially the L2 cache and the memory interface.

On average, the dynamically translated code shows a 33% increase in the number of

instructions and a 32% increase in the total code size. This relatively low code expansion (compared

to a VLIW-based co-designed VM) is achieved only after the DBT mechanism is carefully

optimized and specialized instruction/hardware support mechanisms such as special control transfer

instruction formats, JTLT, and dual-address RAS are employed. On the other hand, the translation

overhead was measured by first compiling the whole source code tree of the DBT/timing simulator

hybrid framework for the Alpha ISA, then running benchmarks on the framework as usual and

measuring the translation overhead as the average number of dynamically executed Alpha ISA

instructions for translating a single source Alpha ISA instruction. On average, 858.5 instructions

were executed per source instruction. This is less than one quarter of the instructions used in a

VLIW-base co-designed VM system.

The IPC performance of the ILDP co-designed VM system is evaluated by dividing all

Alpha ISA instructions (either interpreted or natively executed as translated ILDP ISA instructions)

with the total execution time (again including both interpretation and translation cycles). A 4-way

wide ILDP pipeline with 8 FIFOs sharing a twice-replicated L1 D-cache was used as a default

configuration. When perfect caches were used, the ILDP system was shown to perform slightly

better (2.8% better IPC) than the baseline superscalar processor of a comparable pipeline depth,

without counting the potential clock speed advantage from the complexity reduction in the key

pipeline structures. This IPC performance improvement comes from combination of many factors,

including enhanced fetch efficiency from the dynamic code re-layout effect of the superblock-based

165

translation, increased number of functional units making up for the reduced instruction issue

opportunities, reduction of the average L1 D-cache access latency from loads without address

calculation, and dynamic reduction of load-related mini replays. When realistic caches are used, the

average IPC performances of both systems converge. This is mostly due to the effect of the L2

cache misses. This makes good sense; two systems with similar branch prediction and L2 cache

behavior should perform similarly, assuming reasonably well-designed pipelines.

Next, the machine parameters were changed to estimate their impact on the ILDP system’s

performance. As was implied in the instruction count expansion, increasing the front-end width to 6

instructions improves the performance in some benchmarks. However, increasing the front-end

width will also increase the complexities of the GPR rename stage and the steering stage (where the

accumulators are renamed) and hence, may not be desirable. On the other hand, a combination of a

4-way front-end and a 6-way FIFO back-end holds up fairly well, showing only a 2.94% IPC drop

from the default configuration. Reducing the number of FIFOs to 4 leads to a 7.77% IPC degrade.

Adding global result bypass bus latencies of 1-cycle and 2-cycle resulted in 2.93% and

6.47% IPC losses, respectively. This shows that ILDP system is fairly tolerant to the global wire

latencies. This performance loss is, however, somewhat larger than expected by the earlier program

trace study. This is mostly due to the practical reality of the binary translator implementation

details; the simple but strict state maintenance model leads to increase in the percentage of global

values in superblocks and the finite bit-field width results in extra copy instructions.

On the other hand, complexity reduction is observed in most key pipeline structures. For

example, the register rename read bandwidth is reduced from 12 to 8 for 4-way wide machines.

Issue queue design is dramatically changed; for integer instruction types, a 4-way segmented, 8-

entry out-of-order queue that wakes up and selects total of six instructions in a cycle is replaced

with eight (or less depending on the desired performance level) in-order, single-issue FIFO buffers.

166

The number of physical register file read ports were reduced from 7 to 1 by replication. The global

result bypass network’s fan-out level is reduced from 12 to 8 (or less depending on the number of

FIFOs) for integer type results.

In summary, the experiments in the thesis show that a co-designed VM system for ILDP

performs similarly or better than conventional superscalar processors of similar pipeline depth while

achieving lower complexity in key pipeline structures. This complexity reduction in hardware can

be exploited to achieve either a higher clock frequency or lower power consumption, or a

combination of the two. All in all, the accumulator-oriented ILDP implementation ISA allows a

unique combination of a simple, distributed, dynamic microarchitecture and a simple, low-overhead

dynamic binary translation, resulting in an efficient implementation of an out-of-order superscalar

processor.

8.2 Future Research Directions

The hardware/software co-designed virtual machine for instruction level distributed

processing has many aspects and this thesis by no means covers them completely. Some of the

future research directions are discussed below:

· Static compilation: The accumulator-oriented ILDP ISA presents a unique compiler target

that requires a different register allocation strategy and quite possibly a different instruction

scheduling algorithm. An ILDP compiler, once constructed, will be able to build a data

dependence graph and assign accumulators safely. A simple two pass register allocator can

also be used as an alternative. In this simpler register allocator, local values within a basic

block are assigned to accumulators first. The remaining register values are then assigned to

GPRs in the next pass of global register allocation. In any case, the ILDP compiler will

favor efficient accumulator assignment over aggressive instruction scheduling. Once

167

constructed, a compiler for the ILDP ISA will enable further studies on simple and efficient

instruction formats. The full potential of the ILDP microarchitecture can also be realized

with program binaries explicitly compiled for the microarchitecture. This will be even more

interesting with the use of a simpler ILDP ISA format [133][134] that does not contain a

destination register identifier (which was introduced in the thesis to support a precise trap

model in the virtual machine system). More instructions will be 16-bit and hence, the

compiled program binary size is expected to be smaller than a comparable RISC ISA

program binary.

· Reducing interpretation overheads: Over the course of evaluation, it became apparent

that the overhead of the virtual ISA instruction interpretation could be a key performance

bottleneck in a co-designed VM system. A fast interpretation mechanism is essential

because there are many programs in real-world situations that have a large code working set

size or are not repetitive by nature. Efficient helper mechanisms, most likely in the form of

relatively simple hardware support structures and associated instructions, will help reduce

the virtual ISA decoding overhead.

· Distr ibuted data cache and memory disambiguation mechanism: The L1 D-cache is the

least developed part of the ILDP microarchitecture in terms of the hardware resource

distribution. This is mainly due to the fact that the entire ILDP paradigm in the thesis is

built around register dependences, not memory dependences. Nonetheless, extending the

ILDP idea to a fully distributed cache subsystem without breaking the overall simplicity of

the system is certainly desirable.

· Floating-point and multi-media type workloads: In a sense, the ILDP microarchitecture

in the thesis makes up the reduced scheduling freedom with more functional units. These

multiple functional units are a perfect fit for high ILP workloads typically found in floating-

168

point and multi-media type programs. Extending the ILDP microarchitecture with a vector-

like extension, or even a bit-slice style extension, may be an interesting direction.

· Further ISA/DBT optimization oppor tunities: Although much care was taken to reach

good ISA design trade-offs in the thesis, there still can be room for further improvement,

especially regarding dynamic instruction count and code size expansion. Some

requirements of the strand execution model could be relaxed to allow better dynamic binary

translation, for example.

· Static binary translation: In general, a 100% compatible static binary translation is not

possible. However, for programs that follow a well-defined compiler convention under a

well controlled environment (e.g., some embedded systems), static binary translation may

be useful, especially for fixed-width V-ISAs. Another possibility is a pseudo-static

procedure-level binary translation system, a la FX!32 [112].

· Other vir tual ISAs: More complex ISAs, especially Intel x86, may be a better target for a

co-designed virtual machine paradigm [147] because a complex ISA tends to allow more

implementation freedom to the dynamic binary translator, let alone their huge popularity.

169

Bibliography

[1] Jaume Abella, Ramon Canal, Antonio Gonzalez, “Power- and Complexity-Aware Issue Queue
Designs,” IEEE Micro, Vol. 23, No. 5, pp. 50-58, Sep. 2003.

[2] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, Brian Gaeke, “LLVA: A Low-Level
Virtual Instruction Set Architecture,” Proceedings of the 36th International Symposium on
Microarchitecture, pp. 205-216, Dec. 2003.

[3] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, Doug Burger, “Clock Rate vs. IPC: The End
of the Road for Conventional Microarchitectures,” Proceedings of the 27th International Symposium
on Computer Architecture, pp. 248-259, Jun. 2000

[4] Vikas Agarwal, Stephen W. Keckler, Doug Burger, “The Effect of Technology Scaling on
Microarchitectural Structures,” Tech Report TR2000-02, The University of Texas at Austin, 2000.

[5] Pritpal Ahuja, Douglas W. Clark, Anne Rogers, “The Performance Impact of Incomplete Bypassing
in Processor Pipelines,” Proceedings of the 28th International Symposium on Microarchitecture, pp.
36-45, Nov. 1995.

