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Abstract. Optimization has become an important tool in treatment planning for cancer ra-
diation therapy. It may be used to determine beam weights, beam directions, and appropriate use
of beam modifiers such as wedges and blocks, with the aim of delivering a required dose to the
tumor while sparing nearby critical structures and normal tissue. Linear programming formulations
are a core computation in many approaches to treatment planning, because of the abundance of
highly developed linear programming software. However, these formulations of treatment planning
often require a surprisingly large amount of time to solve—more than might be anticipated given
the dimensions of the problems. Moreover, the choices of formulation, algorithm, and pivot rule
that perform best from a computational viewpoint are sometimes not obvious, and the software’s
default choices are sometimes poor. This paper considers several linear programming formulations
of treatment planning problem and tests several variants of simplex and interior-point methods for
solving them. Conclusions are drawn about the most effective formulations and variants.
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1. Introduction. Radiation therapy is a widely used technique for treating
many types of cancer. It works by depositing radiation into the body of the pa-
tient, so that prescribed amounts of radiation are delivered to the cancerous regions
(tumors), while nearby non-cancerous tissues are spared to the extent possible. Ra-
diation interferes with the DNA of cells, impeding their ability to reproduce. It tends
to affect fast-multiplying cells (such as those found in tumors) preferentially, making
them more likely to be eliminated.

In this paper, we consider external-beam radiotherapy, in which the radiation is
delivered via beams fired into the patient’s body from an external source. The linear
accelerator that produces the beams is located in a gantry which can be moved around
the patient, allowing the beams to be delivered from a number of different angles.
Additionally, a collimator can be placed in front of the beam to change its shape, and
wedges can be used to vary the intensity of the beam across the field. In the “step-
and-shoot” mode of treatment, the beam is aimed from a number of different angles
(typically between 4 and 20), a wedge orientation and collimator shape is chosen for
each angle, and the radiation beam is exposed for a certain amount of time (known
as the beam weight). Two major variants of this approach include conformal therapy,
in which the shape of the collimator at each angle is chosen to match the shape of the
tumor as viewed from that angle, and intensity-modulated radiation therapy (IMRT)
in which the beam field is divided for planning purposes into a rectangular array of
“beamlets,” which are then assigned individual weights.

For purposes of modeling and planning, that part of the patient’s body to which
radiation is applied is divided using a regular grid with orthogonal principal axes.
The space is therefore partitioned into small rectangular volumes called voxels. The
treatment planning process starts by calculating the amount of radiation deposited
by a unit weight from each beam into each voxel. These doses are assembled into
a dose matrix. (Each entry Aij in this matrix is the dose delivered to voxel i by a
unit weight of beam j.) Once the dose matrix is known, inverse treatment planning

∗Industrial Engineering Department, 1513 University Avenue, University of Wisconsin, Madison,
WI 53706, U.S.A.

†Computer Sciences Department, 1210 W. Dayton Street, University of Wisconsin, Madison, WI
53706, U.S.A.

1



is applied to find a plan that optimizes a specified treatment objective while meeting
certain constraints. The treatment plan consists of a specification of the weights for
all beams.

Linear programming is at the core of many approaches to treatment planning. It
is a natural way to model the problem, because the amount of radiation deposited by
a particular beam in each voxel of the treatment space is directly proportional to the
beam weight, and because the restrictions placed on doses to different parts of the
treatment space often take the form of bounds on the doses to the voxels.

Not all constraints can, however, be modeled directly in a linear programming
formulation. In many treatment situations, the closeness of the tumor to some critical
structures (vital organs or glands, or the spinal cord) makes it inevitable that some
part of these structures will receive high doses of radiation. Rather than limit the total
dose received by the structure, treatment planners sometimes choose to “sacrifice” a
certain fraction of the structure and curtail the dose to the remainder of the structure.
A constraint of this type is known as a dose-volume (DV) constraint; it typically
requires that “no more than a fraction f of the voxels in a critical region C shall
receive dose higher than δ.” This type of constraint cannot be expressed as a linear
function of the beam weights. It can be formulated in a binary integer program, in
which a binary variable associated with each voxel indicates whether or not the dose
to that voxel exceeds the prescribed threshold, but such problems are generally quite
expensive to solve; see for example Lee, Fox, and Crocker [14] and Preciado-Walters
et al. [18]. In Section 3.2, we discuss alternative techniques for imposing dose-volume
constraints, using heuristics that require the solution of a sequence of linear programs.

In solving the linear programs associated with treatment planning problems, we
have observed that the computational time required can vary widely according to a
number of factors, including:

• the type of constraints imposed;
• whether the primal or dual formulation of the linear program is used;
• the use of primal simplex, dual simplex, or interior-point algorithms;
• the choice of pivot rule in the simplex algorithm;
• whether the code’s aggregator or presolver is used to reduce the size of the

formulated problem or, alternatively, the formulation is reduced “by hand,”
prior to calling the solver.

We report in this paper on a computational study of several popular linear pro-
gramming formulations of the treatment planning problem, for data sets arising from
both conformal radiotherapy and IMRT. We aim to give some insight into the perfor-
mance of the solvers on these various formulations, and as to which types of constraints
cause significant increases in the runtime. We also give some general recommendations
as to the best algorithms, pivot rules, and reduction techniques for each formulation.

