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Abstract

A current trend in high-performance superscalar processors is toward simpler designs that
attempt to strike a balance between clock frequency, instruction-level parallelism, and power
consumption. To achieve this goa, the thesis research reported here advocates a microarchitecture
and design paradigm that rely less on low-level speculation techniques and more on simpler,
modular designs with distributed processing at the instruction level, i.e., instruction-level distributed
processing (ILDP).

This thesis shows that designing a hardware/software co-designed virtual machine (VM)
system using an accumulator-oriented instruction set architecture (ISA) and microarchitecture is a
good approach for implementing complexity-effective, high-performance out-of-order superscalar
machines. The following three key points support this conclusion:

An accumulator-oriented instruction format and microarchitecture fit today’s technology
constraints better than conventional design approaches. The ILDP ISA format assigns
temporary values that account for most of the register communication to a small humber of
accumulators. As a result, the complexity of the register file and associated hardware
structures are greatly reduced. Furthermore, the dependence-oriented ILDP ISA format
allows simple implementation of a complexity-effective distributed microarchitecture that is
tolerant of globa communication |latencies.

The accumulator-oriented instruction format and microarchitecture result in low-overhead

dynamic binary trandation (DBT): Because the underlying ILDP hardware provides aform

of superscalar out-of-order processing, the dynamic binary translator does not need to

perform aggressive optimizations often used in previous co-designed virtual machine



i
systems. As a result, the dynamic binary trandation overhead is greatly reduced compared
to these systems.

The co-designed VM system for ILDP performs similarly to, or better than, conventiona

superscalar processors having similar pipeline depths while achieving lower complexity in

key pipeline structures. This reduction of complexity can be exploited to achieve either a

higher clock frequency or lower power consumption, or a combination of the two.

This thesis makes two main contributions. First, the mgjor components of a co-designed
VM for ILDP are fully developed: an accumulator-based ISA that is designed to support efficient
dynamic binary translation; a complexity-effective accumul ator-based distributed microarchitecture;
a fast and efficient DBT mechanism and hardware-based control-transfer support mechanisms.
Second, performance evaluations and complexity analysis support the key points of the thesis listed
above. A sound evaluation methodology is established, including: a detailed, current-generation
superscalar pipeline simulator that forces timing correctness by design, and a hybrid dynamic binary
trandator/timing simulator framework that allows simple and flexible analysis of a co-designed VM

system.
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Chapter 1 Introduction

1.1 Background

Moore's prediction in 1965 [162] that the number of transistors per integrated circuit would
double every couple of years has held true for amost four decades [163], to the point that it is
considered an empirica law. For the more than three decades since the introduction of the first
integrated circuit microprocessor (the Intel 4004 in 1971), ever-shrinking semiconductor technology
has been the driving force behind continuous microprocessor performance improvements. Faster
transistor switching speeds have allowed higher clock frequency designs while bigger transistor
budgets have enabled more microarchitecture techniques to be used to increase instruction level
paralelism (ILP).

Until recently, reducing the number of logic levels per clock cycle, i.e., increasing the
pipeline depth [98][108][28] has been a popular technique for achieving higher clock frequencies
than would be obtainable with technology scaling alone. Considering the long development cycle of
a new generation design, the deeply pipelined design style was considered a desirable practice
because it allows relatively easy clock frequency ramping, thus ensuring the longevity of the design
[108][222].

There are negatives to this approach though, even neglecting the classic pipeline latch
overhead problem [142]. Firgt, to accommodate relatively increasing memory latencies, deeper

pipeline buffers and more aggressive speculation techniques are required — which in turn make the

Y In the reduced instruction set computer (RISC) heyday of the mid-80s, the objective was a new

processor design every two years; now it takes from four to six.
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design more complex and harder to validate [242]. Second, on-chip global wire latency has become
relatively worse compared to transistor switching speed [4][30][110][154]. With deeper pipelining,
the negative impact of the global wire latency can only get worse, further reducing the pipeline
efficiency. Finally, power consumption increases with deeper pipelines, be it dynamic (from
excessively high clock frequency) or static (from increased leakage current of low V transistors)

[101][170].

1.2 Instruction-L evel Distributed Processing

As a consequence, an apparent microarchitecture trend is back toward relatively ssimpler
designs [90] that try to strike a good balance between clock frequency, ILP, and power consumption.
Nonetheless, even this approach faces technology difficulties, globa wire latency for example,
albeit to a lesser degree than with very highly pipelined and complex designs. For this reason, the
research here advocates a design principle that relies less on low-level speculation techniques and
more on simpler, modular designs with distributed processing at the instruction level, i.e,
instruction level distributed processing (ILDP) [216].