[6] Haitham Akkary, Michael A. Driscoll, “A Dynamic Multithreading Processor,” Proceedings of the
31st International Symposium on Microarchitecture, pp. 226-236, Nov. 1998.

[7] Haitham Akkary, Ravi Rajwar, Srikanth T. Srinivasan, “Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors,” Proceedings of the 36th International
Symposium on Microarchitecture, pp. 423-434, Dec. 2003.

[8] Alex Aleta, Josep M. Codina, Antonio Gonzalez, David Kaeli, “ Instruction Replication for Clustered
Microarchitectures,” Proceedings of the 36th International Symposium on Microarchitecture, pp.
326-335, Dec. 2003.

[9] Erik R. Altman, Michael Gschwind, Sumedh Sathaye, S. Kosonocky, Arthur Bright, Jason Fritts,
Paul Ledak, David Appenzeller, Craig Agricola, Zachary Filan, “BOA: The Architecture of a Binary
Translation Processor,” IBM Research Report RC 21665, Dec. 2000

[10] Bharadwaj S. Amrutur, Mark A. Horowitz, “Speed and Power Scaling of SRAM’s,” IEEE
Transactions on Solid-State Circuits, Vol. 35, No. 2, pp. 175-185, Feb. 2000.

[11] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, Peter F. Sweeney, “Adaptive
Optimization in the Jalapeno JVM,” Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pp. 47-65, Oct. 2000.

[12] James E. Bahr, Sheldon B. Levenstein, Lynn A. McMahon, Timothy J. Mullins,
Andrew H. Wottreng, “Architecture, Design, and Performance of Application System/400 (AS/400)
Multiprocessors, IBM Journal of Research and Development, Vol. 36, No. 6, pp. 1001-1014, Nov.
1992.

170

[13] H. B. Bakoglu, Gregory F. Grohoski, Robert K. Montoye, “The IBM RISC System/6000 Processor:
Hardware Overview,” IBM Journal of Research and Development, Vol. 34, No. 1, pp. 12-23, Jan.
1990.

[14] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia, “Transparent Dynamic Optimization: The
Design and Implementation of Dynamo,” Hewlett Packard Laboratories Technical Report HPL-
1999-78, Jun. 1999.

[15] Vasanth Bala, Evelyn Duesterwald, Sanjeev Banerjia, “Dynamo: A Transparent Dynamic
Optimization System,” Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 1-12, Jun. 2000.

[16] Rajeev Balasubramonian, Sandhya Dwarkadas, David H. Albonesi, “Reducing the Complexity of the
Register File in Dynamic Superscalar Processors,” Proceedings of the 34th International Symposium
on Microarchitecture, pp. 237-248, Dec. 2001.

[17] Rajeev Balasubramonian, Sandhya Dwarkadas, David H. Albonesi, “Dynamically Managing the
Communication-Parallelism Trade-Off in Future Clustered Processors,” Proceedings of the 30th
International Symposium on Computer Architecture, pp. 275-286, Jun. 2003.

[18] Amirali Baniasadi, Andreas I. Moshovos, “ Instruction Distribution Heuristics for Quad-Cluster,
Dynamically-Scheduled, Superscalar Procesors,” Proceedings of the 33rd International Symposium
on Microarchitecture, pp.337-347, Dec. 2000.

[19] John Banning, H. Peter Anvin, Benjamin Gribstad, David Keppel, Alex Kleiber, Paul Serris, “Fine
Grain Translation Discrimination,” US Patent 6,363,336, Mar. 2002.

[20] Leonid Baraz, Tevi Devor, Orna Etzion, Shalom Goldenberg, Alex Skaletsky, Yun Wang, Yigal
Zemach, “ IA-32 Execution Layer: A Two-Phase Dynamic Translator Designed to Support IA-32
Applications on Itanium-Based Systems,” Proceedings of the 36th International Symposium on
Microarchitecture, pp.191-201, Dec. 2003.

[21] Ravi Bhargava, Lizy K. John, “ Improving Dynamic Cluster Assignment for Clustered Trace Cache
Processors,” Proceedings of the 30th International Symposium on Computer Architecture, pp. 264-
274, Jun. 2003.

[22] Luiz Andre Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz Qadeer,
Barton Sano, Scott Smith, Robert Stets, Ben Verghese, “Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing,” Proceedings of the 27th International Symposium on Computer
Architecture, pp. 282-293, Jun. 2000.

[23] Robert Bedichek, “Some Efficient Architecture Simulation Techniques,” Proceedings of the USENIX
Winter 1990 Technical Conference, pp. 53-64, Jan. 1990.

[24] Robert Bedichek, “Talisman: Fast and Accurate Multicomputer Simulation,” Proceedings of the
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 14-24,
May 1995.

[25] James R. Bell, “Threaded Code,” Communications of ACM, Vol. 16, No. 6, pp. 370-372, Jun. 1973.

[26] Marc Berndl, Laurie Hendren, “Dynamic Profiling and Trace Cache Generation,” Proceedings of the
1st International Symposium on Code Generation and Optimization, pp. 276-285, Mar. 2003.

171

[27] Bryan Black, John P. Shen, “Scalable Register Renaming via the Quack Register File,” Tech Report
CmuART-2000-01, Carnegie Mellon University, 2000.

[28] Darrel Boggs, Aravindh Baktha, Jason Hawkins, Deborah T. Marr, J. Alan Miller, Patrice Roussel,
Ronak Singhal, Bret Toll, K. S. Venkatraman, “The Microarchitecture of the Intel Pentium 4
Processor on 90nm Technology,” Intel Technology Journal, Vol. 8, Issue 1, pp. 1-17, Feb. 2004.

[29] Eric Borch, Eric Tune, Srilatha Manne, Joel Emer, “Loose Loops Sink Chips,” Proceedings of the 8th
International Symposium on High Performance Computer Architecture, pp. 299-310, Feb. 2002.

[30] Shekhar Borkar, “Design Challenges of Technology Scaling,” IEEE Micro, Vol. 19, No. 4, pp. 23-29.
Jul. 1999.

[31] Edward Brekelbaum, Jeff Rupley II, Chris Wilkerson, Bryan Black, “Hierarchical Scheduling
Windows,” Proceedings of the 35th International Symposium on Microarchitecture, pp. 27-36, Nov.
2002.

[32] Mary D. Brown, Jared Stark, Yale N. Patt, “Select-Free Instruction Scheduling Logic,” Proceedings
of the 34th International Symposium on Microarchitecture, pp. 204-213, Dec. 2001.

[33] Derek Bruening, Evelyn Duesterwald, Saman Amarasinghe, “Design and Implementation of a
Dynamic Optimization Framework for Windows,” Proceedings of the 4th Workshop on Feedback-
Directed and Dynamic Optimization, Dec. 2001.

[34] Derek Bruening, Timothy Garnett, Saman Amarasinghe, “An Infrastructure for Adaptive Dynamic
Optimization,” Proceedings of the 1st International Symposium on Code Generation and
Optimization, pp. 265-275, Mar. 2003.

[35] Douglas C. Burger and Todd M. Austin, “The SimpleScalar Toolset, Version 2.0,” Technical Report
CS-TR-97-1342, University of Wisconsin—Madison, Jun. 1997.

[36] Jeffery A. Butts, Gurindar S. Sohi, “Dynamic Dead Instruction Detection and Elimination,”
Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 199-210, Oct. 2002.

[37] Jeffery A. Butts, Gurindar S. Sohi, “Characterizing and Predicting Value Degree of Use,”
Proceedings of the 35th International Symposium on Microarchitecture, pp. 15-26, Nov. 2002.

[38] Jeffery A. Butts, Gurindar S. Sohi, “Use-Based Register Caching with Decoupled Indexing,”
Proceedings of the 31st International Symposium on Computer Architecture, pp. 302-313, Jun. 2004.

[39] Harold W. Cain, Kevin M. Lepak, Brandon A. Schwartz, Mikko H. Lipasti, “Precise and Accurate
Processor Simulation,” Workshop on Computer Architecture Evaluation using Commercial
Workloads, Feb. 2002.

[40] Brad Calder, Dirk Grunwald, “Reducing Indirect Function Call Overhead in C++ Programs,”
Proceedings of the 21st ACM Symposium on Principles and Practices of Programming Languages,
pp. 397-408, Jan. 1994.

[41] Brad Calder, Dirk Grunwald, “Fast & Accurate Instruction Fetch and Branch Prediction,”
Proceedings of the 21st International Symposium on Computer Architecture, pp. 2-11, Jun. 1994.