To study the full potentia of future ILDP architectures, the thesis research considers new
instruction sets that are suitable for distributed microarchitectures. The goa is to avoid the
encumbrances of instruction sets designed in a different era and with different constraints. A newly
designed instruction format distinguishes global and local communication patterns more explicitly
and works to reduce hardware complexity of most major pipeline structures. This leads to, in their
simplest form, microarchitectures that are tolerant of interconnect delays, use a relatively small
number of fast (high power-consumption) transistors, and support both high clock frequencies and

relatively short pipelines.
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There has been other research on new instruction formats and distributed microarchitectures
[171][224][227] that include similar ILDP concepts such as:

Considering microarchitecture as a distributed computing problem

Accounting for communication as well as computation

Localizing communication to small functional units while managing the overdl structure

for communication.

These earlier studies are mostly aimed at achieving higher performance by utilizing tens, if
not hundreds, of distributed processing elements (PEs), especialy for potentially high ILP
workloads such as media processing. Unlike the other proposals, the proposed ILDP paradigm will

work well with irregular programs, not just with high ILP programs.

Multiscalar [220],
Trace processor [197],
: Recent designs: PEWS[130]
gzrn:’rﬁfjn Alpha 21264 [131],
designs FE%]WEHRZ [ég%] ' | { Accumulator-oriented RAW [227],
[228] )| " |LDP systemiin the GPA/EDGE [171],
research WaveScalar [224]
Moderately Highly
None Ad hoc distributed distributed

Degree of distribution

Figure 1-1 Spectrum of distributed designs

1.2.1 Accumulator-Oriented Instruction Set Architecture

The instruction set format used in the thesis is based on the following two rather
fundamental observations. First, alarge number of register values are used only once and most of

them are used soon after they are created [86]. Second, instructions with true dependences cannot
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execute in parallel (unless value speculation techniques [148][201] are used). If an instruction set
architecture (1SA) is designed to explicitly convey dependence and register usage information, it
would enable simpler implementations of dependence-based distributed microarchitectures that are
complexity-effective and tolerant of global wire latencies.

The ILDP ISA studied in this thesis has a small number of accumulators backed with a
relatively large number of general-purpose registers (GPRS). The instruction stream is divided into
chains of dependent instructions, called strands hereafter, where intra-strand dependences are
passed through a common accumulator. The general-purpose register file is used for communication
between strands and for holding global values that have many consumers. Note that the ILDP ISA’s
emphasis on reduction of global communications by exploiting dependences between instructionsis
in stark contrast to the traditional reduced instruction set computer (RISC) ISAs where maximizing

computation parallelism through independences between instructions has a high priority.”

1.2.2 Accumulator-Oriented Microar chitecture

The accumulator-oriented ISA in the thesis is specifically designed for an accompanying
distributed microarchitecture. The overall ILDP microarchitecture shown in Figure 1-2 consists of
pipelined ingtruction fetch, decode, and rename stages of modest width that feed a number of
distributed processing elements, each of which performs sequentia in-order instruction processing.
The instruction set exposes inter-instruction dependences and local value communication patterns to
the microarchitecture, which uses this information to steer chains of dependent instructions to the

sequential PEs. Dependent instructions executed within the same PE have minimum communication

2|n a sense, the role of accumulators (implying seria by default) in the dependence-oriented ILDP
ISA can be thought as a dua of the stop bit (implying paralel unless stated otherwise) in the |A-64

architecture, along instruction word (LI1W) ISA designed for achieving high ILP [118].
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delay as the results of one instruction are passed to the next through an accumulator. Taken

collectively, the multiple sequential PEs implement multiple-issue out-of-order execution.
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Figure 1-2 High-level view of the ILDP pip€dine



1.3 Co-Designed Virtual Machine

1.3.1 Rationale

For certain applications where binary compatibility is not a maor issue (e.g., in some
embedded systems), a new instruction set may be used directly in its native form. However, for
general-purpose applications a requirement of binary compatibility is a practical reality that must be
dealt with. For these applications there are two possibilities, both involve dynamic binary
tranglation from avirtual I1SA (V-ISA) to an implementation ISA (I-ISA). One method isto perform
on-the-fly hardware translation similar to the methods used today by Intel and AMD when they
convert x86 instructions to micro-operations [63][81][98][108][209][210]. However, as will be
shown in later sections, such a trandation to an ILDP instruction set requires higher-level analysis
than a simple instruction-by-instruction peephole mapping.® Hence, the second method relies on
virtual machine software, co-designed” with the hardware and hidden from conventional software
[217]. The binary translation subsystem in the virtual machine monitor (VMM) software layer maps
existing binaries to the new ILDP instruction set in a manner similar in concept to the method used
by the Transmeta Crusoe processor [60][99][128][140] and the IBM DAISY/BOA projects [9][68]

[69][70][95]. All instructions are trandated: applications, libraries, and the operating system —

3 Technically, it is not impossible to implement the strand-oriented translation in a hardware-only
manner, as was proposed in arecent study [199]. However, adding additional control hardware that works at a
higher level than individual instructionsis at odds with the overall goa of design simplification.

*1BM AS/400 series [12] (first introduced in 1988; now iSeries servers) are well-known co-designed
virtual machine systems. The term, “co-design”, is also widely used in embedded design field [75]. As with

the co-designed VM systems, the co-design methodology is used to achieve particular design goals.
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everything. The translated codes are put into a special hidden memory area and are brought to the |-
cache upon misses. Dynamic binary trandation (DBT) can be performed either by a specia co-

processor [47][59] or by the main processor itself.

V-ISA program
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Figure 1-3 Overview of the co-designed virtual machinein thethesis
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1.3.2 Dynamic Binary Trandation

Dynamic binary trandation converts instructions from a source 1SA to atarget ISA. In the
co-designed VM paradigm, these are the V-ISA and |-ISA, respectively, and only the V-ISA is an
exigting instruction set for which conventional software exists. A DBT system also profiles program
run-time behavior and dynamically optimizes blocks of frequently executed instructions.

The main objective of DBT in this research is identifying instruction inter-dependences and
making register assignments that reduce intra-processor communication. Thisinformation is carried
by the accumulator-oriented I-ISA and is used by the microarchitecture to steer instruction strands
to the sequential PEs.

A key consideration in the design of a DBT system is the overhead resulting from the time
it takes to trandlate; any time spent translating is time not spent executing the source program. In
this thesis, the emphasis in the DBT system design is on simplicity; because the underlying
hardware is a form of dynamic superscalar, it can be relied upon to provide code scheduling. An
important difference from the two most notable co-designed VM systems, the IBM DAISY/BOA
and the Transmeta Crusoe processor, is that here binary trandlation does not require complex
optimizations and scheduling [ 71] that are used for the VLIW implementations in these systems. On
the other hand, maintaining the original instruction order in the trandated code helps maintain a

precise trap recovery model [211].

1.3.3 Scope of Study

In this research, the Alpha instruction set is used as the outwardly visible V-ISA. By
implementing all the major parts of a co-designed virtual machine, the research shows that the
resulting ILDP system can achieve high performance through a combination of a high clock

frequency, a moderate depth pipeline, and modest ILP. Simplicity is the key here — not only the
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hardware complexities but also the dynamic binary translation overheads are reduced by designing
the whole system around the accumulator-oriented instruction set and strand execution model.
However, implementing a fully-working VM system is a huge engineering task and is beyond the
scope of the thesis research. Instead, the thesis concentrates on (1) desired instruction set properties,
(2) overall microarchitecture and key subsystem design, and (3) efficient dynamic binary translation
support. The ssimplicity advantage will be demonstrated through the reduced complexities of the key
pipeline hardware structures and a simple, fast dynamic binary trandation algorithm, and
instructions per cycle (IPC) performance is shown to be better or similar than comparable

superscalar processors.

1.4 Thess, Contributions, and Outline

The thesis supported by this research is that designing a hardware/software co-designed
virtual machine system using an accumulator-oriented instruction set and microarchitecture is an
effective approach for implementing complexity-effective, high-performance out-of-order
superscalar processors. | defend this thesis by arguing the following three key points:

The accumulator-oriented instruction format and microarchitecture fit today’s technology
constraints better than conventional design approaches. The ILDP ISA format assigns
temporary values that account for most of the register values to a small number of
accumulators. As a result, the complexity in the register file and associated hardware
structures are greatly reduced. Furthermore, the dependence-oriented ILDP ISA format
allows simple implementation of a complexity-effective distributed microarchitecture that is
tolerant of globa communication |latencies.