172

[42] Ramon Canal, Joan-Manuel Parcerisa, Antonio Gonzalez, “A Cost-Effective Clustered
Architecture,” Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, pp. 160-168, Oct. 1999.

[43] Ramon Canal, Joan-Manuel Parcerisa, Antonio Gonzalez, “Dynamic Cluster Assignment
Mechanisms,” Proceedings of the 6th International Symposium on High Performance Computer
Architecture, pp.132-142, Jan. 2000.

[44] Ramon Canal, Antonio Gonzalez, “A Low-Complexity Issue Logic,” Proceedings of the 14th
International Conference on Supercomputing, pp. 327-335, May 2000.

[45] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, David M. Gillies, “Mojo: A Dynamic Optimization
System,” Proceedings of the 3rd ACM Workshop on Feedback-Directed and Dynamic Optimization,
Dec. 2000.

[46] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin, Tony Tye, S.
Bharadwaj Yadavalli, John Yates, “FX!32 – A Profile-Directed Binary Translator,” IEEE Micro, Vol.
18, No. 2, pp. 56-64, Mar. 1998.

[47] Yuan Chou, John P. Shen, “ Instruction Path Coprocessors,” Proceedings of the 27th International
Symposium on Computer Architecture, pp. 270-281, Jun. 2000.

[48] Robert F. Cmelik, David Keppel, “Shade: A Fast Instruction-Set Simulator for Execution Profiling,”
Technical Report UWCSE 93-06-06, University of Washington, Jun. 1996.

[49] Robert Cohn, P. Geoffrey Lowney, “Hot Cold Optimization of Large Windows/NT Applications,”
Proceedings of the 29th International Symposium on Microarchitecture, pp. 80-89, Dec. 1996.

[50] Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills, Burzin A. Patell, “Optimization of
Instruction Fetch Mechanism for High Issue Rate,” Proceedings of the 22nd International Symposium
on Computer Architecture, pp. 333-344, Jun. 1995.

[51] Thomas M. Conte, Sumedh W. Sathaye, “Dynamic Rescheduling: A Technique for Object Code
Compatibility in VLIW Architectures,” Proceedings of the 28th International Symposium on
Microarchitecture, pp. 208-218, Dec. 1995.

[52] CRAY-1 S Series Hardware Reference Manual, Cray Research Inc., Publication HR-808, Chippewa
Falls, WI, 1980.

[53] CRAY-2 Central Processor, unpublished document, circa 1979.
http://www.ece.wisc.edu/~jes/papers/cray2a.pdf

[54] CRAY-2 Hardware Reference Manual, Cray Research Inc., Publication HR-2000, Mendota Heights,
MN, 1985.

[55] Jose-Lorenzo Cruz, Antonio Gonzalez, Mateo Valero, Nigel P. Topham, “Multiple-Banked Register
File Architectures,” Proceedings of the 27th International Symposium on Computer Architecture, pp.
316-325, Jun. 2000.

[56] Vinodh Cuppu, Bruce Jacob, “Concurrency, Latency, or System Overhead: Which Has the Largest
Impact on Uniprocessor DRAM-System Performance?,” Proceedings of the 28th International
Symposium on Computer Architecture, pp. 62-71, Jun. 2001.

173

[57] Jeffery Dean, James E. Hicks, Carl A. Waldspurger, William E. Weihl, George Chrysos, “ProfileMe:
Hardware Support for Instruction-Level Profiling on Out-of-Order Processors,” Proceedings of the
30th International Symposium on Microarchitecture, pp. 292-302, Dec. 1997.

[58] Dean Deaver, Rick Gorton, Norman Rubin, “Wiggins/Redstone: An Online Program Specializer,”
Proceedings of the 11th HotChips Symposium, Aug. 1999.

[59] Eddy H. Debaere, Jan M. Van Campenhout, “ Interpretation and Instruction Path Coprocessing,” The
MIT Press, 1990.

[60] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas Kistler, Alexander
Klaiber, Jim Mattson, “The Transmeta Code Morphing Software: Using Speculation, Recovery, and
Adaptive Retranslation to Address Real-Life Challenges,” Proceedings of the 1st International
Symposium on Code Generation and Optimization, pp. 15-24, Mar. 2003.

[61] Rajagopalan Deskian, Douglas C. Burger, Stephen W. Keckler, “Measuring Experimental Error in
Microprocessor Simulation,” Proceedings of the 28th International Symposium on Computer
Architecture, pp. 266-277, Jun 2001.

[62] Giuseppe Desoli, Nikolay Mateev, Evelyn Duesterwald, Paolo Faraboschi, Joseph A. Fisher, “DELI:
A New Run-Time Control Point,” Proceedings of the 35th International Symposium on
Microarchitecture, pp. 257-268, Nov. 2002.

[63] Keith Diefendorff, “K7 Challenges Intel,” Microprocessor Report, Vol. 12, No. 14, pp. 1-7, Oct.
1998.

[64] Keith Diefendorff, “Athlon Outruns Pentium III,” Microprocessor Report, Vol. 13, No. 11, pp. 1, 6-
11, Aug. 1999.

[65] Keith Diefendorff, “Hal Makes Sparcs Fly,” Microprocessor Report, Vol. 13, No. 15, Nov. 1999.

[66] Ashutosh S. Dhodapkar, James E. Smith, “Managing Multi-Configuration Hardware via Dynamic
Working Set Analysis,” Proceedings of the 29th International Symposium on Computer Architecture,
pp. 233-244, Jun. 2002.

[67] Evelyn Duesterwald, Vasanth Bala, “Software Profiling for Hot Path Prediction: Less is More,”
Proceedings of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 202-211, Nov. 2000.

[68] Kemal Ebcioglu, Erik R. Altman, “DAISY: Dynamic Compilation for 100% Architectural
Compatibility,” IBM Research Report RC 20538, Aug. 1996.

[69] Kemal Ebcioglu, Erik R. Altman, “DAISY: Dynamic Compilation for 100% Architectural
Compatibility,” Proceedings of the 24th International Symposium on Computer Architecture, pp. 26-
37, Jun. 1997.

[70] Kemal Ebcioglu, Erik R. Altman, Michael Gschwind, Sumedh Sathaye, “Dynamic Binary
Translation and Optimization,” IEEE Transactions on Computers, Vol. 50, No. 6, pp. 529-548, Jun.
2001.

174

[71] Kemal Ebcioglu, Erik R. Altman, Sumedh Sathaye, Michael Gschwind, “Optimizations and Oracle
Parallelism with Dynamic Translation,” Proceedings of the 32nd International Symposium on
Microarchitecture, pp. 284-295, Nov. 1999.

[72] John H. Edmondson, Timothy C. Fischer, Anil K. Jain, Shekhar Mehta, Jeanne E. Meyer, Ronald P.
Preston, Vidya Rajagopalan, Chandrasekhara Somanathan, Scott A. Taylor, Gilbert M. Wolrich, Paul
I. Rubinfeld, Peter J. Bannon, Bradley J. Benschneider, Debra Bernstein, Ruben W. Castelino,
Elizabeth M. Cooper, Daniel E. Dever, Dale R. Donchin, “ Internal Organization of the Alpha 21164,
a 300-MHz 64-bit Quad-issue CMOS RISC Microprocessor,” Digital Technical Journal, Vol. 7, No.
1, pp. 119-135, Jan. 1995.

[73] Dan Ernst, Todd Austin, “Efficient Dynamic Scheduling through Tag Elimination,” Proceedings of
the 29th International Symposium on Computer Architecture, pp. 37-46, Jun. 2002.

[74] Dan Ernst, A. Hamel, Todd Austin, “Cyclone: A Broadcast-Free Dynamic Instruction Scheduler with
Selective Replay,” Proceedings of the 30th International Symposium on Computer Architecture, pp.
253-262, Jun. 2003.

[75] Rolf Ernst, “Codesign of Embedded Systems: Status and Trends,” IEEE Design & Test of Computers,
Vol. 15, No. 2, pp.45-54, Apr. 1998.

[76] M. Anton Ertl, David Gregg, “The Behavior of Efficient Virtual Machine Interpreters on Modern
Architectures,” Proceedings of the European Conference on Parallel Computing, pp. 403-412, Aug.
2001.