The accumulator-oriented instruction format and microarchitecture resultsin low-overhead

dynamic binary trandation: Because the underlying ILDP hardware provides a form of
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superscalar out-of-order processing, the dynamic binary trandator does not need to perform

aggressive optimizations as used in previous co-designed VM systems. As a result, the

dynamic binary tranglation overhead is greatly reduced compared to these systems.

The co-designed virtual machine system for instruction-level distributed processing

performs similarly to or better than conventional superscalar processors of similar pipeline

depth while achieving lower complexities in key pipeine structures: This reduction of
complexity can be exploited to achieve either higher clock frequency or lower power
consumption, or a combination of the two.

My thesis makes two main contributions. First, | develop three key components of a co-
designed virtual machine system for instruction-level distributed processing: an accumulator-based
instruction set architecture designed to support efficient dynamic binary trandation, a complexity-
effective accumulator-based distributed microarchitecture, and a fast and efficient dynamic binary
tranglation mechanism and hardware-based mechanisms for supporting control-transfers.

Second, | present performance evaluations and complexity analysis of the co-designed
virtual machine system to illustrate its benefits and provide support for its use in future processor
designs. With respect to the second contribution, a rigorous evaluation methodology was
established including: a detailed, current-generation superscalar pipdine simulator with emphasis
on correct timing and a hybrid dynamic binary trandator/timing simulator framework that alows
simple and flexible analysis of aco-designed VM system.

The thesis is organized as follows. The ILDP instruction set format is central to the thesis
and is described in Chapter 2. First, a strand execution model is developed based on the
observations on typical compiled code characteristics. After DBT-specific ISA requirements are

discussed, the implementation-specific ILDP ISA formats are presented. Chapter 3 starts with an
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overview of the accompanying ILDP microarchitecture and compares its unique operand capture®
model to two prevalent superscalar models. Specifics of the ILDP microarchitecture are described
afterwards. The dynamic binary trandation mechanism, a key component of the virtual machine
monitor layer, is explained in Chapter 4. The chosen unit of trandation, the superblock (a straight-
line code sequence with a single entry point and multiple exit points), and its formation rules are
explained and then followed by discussions of two key issues in any DBT system: precise state
reconstruction and dynamic code expansion. The actua DBT algorithm for the ILDP I-1SA is
presented at the end of the chapter. Efficient support mechanisms for trandating control transfer
instructions are crucia to the performance of any code cache system®. For this reason, the topic is
given a separate treatment in Chapter 5. In this chapter, problems with conventional superblock
chaining mechanisms are identified. Combinations of specialized software/hardware mechanisms
are proposed and evaluated separately from the rest of the thesis using an identity translation
framework. Thisisto help understand the effect of the dynamic code re-layout that comes free with
any superblock-based code cache system, separated from the ISA trandlation effect. Chapter 6
describes the experimental framework used in the thesis. This chapter not only discusses the

modeling methodology of the ILDP co-designed VM system but also gives a detailed description of

® In modern pipelined designs, operand values can be obtained by accessing the designated data
storage (e.g., the physical register file) in a pipeline stage or by constantly monitoring the bypass network. In
the thesis, the term operand capture is used to represent both methods.

® Most dynamic translators and optimizers place frequently executed translated/optimized codes in a
main memory area. Typically the term trandlation cache [70] is used for this memory area in |SA-translation
systems while the term fragment cache [15] is used in optimization-only systems. Throughout the thesis,
“code cache” is used as a general term for both trandation cache and fragment cache. Because the ILDP VM

system involves I SA trandlation, the term “translation cache” is sometimes used as well.
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the baseline superscalar processor model. Some important complexity-effective design choices
commonly employed in the current generation superscalar processor designs are also described for
complexity comparisons. The evaluation of the ILDP system is presented in Chapter 7. Here,
evaluation of the basdline superscalar processor model is first performed. These experiments serve
two purposes. First the pipeline model, shared with the proposed ILDP microarchitecture, is
validated. Second, the experiments help in understanding the performance bottlenecks in current-
generation processor designs. The performance evaluation of the ILDP system consists of two main
components; DBT-related characteristics and the overall 1PC performance compared to the baseline
superscalar pipeline. The simplicity advantages of the ILDP co-designed VM paradigm are
showcased via complexity comparisons with respect to the conventional baseline microarchitecture.
Emphasis is placed on reduced complexity of key pipeline structures and reduced trandation
overheads. Finaly Chapter 8 summarizes the research and concludes the thesis. Further research
opportunities are suggested at the end.