[77] Brian Fahs, Satarupa Bose, Matthew Crum, Brian Slechta, Francesco Spadini, Tony Tung, Sanjay J.
Patel, Steven S. Lumetta, “Performance Characterization of a Hardware Mechanism for Dynamic
Optimization,” Proceedings of the 34th International Symposium on Microarchitecture, pp. 16-27,
Dec. 2001.

[78] Keith I. Farkas, Norman P. Jouppi, Paul Chow, “Register File Design Considerations in Dynamically
Scheduled Processors,” Proceedings of the 2nd International Symposium on High Performance
Computer Architecture, pp. 40-51, Feb. 1996.

[79] Keith I. Farkas, Paul Chow, Norman P. Jouppi, Zvonko Vranesic, “The Multicluster Architecture:
Reducing Cycle Time Through Partitioning,” Proceedings of the 30th International Symposium on
Microarchitecture, pp. 40-51, Dec. 1997.

[80] James A. Farrel, Timothy C. Fischer, “ Issue Logic for a 600-MHz Out-of-Order Execution
Microprocessor,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 5, May 1998.

[81] John G. Favor, “RISC86 Instruction Set,” United States Patent 6,336,178, Jan. 2002.

[82] Brian Fields, Shai Rubin, Rastislav Bodik, “Focusing Processor Policies via Critical-Path
Prediction,” Proceedings of the 28th International Symposium on Computer Architecture, pp. 74-85,
Jun. 2001.

[83] Brian Fields, Rastislav Bodik, Mark D. Hill, “Slack: Maximizing Performance under Technological
Constraints,” Proceedings of the 29th International Symposium on Computer Architecture, pp. 47-58,
May 2002.

175

[84] Michael J. Flynn, Patrick Hung, Kevin W. Rudd, “Deep Submicron Microprocessor Design Issues,”
IEEE Micro, Vol. 19, No. 4, pp. 11-22, Jul. 1999.

[85] Manoj Franklin, Mark Smotherman, “A Fill Unit Approach to Multiple Instruction Issue,”
Proceedings of the 27th International Symposium on Microarchitecture, pp. 162-171, Dec. 1994.

[86] Manoj Franklin, Gurindar S. Sohi, “Register Traffic Analysis for Streamlining Inter-Operation
Communication in Fine-Grain Parallel Processors,” Proceedings of the 25th International Symposium
on Computer Architecture, pp. 58-67, Dec. 1992.

[87] Manoj Franklin, Gurindar S. Sohi, “ARB: A Hardware Mechanism for Dynamic Reordering of
Memory References,” IEEE Transactions on Computers, Vol. 45, No. 5, pp. 552-571, May 1996.

[88] Daniel H. Friendly, Sanjay J. Patel, Yale N. Patt, “Putting the Fill Unit to Work: Dynamic
Optimizations for Trace Cache Microprocessors,” Proceedings of the 31st International Symposium
on Microarchitecture, pp. 173-181, Dec. 1998.

[89] Peter N. Glaskowsky, “MemoryLogix Makes Tiny x86,” Microprocessor Report, pp. 1-3, Nov. 11,
2002.

[90] Simcha Gochman, Ronny Ronen, Ittai Anati, Ariel Berkovits, Tsvika Kurts, Alon Naveh, Ali Saeed,
Zeev Sperber, Robert C. Valentine, “The Intel Pentium M Processor: Microarchitecture and
Performance,” Intel Technology Journal, Vol. 7, Issue 2, pp. 21-36, May 2003.

[91] Masahiro Goshima, Kengo Nishino, Yasuhiko Nakashima, Shin-ichiro Mori, Toshiaki Kitamura,
Shinji Tomita, “A High Speed Dynamic Instruction Scheduling Scheme for Superscalar Processors,”
Proceedings of the 34th International Symposium on Microarchitecture, pp. 225-236, Dec. 2001.

[92] R. Govindarajan, Hongbo Yang, Jose Nelson Amaral, Chihong Jhang, Guang R. Gao, “Minimum
Instruction Register Sequencing to Reduce Register Spills in Out-of-Order Issue Superscalar
Architectures,” IEEE Transactions on Computers, Vol. 52, No. 1, pp. 4-20, Jan. 2003.

[93] Michael Gschwind, � Method and Apparatus for Determining Branch Addresses in Programs
Generated by Binary Translation, IBM Disclosures YOR819980334, Jul. 1998.

[94] Michael Gschwind, “Method and Apparatus for Rapid Re-turn Address Computation in Binary
Translation,” IBM Disclosures YOR819980410, Sep. 1998.

[95] Michael Gschwind, Erik R. Altman, Sumedh Sathaye, Paul Ledak, David Appenzeller, “Dynamic
and Transparent Binary Translation,” IEEE Computer, Vol. 33, No. 2, pp. 54-59, Mar. 2000.

[96] Michael Gschwind, Erik Altman, “On Achieving Precise Exception Semantics in Dynamic
Optimization,” IBM Research Report RC 21900, Dec. 2000.

[97] Stephen H. Gunther, Frank Binns, Douglas M. Carmean, Jonathan C. Hall, “Managing the Impact of
Increasing Microprocessor Power Consumption,” Intel Technology Journal Q1, 2001.

[98] Linley Gwennap, “ Intel�s P6 Uses Decoupled Superscalar Design,” Microprocessor Report, pp. 9-15,
Feb. 16, 1995.

[99] Tom R. Halfhill, “Transmeta Breaks x86 Low-Power Barrier,” Microprocessor Report, Feb. 14,
2000.

176

[100] A. Hartstein, Thomas R. Puzak, “The Optimal Pipeline Depth for a Microprocessor,” Proceedings of
the 29th International Symposium on Computer Architecture, pp. 7-13, Jun. 2002.

[101] A. Hartstein, Thomas R. Puzak, “Optimum Power/Performance Pipeline Depth,” Proceedings of the
36th International Symposium on Microarchitecture, pp. 117-125, Dec. 2003.

[102] Kim M. Hazelwood, Michael D. Smith, “Code Cache Management Schemes for Dynamic
Optimizers,” Proceedings of the 6th Workshop on Interaction between Compilers and Computer
Architectures, pp. 92-100, Feb. 2002.

[103] Kim Hazelwood, Michael D. Smith, “Generational Cache Management of Code Traces in Dynamic
Optimization Systems,” Proceedings of the 36th International Symposium on Microarchitecture, pp.
169-179, Dec. 2003.

[104] Timothy H. Heil, James E. Smith, “Relational Profiling: Enabling Thread-Level Parallelism in
Virtual Machines,” Proceedings of the 33rd International Symposium on Microarchitecture, pp. 281-
290, Dec. 2000.

[105] John L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millennium,” IEEE
Computer, Vol. 33, No. 7, pp. 28-35, Jul. 2000.

[106] Dana Henry, Bradley C. Kuszmaul, Gabriel H. Loh, Rahul Sami, “Circuits for Wide-Window
Superscalar Processors,” Proceedings of the 29th International Symposium on Computer Architecture,
pp. 236-247, Jun. 2000.

[107] Hewlett Packard Development Company, “PA-RISC 8x00 Family of Microprocessors with Focus on
PA-8700,” http://www.cpus.hp.com/technical_references/PA-8700wp.pdf

[108] Mark D. Hill, “Multiprocessors Should Support Simple Memory-Consistency Models,” IEEE
Computer, Vol. 31, No. 8, Aug. 1998.

[109] Glenn Hinton, Dave Sager, Mike Upton, Darrel Boggs, Doug Carmean, Alan Kyker, Patrice Roussel,
“The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal Q1, pp. 1-12, 2001.

[110] Ron Ho, Kenneth W. Mai, Mark A. Horowitz, “The Future of Wires,” Proceedings of the IEEE, Vol.
89, No. 2, pp. 490-504, Apr. 2001.

[111] Paul Hohensee, Mathew Myszewski, David Reese, “Wabi CPU Emulation,” Proceedings of the 8th
HotChips Symposium, pp. 47-65. Aug. 1996.

[112] Raymond J. Hookway, Mark A. Herdeg, “Digital FX!32: Combining Emulation and Binary
Translation,” Digital Technical Journal, Vol. 9, No. 1, pp. 3-12, Jan. 1997.

[113] M. S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Douglas C. Burger, Stephen W. Keckler,
Premkishore Shivakumar, “The Optimal Logic Depth per Pipeline Stage is 6 to 8 FO4 Inverter
Delays,” Proceedings of the 29th International Symposium on Computer Architecture, pp. 14-24, Jun.
2002.

[114] Jhigang Hu, David Brooks, Pradip Bose, “Microarchitecture-Level Power-Performance Simulators:
Modeling, Validation, and Impact on Design,” Tutorial in conjunction with the 36th International
Symposium on Microarchitecture, Dec. 2003.

177

[115] Jie S. Hu, Narayanan Vijaykrishnan, Mary J. Irwin, “Exploring Wakeup-free Instruction
Scheduling,” Proceedings of the 10th International Symposium on High Performance Computer
Architecture, pp. 232-243, Feb. 2004.

[116] Shiliang Hu, James E. Smith, “Using Dynamic Binary Translation to Fuse Dependent Instructions,”
Proceedings of the 2nd International Symposium on Code Generation and Optimization, pp. 213-226,
Mar. 2004.

[117] Wen-mei W. Hwu, , Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter, Roger A.
Bringmann, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab, John G. Holm,
and Daniel M. Lavery, “The Superblock: An Effective Technique for VLIW and Superscalar
Compilation,” Journal of Supercomputing, Kluwer Academic Publishing, pp. 229-248, 1993.

[118] Intel Corp., Intel Itanium Architecture Software Developer’s Manual vol. 3, Rev. 2.0: Instruction Set
Reference, Intel Corp., 2001.

[119] International Business Machine Corp., “DAISY: Dynamically Architected Instruction Set from
Yorktown” , http://www.research.ibm.com/daisy/

[120] International Technology Roadmap for Semiconductors, “ International Technology Roadmap for
Semiconductors 2003 Edition Executive Summary,” ITRS, 2003.

[121] Bruce Jacob, Trevor Mudge, “Virtual Memory in Contemporary Microprocessors,” IEEE Micro, Vol.
18, No. 4, pp. 60-75, Jul. 1998.

[122] Quinn Jacobson, James E. Smith, “ Instruction Pre-Processing in Trace Processors,” Proceedings of
the 5th International Symposium on High Performance Computer Architecture, pp. 125-129, Jan.
1999.

[123] Daniel A. Jimenez, Stephen W. Keckler, Calvin Lin, “The Impact of Delay on the Design of Branch
Predictors,” Proceedings of the 33rd International Symposium on Microarchitecture, pp. 67-76, 2000.

[124] Mike Johnson, Superscalar Microprocessor Design, Prentice-Hall Inc., Englewood Cliffs, New
Jersey, 1991.

[125] Stephen Jourdan, Ronny Ronen, Michael Bekerman, Bishara Shomar, Adi Yoaz, “A Novel
Renaming Scheme to Exploit Value Temporal Locality Through Physical Register Reuse and
Unification,” Proceedings of the 31st International Symposium on Microarchitecture, pp. 216-225,
1998.

[126] David R. Kaeli, Philip G. Emma, “Branch History Table Prediction of Moving Target Branches Due
to Subroutine Returns,” Proceedings of the 18th International Symposium on Computer Architecture,
pp. 34-42, Jun. 1991.

[127] Tejas S. Karkhanis, James E. Smith, “A First-Order Superscalar Processor Model,” Proceedings of
the 31st International Symposium on Computer Architecture, pp. 338-349, Jun. 2004.

[128] Edmund J. Kelly, Robert F. Cmelik, Malcom J. Wing, “Memory Controller for a Microprocessor for
Detecting a Failure of Speculation on the Physical Nature of a Component Being Addressed,” US
Patent 5,832,205, Nov. 1998.

178

[129] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed, Pat Conway, “The AMD Opteron
Processor for Multiprocessor Servers,” IEEE Micro, Vol. 23, No. 2, pp. 66-76, Mar. 2003.

[130] Gregg A. Kemp, Manoj Franklin, “PEWS: A Decentralized Dynamic Scheduler for ILP Processing,”
Proceedings of the International Conference on Parallel Processing, pp. 239-246, Aug. 1996.

[131] Richard E. Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, Vol. 19, No. 2, pp. 24-36, Mar.
1999.

[132] Changkyu Kim, Douglas C. Burger, Stephen W. Keckler, “An Adaptive, Non-Uniform Cache
Structure for Wire-Delay Dominated On-Chip Caches,” Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating Systems, pp. 211-
222, Oct. 2002.

[133] Ho-Seop Kim, James E. Smith, “An Instruction Set and Microarchitecture for Instruction-Level
Distributed Processing,” Proceedings of the 29th International Symposium on Computer Architecture,
pp. 71-81, Jun. 2002.

[134] Ho-Seop Kim, James E. Smith, “Dynamic Binary Translation for Accumulator-Oriented
Architectures,” Proceedings of the 1st International Symposium on Code Generation and
Optimization, pp. 25-35, Mar. 2003.

[135] Ho-Seop Kim, James E. Smith, “Hardware Support for Control Transfers in Code Caches,”
Proceedings of the 36th International Symposium on Microarchitecture, pp. 253-264, Dec. 2003.

[136] Ilhyun Kim, Mikko L. Lipasti, “Half-price Architecture,” Proceedings of the 30th International
Symposium on Computer Architecture, pp. 28-38, Jun. 2003.

[137] Ilhyun Kim, Mikko L. Lipasti, “Macro-op Scheduling: Relaxing Scheduling Loop Constraints,”
Proceedings of the 36th International Symposium on Microarchitecture, pp. 277-288, Dec. 2003.

[138] Ilhyun Kim, Mikko L. Lipasti, “Understanding Scheduling Replay Schemes,” Proceedings of the 10th
International Symposium on High Performance Computer Architecture, pp. 198-209, Feb. 2004.

[139] Thomas Kistler, Michael Franz, “Continuous Program Optimization: Design and Evaluation,” IEEE
Transactions on Computers, Vol. 50, No. 6, pp. 549-565, Jun. 2001.

[140] Alexander Klaiber, “The Technology behind Crusoe Processors,” Transmeta Technical Brief, 2000.

[141] Paul Klint, “ Interpretation Techniques,” Software Practice and Experience, Vol. 11, No. 9, pp. 963-
973, Sep. 1981.

[142] Steven R. Kunkel, James E. Smith, “Optimal Pipelining in Supercomputers,” Proceedings of the 13th
International Symposium on Computer Architecture, pp. 404-411, Jun. 1986.

[143] Bich C. Le, “An Out-of-Order Execution Technique for Runtime Binary Translators,” Proceedings
of the 8th International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 151-158, Oct. 1998.

[144] Alvin R. Lebeck, Jinson Koppanalil, Tong Li, Jaidev Patwardhan, Eric Rotenberg, “A Large, Fast
Instruction Window for Tolerating Cache Misses,” Proceedings of the 29th International Symposium
on Computer Architecture, pp. 59-70, Jun. 2002.

179

[145] Dennis C. Lee, Patrick J. Crowley, Jean-Loup Baer, Thomas E. Anderson, Brian N. Bershad,
“Execution Characteristics of Desktop Applications on Windows NT,” Proceedings of the 25th
International Symposium on Computer Architecture, pp. 27-38, Jun. 1996.

[146] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan Babb, Vivek Sarkar,
Saman P. Amarasinghe, “Space-Time Scheduling of Instruction-Level Parallelism on a Raw
Machine,” Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 46-57, Oct. 1998.

[147] Jochen Liedtke, Nayeem Islam, Trent Jaeger, Vsevolod Panteleenko, Yoonho Park, “An
Unconventional Proposal: Using the x86 Architecture as the Ubiquitous Virtual Standard
Architecture,” Proceedings of the 8th ACM SIGOPS European Workshop on Support for Composing
Distributed Applications, pp. 237-241, Sep. 1998.

[148] Mikko H. Lipasti, John P. Shen, “Exceeding the Dataflow Limit via Value Prediction,” Proceedings
of the 29th International Symposium on Microarchitecture, pp. 226-237, Dec. 1996.

[149] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Lichtenstein, Robert P. Nix,
John S. O’Donnell, John C. Ruttenberg, “The Multiflow Trace Scheduling Compiler,” The Journal
of Supercomputing, Kluwer Academic Publishing, pp. 51-142, 1993.

[150] Luis A. Lozano, C., Guang R. Gao, “Exploiting Short-Lived Variables in Superscalar Processors,”
Proceedings of the 28th International Symposium on Microarchitecture, pp. 292-302, Dec. 1995.

[151] Peter S. Magnusson, David Samuelsson, “A Compact Intermediate Format for SIMICS,” Technical
Report R94:17, Swedish Institute of Computer Science, 1994.

[152] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan Miller,
Michael Upton, “Hyper-Threading Technology Architecture and Microarchitecture,” Intel
Technology Journal Q1, pp. 1-12, 2002.