The thesis covers many different aspects of processor design, so a single chapter is not
adequate to present al related work. Therefore each chapter, other than the final two, contains a

related work section that is specific to the topics discussed in the chapter.
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Chapter 2 ILDPInstruction Set Architecture

The accumul ator-oriented ILDP instruction set architecture is the centerpiece of this thesis
research. Freed from the features of legacy ISAs introduced many decades ago, the thesis uses an
instruction format that is well suited for today’ s technology constraints (thereby facilitating efficient
hardware implementations) and yet it is asimple target for a dynamic binary transation system.

In this chapter, tempora locality of register values and inter-instruction dependences, two
of the most fundamental properties of compiled programs, are re-examined in the context of today’s
technology constraints. The combination of these two properties |eads to a strand-oriented execution
model and a dependence-based, accumulator-oriented instruction format. A short code snippet,
extracted from a benchmark program, is used to illustrate the overall idea of the execution model
and the instruction format. Some of the representative characteristics of the chosen V-1SA that are
relevant to the research are presented, and this is followed by discussions of precise state
maintenance and dynamic code expansion in the context of dynamic binary translation. The ILDP
ISA formats are designed to handle both of these issues well. The chapter ends with descriptions of
the ILDP ISA formats in tabular form. Related execution paradigms and ISA ideas are listed at the

end of the chapter.

2.1 Motivation

2.1.1 Separate Register Sets Based on Usage Patterns

Most existing |SAs do not distinguish between register value usage types and have only one

level of register hierarchy. This ssimple flat model made good sense when ISAs were developed
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decades ago [178]. On-chip registers were supposed to be small and fast enough for the intended
level of pipelined designs at the time.

Today's typica high-performance superscalar processor designs [206][215] put lot of
pressure on register files and associated structures. Dynamic register renaming (to remove false
dependencies; further explained in section 3.1.3) requires physical register files to have more
elements than architected, i.e., logical registers. Superscalar execution requires more access ports to
the register file. Deeper buffering within the pipeline exacerbates these difficulties further because
more physical register file entries are needed to support increased numbers of in-flight instructions.
All in all, today’ s on-chip register file have become bigger and relatively slower.’

Reducing the pressure on the register file and associated hardware structures being one goal,
the thesis research started with an observation that there is high locality in register usage patternsin
most programs. It is well known that alarge number of register values are used only once and most
of them are used soon after they are created [86]. If these temporary register values can be offloaded
to separate “scratchpad” registers, even a small number of registers will be sufficient for most
instructions because the volatile scratchpad registers may be recycled quickly. Remaining register
values that have long lifetimes can then be kept in another set of “backup” registers, most probably
larger in number than the volatile scratchpad registers, but still 1ess than in equivalent conventiona
designs. Therefore, this type of register organization will effectively reduce complexity pressure on

both the number of ports and entries of the physical register file. Furthermore, the register renaming

’ Although the physical register file itself can be pipelined to accommodate the increased access
latency using more internal bypasses, it leads to increased shadow cycles as will be shown in Figure 3-3,

reducing the effective issue window size and wasting energy in case of latency mis-speculation [138][164].
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bandwidth requirement is also effectively reduced because fewer register instances are now

renamed to the non-volatile register file.

2.1.2 Dependence-Oriented Program Execution

In general, instructions with true dependences cannot execute in parallel. Traditionally this
fundamental property has been considered a hindrance to higher performance through ILP. An
advantage of the reduced instruction set computer (RISC) paradigm is that a finer granularity 1SA
allows for increased paralelism between ssimpler instructions [229], through static scheduling by a
compiler or dynamic scheduling by out-of-order execution hardware mechanisms. Prevalence of
this idea led some implementations of complex ISAs, such as x86 to adopt a dynamic
decomposition technique that transforms a complex externa 1SA instruction to multiple, simpler
internal format instructions, sometimes called micro-operations [63][98][108][209][210].

One disadvantage of the fine-grain instruction execution model is that it tends to increase
complexity pressure on the pipeline [137]. For example, even atemporary value that is used once is
assigned a register entry and needs to be communicated from the producer to the consumer
operation through the shared bypass network. As a reaction, some newer designs try to suppress the
expansion of a complex instruction to a minimum number of pipeline stages [63][129], while others
go as far as re-combining multiple dependent finer-granularity instructions into a coarse grain
instruction [90][116][137]. One common idea behind these newer approachesis that if dependences
are unavoidable, why not exploit them to reduce pipeline complexities?

The dependence-oriented microarchitecture studied by Palacharla, Jouppi, and Smith [175]
employs dependence relationships to simplify the complexity-critical instruction issue pip