[153] Milo M. Martin, Amir Roth, Charles N. Fischer, “Exploiting Dead Value Information,” Proceedings
of the 30th International Symposium on Microarchitecture, pp. 125-135, Dec. 1997.

[154] Doug Matzke, “Will Physical Scalibility Sabotage Performance Gains,” IEEE Micro, Vol. 30, No. 9,
pp. 37-39, Sep. 1997.

[155] Steve Meloan, “The Java HotSpot Performance Engine: An In-Depth Look,” Technical Whitepaper,
Sun Microsystems, 1999.

[156] Stephen Melvin, Yale N. Patt, “Enhancing Instruction Scheduling with a Block-Structured ISA,”
International Journal of Parallel Programming, Vol. 23, No.3, pp. 221-243, 1995.

[157] Matthew C. Merten, Andrew R. Trick, Christopher N. George, John C. Gyllenhaal, Wen-mei W.
Hwu, “A Hardware-Driven Profiling Scheme for Identifying Program Hot Spots to Support Runtime
Optimization,” Proceedings of the 26th International Symposium on Computer Architecture, pp. 136-
147, May 1999.

[158] Matthew C. Merten, Andrew R. Trick, Erik M. Nystrom, Ronald D. Barnes, Wen-mei W. Hwu, “A
Hardware Mechanism for Dynamic Extraction and Relayout of Program Hot Spots,” Proceedings of
the 27th International Symposium on Computer Architecture, pp. 59-70, Jun. 2000.

180

[159] Matthew C. Merten, Andrew R. Trick, Ronald D. Barnes, Erik M. Nystrom, Christopher N. George,
John C. Gyllenhaal, Wen-mei W. Hwu, “An Architectural Framework for Run-Time Optimization,”
IEEE Transactions on Computers, Vol. 50, No. 6, pp. 567-589, Jun. 2001.

[160] Pierre Michaud, Andre Seznec, “Data-flow Prescheduling for Large Instruction Windows in Out-of-
order Processors,” Proceedings of the 7th International Symposium on High Performance Computer
Architecture, pp. 27-36, Jan. 2001.

[161] Teresa Monreal, Antonio Gonzalez, Mateo Valero, Jose Gonzalez, Victor Vinals, “Delaying Physical
Register Allocation through Virtual-Physical Registers,” Proceedings of the 32nd International
Symposium on Microarchitecture, pp. 186-192, Nov. 1999.

[162] Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, Vol. 38, No.
8, pp. 114-117, Apr. 1965.

[163] Gordon E. Moore, “No Exponential Is Forever: But ‘Forever’ Can Be Delayed,” Invited Talk, IEEE
International Solid State Circuit Conference, Jan. 2003.

[164] Enric Morancho, Jose Llaberia, Angel Olive, “Recovery Mechanism for Latency Misprediction,”
Proceedings of the International Conference on Parallel Architectures and Compilation Techniques,
pp. 118-130, Sep. 2001.

[165] Andreas I. Moshovos, Scott E. Breach, T. N. Vijaykumar, Gurindar S. Sohi, “Dynamic Speculation
and Synchronization of Data Dependences,” Proceedings of the 24th International Symposium on
Computer Architecture, pp. 181-193, Jun. 1997.

[166] Andreas Moshovos, Gurindar S. Sohi, “Streamlining Inter-operation Memory Communication via
Data Dependence Prediction,” Proceedings of the 30th International Symposium on
Microarchitecture, pp. 235-245, Dec. 1997.

[167] Andreas Moshovos, Gurindar S. Sohi, “Memory Dependence Speculation Tradeoffs in Centralized,
Continuous-Window Superscalar Processors,” Proceedings of the 6th International Symposium on
High Performance Computer Architecture, pp. 301-312, Jan. 2000.

[168] Mayan Moudgill, John-David Wellman, Jaime H. Moreno, “Environment for PowerPC
Microarchitecture Evaluation,” IEEE Micro, Vol. 19, No. 2, pp. 15-25, Mar. 1999.

[169] Steven S. Muchnick, “Advanced Compiler Design and Implementation,” Morgan Kaufmann
Publishers, Inc., pp. 726-733, 1997.

[170] Trevor Mudge, “Power: A First-Class Architectural Design Constraints,” IEEE Computer, Vol. 34,
No. 4, pp. 52-58, Apr. 2001.

[171] Ramadass Nagarajan, Karthikeyan Sankaralingam, Douglas C. Burger, Stephen W. Keckler, “A
Design Space Evaluation of Grid Processor Architectures,” Proceedings of the 34th International
Symposium on Microarchitecture, pp. 40-51, Dec. 2001.

[172] Ravi Nair, Martin E. Hopkins, “Exploiting Instruction Level Parallelism in Processors by Caching
Scheduled Groups,” Proceedings of the 24th International Symposium on Computer Architecture, pp.
13-25, Jun. 1997.

181

[173] Erik Nystrom, Ronald D. Barnes, Matthew C. Merten, and Wen-mei W. Hwu, “Code Reordering and
Speculation Support for Dynamic Optimization Systems,” Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, pp. 163-174, Sep. 2001.

[174] John Oliver, Ravishankar Rao, Paul Sultana, Jedidiah Crandall, Erik Czernikowski, Leslie W. Jones
IV, Diana Franklin, Venkatesh Akella, Frederic T. Chong, “Synchroscalar: A Multiple Clock
Domain, Power-Aware, Tile-Based Embedded Processor,” Proceedings of the 31st International
Symposium on Computer Architecture, pp. 150-161, Jun. 2004.

[175] Subbarao Palacharla, Norman P. Jouppi, James E. Smith, “Complexity-Effective Superscalar
Processors,” Proceedings of the 24th International Symposium on Computer Architecture, pp. 206-
218, Jun. 1997.

[176] Il Park, Michael D. Powell, T. N. Vijaykumar, “Reducing Register Ports for Higher Speed and
Lower Energy,” Proceedings of the 35th International Symposium on Microarchitecture, pp. 171-182,
Nov. 2002.

[177] Sanjay J. Patel, Daniel H. Friendly, Yale N. Patt, “Evaluation of Design Options for the Trace Cache
Fetch Mechanism,” IEEE Transactions on Computers, Vol. 48, No. 2, pp. 435-446, Feb. 1999.

[178] David A. Patterson, C. H. Sequin, “Design Considerations for Single-Chip Computers of the Future,”
IEEE Journal of Solid-State Circuits, IEEE Transactions on Computers, Joint Special Issue on
Microprocessors and Microcomputers, Vol. 29, No. 2, pp. 108-116, Feb. 1980.

[179] Alex Peleg, Uri Weiser, “Dynamic Flow Instruction Cache Memory Organized around Trace
Segments Independent of Virtual Address Line,” US Patent 5,381,533, 1994.

[180] Daniel G. Perez, Gilles Mouchard, Olivier Temam, “MicroLib: A Case for the Quantitative
Comparison of Micro-Architecture Mechanisms,” Proceedings of the 2004 Workshop on Duplicating,
Deconstructing and Debunking, pp. 19-34, Jun. 2004.

[181] Karl Pettis, Robert C. Hansen, “Profile Guided Code Positioning,” Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp. 16-27, Jun. 1990.

[182] Richard Phelan, “ Improving ARM Code Density and Performance: New Thumb Extensions to the
ARM Architecture,” ARM White Paper, ARM Limited, Jun. 2003.

[183] Matthew Postiff, David Greene, Steven Raasch, Trevor Mudge, “ Integrating Superscalar Processor
Components to Implement Register Caching,” Proceedings of the International Conference on
Supercomputing, pp. 348-357, Jun. 2001.

[184] Alex Ramirez, Josep L. Larriba-Pey, Carlos Navarro, Josep Torrellas, Matero Valero, “Software
Trace Cache,” Proceedings of the 13th International Conference on Supercomputing, pp. 119-126,
Jun. 1999.

[185] Alex Ramirez, Josep L. Larriba-Pey, Matero Valero, “Trace Cache Redundancy: Red & Blue
Traces,” Proceedings of the 6th International Symposium on High Performance Computer
Architecture, pp. 325-333, Jan. 2000.

[186] Alex Ramirez, Josep L. Larriba-Pey, Matero Valero, “The Effect of Code Reordering on Branch
Prediction,” Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, pp. 189-198, Sep. 2000.

182

[187] Alex Ramirez, Oliverio J. Santana, Josep L. Larriba-Pey, Matero Valero, “Fetching Instruction
Streams,” Proceedings of the 35th International Symposium on Microarchitecture, pp. 371-382, Nov.
2002.

[188] Stephen E. Raasch, Nathan L. Binkert, Steven K. Reinhardt, “A Scalable Instruction Queue Design
Using Dependence Chains,” Proceedings of the 29th International Symposium on Computer
Architecture, pp. 318-329, Jun. 2002.

[189] Paul Racunas, Yale N. Patt, “Partitioned First-Level Cache Design for Clustered
Microarchitectures,” Proceedings of the 17th International Conference on Supercomputing, pp. 22-31,
Jun. 2003

[190] Ryan Rakvic, John P. Shen, “Parallel Cachelets,” Proceedings of the International Conference on
Computer Design, pp. 284-292, Sep. 2001.

[191] Glenn Reinman, Todd Austin, Brad Calder, “A Scalable Front-End Architecture for Fast Instruction
Delivery,” Proceedings of the 26th International Symposium on Computer Architecture, pp. 234-245,
May 1999.

[192] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Ujval J. Kapasi, John D. Owens,
“Register Organization for Media Processing,” Proceedings of the 6th International Symposium on
High Performance Computer Architecture, pp. 375-386, Jan. 2000.

[193] Alan Robinson, “Why Dynamic Translation?,” Transitive Technology White Paper, Transitive
Technologies, May 2001.

[194] Mendel Rosenblum, Edouard Bugnion, Scott Devine, Stephen A. Herrod, “Using the SimOS
Machine Simulator to Study Complex Computer Systems,” ACM Transactions on Modeling and
Computer Simulation, Vol. 7, No. 1, pp. 78-103, Jan. 1997.

[195] Roni Rosner, Avi Mendelson, Ronny Ronen, “Filtering Techniques to Improve Trace-Cache
Efficiency,” Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques, pp. 37-48, Sep. 2001.

[196] Eric Rotenberg, Steve Bennett, James E. Smith, “Trace Cache: A Low-Latency Approach to High
Bandwidth Instruction Fetching,” Proceedings of the 29th International Symposium on
Microarchitecture, pp. 24-34, Dec. 1996.

[197] Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides, James E. Smith, “Trace Processors,”
Proceedings of the 30th International Symposium on Microarchitecture, pp. 138-148, Dec. 1997.

[198] Mariko Sakamoto, Akira Katsuno, Aiichiro Inoue, Takeo Asakawa, Haruhiko Ueno, Kuniki Morita,
Yasunori Kimura, “Microarchitecture and Performance Analysis of a SPARC-V9 Microprocessor for
Enterprise Server Systems,” Proceedings of the 9th International Symposium on High Performance
Computer Architecture, pp. 141-152, Feb. 2003.

[199] Peter G. Sassone, D. Scott Wills, “Dynamic Strands: Collapsing Speculative Dependence Chains for
Reducing Pipeline Communication” , to be published in Proceedings of the 37th International
Symposium on Microarchitecture, Dec. 2004.

[200] Subramanya S. Sastry, Rastislav Bodik, James E. Smith, “Rapid Profiling via Stratified Sampling,”
Proceedings of the 28th International Symposium on Computer Architecture, pp. 278-289, Jun 2001.

183

[201] Yiannakis Sazeides, James E. Smith, “The Predictability of Data Values,” Proceedings of the 30th
International Symposium on Microarchitecture, pp. 248-258, Dec. 1997.

[202] Kevin Scott, Jack Davidson, “Strata: A Software Dynamic Translation Infrastructure,” Proceedings
of the 3rd Workshop on Binary Translation, Sep. 2001.

[203] Andre Seznec, Stephen Felix, Venkata Krishnan, Yiannakis Sazeides, “Design Tradeoffs for the
Alpha EV8 Conditional Branch Predictor,” Proceedings of the 29th International Symposium on
Computer Architecture, pp. 295-306, Jun. 2002.

[204] Andre Seznec, Antony Fraboulet, “Effective Ahead Pipelining of Instruction Block Address
Generation,” Proceedings of the 30th International Symposium on Computer Architecture, pp. 241-
252, Jun. 2003.

[205] Andre Seznec, Stephan Jordan, Pascal Sainrat, Pierre Michaud, “Multiple-Block Ahead Branch
Predictors,” Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 116-127, Oct. 1996.

[206] John P. Shen, Mikko H. Lipasti, “Modern Processor Design: Fundamentals of Superscalar
Processors,” McGraw-Hill, Jul. 2004.

[207] Gabriel M. Silberman, Kemal Ebcioglu, “An Architectural Framework for Supporting
Heterogeneous Instruction-Set Architectures,” IEEE Computer, Vol. 26, No. 6, pp. 39-56, Jun. 1993.

[208] Ronak Singhal, K. S. Venkatraman, Evan R. Cohn, John G. Holm, David A. Koufaty, Meng-Jang
Lin, Mahesh J. Madhav, Markus Mattwandel, Nidhi Nidhi, Jonathan D. Pearce, Madhusudanan
Seshadri, “Performance Analysis and Validation of the Intel Pentium 4 Processor on 90nm
Technology,” Intel Technology Journal, Vol. 8, Issue 1, pp. 33-42, Feb. 2004.

[209] Michael Slater, “AMD�s K5 Designed to Outrun Pentium,” Microprocessor Report, Oct. 24, 1994.

[210] Michael Slater, “K6 to Boost AMD’s Position in 1997,” Microprocessor Report, Oct. 28, 1996.

[211] James E. Smith, Andrew R. Pleszkun, “ Implementing Precise Interrupts in Pipelined Processors,”
IEEE Transactions on Computers, Vol. 37, No. 5, pp. 562-573, May 1988.

[212] James E. Smith, “Characterizing Computer Performance with a Single Number,” Communications of
the ACM, Vol. 31, No. 10, pp.1202-1206, Oct. 1988.

[213] James E. Smith, “Dynamic Instruction Scheduling and the Astronautics ZS-1,” IEEE Computer, Vol.
22, No. 7, pp. 21-35, Jul. 1989.

[214] James E. Smith, Schlomo Weiss, “PowerPC 601 and Alpha 21064: A Tale of Two RISCs,” IEEE
Computer, Vol. 27, No. 6, pp. 46-58, Jun. 1994.

[215] James E. Smith, Gurindar S. Sohi, “The Microarchitecture of Superscalar Processors,” Proceedings
of the IEEE, Vol. 83, No. 12, pp. 1609-1624, Dec. 1995.

[216] James E. Smith, “ Instruction-Level Distributed Processing,” IEEE Computer, Vol. 34, No. 4, pp. 59-
65, Apr. 2001.

184

[217] James E. Smith, S. Subramaya Sastry, Timothy H. Heil, Todd M. Bezenek, “Achieving High
Performance via Co-Designed Virtual Machines,” International Workshop on Innovative
Architecture, Maui High Performance Computer Center, Oct. 1998.

[218] Avinash Sodani, Gurindar S. Sohi, “An Empirical Study of Instruction Repetition,” Proceedings of
the 8th International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 35-45, Oct. 1998.

[219] Gurindar S. Sohi, “ Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional
Unit, Pipelined Computers,” IEEE Transactions on Computers, Vol. 39, No. 3, pp. 349-359, Mar.
1990.

[220] Gurindar S. Sohi, Scott E. Breach, T. N. Vijaykumar, “Multiscalar processors,” Proceedings of the
22nd International Symposium on Computer Architecture, pp. 414-425, Jun. 1995.

[221] Gurindar S. Sohi, Amir Roth, “Speculative Multithreaded Processors,” IEEE Computer, Vol. 34, No.
4, pp. 66-73, Apr. 2001.

[222] Eric Sprangle, Doug Carmean, “ Increasing Processor Performance by Implementing Deeper
Pipelines,” Proceedings of the 29th International Symposium on Computer Architecture, pp. 25-34,
Jun. 2002.

[223] Jared Stark, Mary D. Brown, Yale N. Patt, “On Pipelining Dynamic Instruction Scheduling Logic,”
Proceedings of the 33rd International Symposium on Microarchitecture, pp. 57-66, Dec. 2000.

[224] Steven Swanson, Ken Michelson, Andrew Schwerin, Mark Oskin, “WaveScalar,” Proceedings of the
36th International Symposium on Microarchitecture, pp. 291-302, Dec. 2003.

[225] Ariel Tamches, Barton P. Miller, “Dynamic Kernel I-Cache Optimization,” Proceedings of the 3rd
Workshop on Binary Translation, Sep. 2001.

[226] Thang Tran, David B. Witt, William M. Johnson, “Superscalar Microprocessor Including a High
Speed Instruction Alignment Unit,” US Patent 5,991,869, Nov. 1997.

[227] Michael B. Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben Greenwald, Henry
Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, Anant Agarwal, “Evaluation of the Raw
Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams,” Proceedings of the 31st
International Symposium on Computer Architecture, pp. 2-13, Jun. 2004

[228] Joel M. Tendler, J. Steve Dodson, J. S. Fields, Jr., Hung Le, Balaram Sinharoy, “POWER4 System
Microarchitecture,” IBM Journal of Research and Development, Vol. 46, No. 1, pp.5-26, Jan. 2002.

[229] J. E. Thornton, “Design of a Computer, the Control Data 6600,” Scott, Foresman, and Co., Glenview,
Illinois, 1970.

[230] R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units,” IBM Journal,
Vol. 11, pp. 25-33, Jan. 1967.

[231] Jessica H. Tseng, Krste Asanovic, “Banked Multiported Register Files for High-Frequency
Superscalar Microprocessors,” Proceedings of the 30th International Symposium on Computer
Architecture, pp. 62-71, Jun. 2003.

185

[232] David Ung, Cristina Cifuentes, “Optimizing Hot Paths in a Dynamic Binary Translator,”
Proceedings of the 2nd Workshop on Binary Translation, Oct. 2000.

[233] Sriram Vajapeyam, Tulika Mitra, “ Improving Superscalar Instruction Dispatch and Issue by
Exploiting Dynamic Code Sequences,” Proceedings of the 24th International Symposium on
Computer Architecture, pp. 1-12, Jun. 1997.

[234] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter Lee, Victor Lee,
Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman Amarasinghe, Anant
Agarwal, “Baring It All to Software: Raw Machines,” IEEE Computer, Vol. 30, No. 9, pp. 86-93,
Sep. 1997.

[235] Steven Wallace, Nader Bagherzadeh, “A Scalable Register File Architecture for Dynamically
Scheduled Processors,” Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, pp. 179-184, Oct. 1996.

[236] Shlomo Weiss, James E. Smith, “ Instruction Issue Logic for Pipelined Supercomputers,”
Proceedings of the 11th International Symposium on Computer Architecture, pp. 110-118, Jun. 1984.

[237] John Whaley, “Partial Method Compilation Using Dynamic Profile Information,” Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, pp. 166-179, Oct. 2001.

[238] Kenneth M. Wilson, Kunle Olukotun, “Designing High Bandwidth On-Chip Caches,” Proceedings
of the 24th International Symposium on Computer Architecture, pp. 121-132, Jun. 1997.

[239] Steven J. E. Wilton, Norman P. Jouppi, “CACTI: An Enhanced Cache Access and Cycle Time
Model,” IEEE Journal of Solid-State Circuits, Vol. 31, No. 5, pp. 677-688, May 1996.

[240] Emmett Witchel, Mendel Rosenblum, “Embra: Fast and Flexible Machine Simulation,” Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pp. 68-
78, May 1996.

[241] Kenneth C. Yeager, “The MIPS R10000 Superscalar Microprocessors,” IEEE Micro, Vol. 16, No. 2,
pp. 28-40, Mar. 1996.

[242] Adi Yoaz, Mattan Erez, Ronny Ronen, Stephen Jourdan, “Speculation Techniques for Improving
Load Related Instruction Scheduling,” Proceedings of the 26th International Symposium on
Computer Architecture, pp. 42-53, Jun. 1999.

[243] Robert Yung, Neil C. Wilhelm, “Caching Processor General Registers,” Proceedings of the
International Conference on Circuits Design, pp. 307-312, Oct. 1995.

[244] Cindy Zheng, Carol Thompson, “PA-RISC to IA-64: Transparent Execution, No Recompilation,”
IEEE Computer, Vol. 33, No. 3, pp. 47-53, Mar. 2000.

[245] Craig Zilles, Gurindar S. Sohi, “A Programmable Co-Processor for Profiling,” Proceedings of the 7th
International Symposium on High Performance Computer Architecture, pp.241-252, Jan. 2001.

186

Appendix: Simulation Setup for Evaluating

Control Transfer Suppor t Mechanisms

In this appendix the identity translation framework used in Chapter 5 is described. In short,

the framework is a stripped down version of the ILDP dynamic binary translation mechanism

integrated with an earlier version of the baseline simulator described in Chapter 6.

The timing simulator part of the identity translation framework is largely based on the

SimpleScalar 3.0C toolset [35] and is heavily modified (especially in the front-end) to closely

model modern processor pipeline designs. The same timing simulator without the code caching

facility is also used as a baseline for comparisons. This baseline configuration is referred to as

original.

When program control flow reaches an existing superblock in the code cache, the simulator

begins detailed timing simulation. Here the timing simulation starts with an initially empty pipeline.

Similarly if an exit condition from the code cache is met (i.e., a superblock exit instruction’s target

is not currently cached in the code cache), the mode is changed to interpretation after the last

instruction in the pipeline is committed. Overall performance is then measured as source

instructions per cycle (IPC) for execution of all cached (and chained) instructions.

The superblock formation algorithm is the same as the one described in section 4.1.3.

Similarly, a maximum superblock size of 200 instructions and a tail execution counter threshold of

50 were used.

To collect statistics, I use the SPEC CPU2000 integer benchmarks compiled for the Alpha

EV6 ISA at the base optimization level (–ar ch ev6 –non_shar ed –f ast). These are the

same binaries used in Chapter 7. The t est input set was used for all benchmarks except for

187

253.perlbmk, where one of the t r ai n input set (- I . / l i b di f f mai l . pl 2 550 15 24

23 100) was used. All benchmarks were run to completion or 4.3 billion instructions. NOPs

defined in the Alpha ISA are properly recognized and removed when superblocks are formed. In

original, NOPs are removed by the hardware in the decoding stage.

Figure A-1 shows the eight-stage out-of-order superscalar processor pipeline simulator used

for the evaluation in section 5.3 (additional pipeline stages for the non-control transfer instructions

such as the data cache related stages are not shown).

Figure A-1 Simulated pipeline used in the identity translation framework

Instruction fetch takes two cycles – one cycle for accessing the I-cache SRAM array and

another cycle for shift and mask operation to select valid fetch target instructions. Control transfer

information such as branch/jump types and their locations within an I-cache line is pre-decoded and

stored in the I-cache array when the cache line is brought into the I-cache. All branch prediction

mechanisms, i.e., branch (direction) predictor, BTB, and RAS were set to single-cycle. If the fetch

redirection bubble cycles are accounted for (that is, if multi-cycle predictors are used), the

performance differences in Figure 5-9 is further increased. Regarding predicted directions of

conditional branches, when there is a disagreement between branch predictor and BTB for a

conditional branch, the branch prediction overrides the BTB prediction. The out-of-order issue

Fetch Align Decode Rename Dispatch Issue

Write -
back Execute

Taken branch/
jump

Conditional branch direction, indirect jump
target address misprediction

188

mechanism in the pipeline backend and the cache and memory subsystems stay largely identical to

the si m- out or der simulator. This led to higher IPC performance numbers in Chapter 5

compared with the evaluation using the baseline simulator in Chapter 7. Machine configurations are

shown in Table A-1.

Table A-1 Machine parameters used in the identity translation framework

 4-way issue microarchitecture

Branch prediction
16K-entry, 12-bit global history g-share branch predictor; 16-entry RAS;
2K-entry, 4-way set associative BTB; 256-entry fully associative, LRU-
replacement JTLT (if used)

Branch predictor bandwidth Up to 1 prediction per cycle

L1 I-cache 32-KB size, direct-mapped, 64-byte line size, 2-cycle hit latency

Fetch bandwidth
Maximum 4 instructions per cycle;
Fetch continues after the first predicted not-taken conditional branch;
Fetch stops if a second branch is found

L1 D-cache
32-KB size, 4-way set-associative, random replacement, 64-byte line
size, 2-cycle hit latency, write-back, write-allocate

Unified L2 cache
1-MB size, 4-way set-associative, random replacement, 128-byte line
size, 8-cycle hit latency, write-back, write-allocate

Memory 128-cycle latency, 64-bit wide, 4-cycle burst

Decode/issue/retire bandwidth 4

Issue window size 64

Execution resources
4 integer units, 2 L1 D-cache ports, 2 floating-point adders, 2 floating-
point multipliers

Reorder buffer size 128