The paper is a case study in the use of linear programming software on an impor-
tant class of large problems. As we see in subsequent sections, considerable experience
and experimentation is often needed to identify a strategy (that is, use of primal or
dual formulation, choice of pivot rule, manual elimination of variables and constraints,
and so on) that yields the solution with the least amount of computational effort.
Moreover, even the best software cannot be relied on to make good default choices in
this matter.

The remainder of the paper is structured as follows. Section 2 contains a de-
scription of the software tools that were used in our experiments. The four types of
linear programming models of treatment planning that we tested, and their relevance
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to treatment planning, are described in Section 3. The data sets used in experiments
are described in Section 4; they include both data that is typical of conformal therapy
and data that arises in IMRT planning. We interpret and discuss the computational
results in Section 5. Section 6 contains our main conclusions.

2. Algorithms and Software Tools. In this section, we describe the software
tools we use in the experiments of this paper. These are the GAMS modeling system
and CPLEX 8.1.

GAMS [3] is a high-level modeling language that allows optimization problems to
be specified in a convenient and intuitive fashion. It contains procedural features that
allow solution of the model for various parameter values and analysis of the results
of the optimization. It is linked to a wide variety of optimization codes, thereby
facilitating convenient and productive use of high-quality software.

CPLEX is a leading family of codes for solving linear, quadratic, and mixed-
integer linear programming problems. In this study, we make use of the CPLEX
Simplex and Barrier codes for linear programming, and the CPLEX Barrier code for
quadratic programming. The CPLEX Simplex code implements both primal simplex
and dual simplex; the user can choose between the two algorithms, or can leave the
code to make the choice automatically. CPLEX performs aggregation and prepro-
cessing to reduce the number of constraints and variables in the model presented to
it, eliminating redundant constraints and removing those primal and dual variables
whose values can be determined explicitly or expressed easily in terms of other vari-
ables. CPLEX Simplex allows the user to choose between a number of pricing strate-
gies for selecting the variable to enter the basis. For the primal simplex method,
pricing options include reduced-cost (in which the entering variable is chosen to be
the one with the smallest reduced cost, see Dantzig [4, Ch.12]) and variants of the
steepest-edge strategy described by Forrest and Goldfarb [6]. All strategies are used
in conjunction with partial pricing, which means that just a subset of the dual slacks
are evaluated at each iteration, to save on the linear algebra costs associated with
pricing. For dual simplex, the pricing options include reduced-cost, the devex rule
(see Harris [8]), a strategy that combines the latter two rules, and two variants of
steepest edge. The user can opt to let the code determine an appropriate pricing
strategy automatically.

GAMS allows user-defined options to be passed to CPLEX by means of a text file.
By setting an option predual in this file, the user can force GAMS to pass the dual
formulation of the given problem to CPLEX, rather than the (primal) formulation
specified in the model file. This transformation to dual formulation is carried out
within the GAMS system, before calling CPLEX. Note that the choice of formulation
(primal or dual) can be made independently of the choice between primal and dual
simplex method. Application of the primal simplex algorithm to the dual formulation
is not equivalent to applying dual simplex to the primal formulation. The effects of
preprocessing sometimes are different for the two formulations, different methods for
finding a starting point may be used, and the iterates evolve differently even when the
same pivot rule is used. Different “menus” of pivot rules are available for the primal
and dual simplex options.

The CPLEX Barrier code for linear programming also allows the user to choose
between different ordering rules for the sparse Cholesky factorizations that are per-
formed at each iteration. These options include minimum degree, minimum local-fill,
and nested dissection. We found little performance difference between these options
in our tests, so we report results only for the default choice.

3



In Section 3.4, we use the CPLEX Barrier code for quadratic programming, which
implements a similar primal-dual interior-point algorithm to the one for linear pro-
gramming, but performs different sparse linear algebra computations at each iteration
due to the presence of a Hessian term. To call this quadratic programming code from
GAMS, we use a QP wrapper utility that writes out a text file and then invokes
CPLEX (see [7]).

3. Formulations of the Treatment Planning Problem. In this section we
will describe four formulations of the radiation treatment planning problem that define
goals and constraints in different ways. The first three are linear programming models
and the fourth is a quadratic program. For each linear formulation, we describe the
main features and present the most natural formulation. We then describe alternative
formulations obtained by eliminating variables and applying duality theory.

For purposes of inverse treatment planning, the voxels in the treatment volume
typically are partitioned into three classes. Target voxels, denoted by an index set T ,
are those that lie in the tumor and to which we usually want to apply a substantial
dose. Critical voxels, denoted by C, are those that are part of a sensitive structure
(such as the spinal cord or a vital organ) that we particularly wish to avoid irradiating.
Normal voxels, denoted by N , are those that fall into neither category. Ideally, normal
voxels should receive little or no radiation, but it is less important to avoid dose to
these voxels than to the critical voxels.

All three of these classes appear explicitly only in model II. For the remaining
models, the critical voxels are lumped with the normal voxels in the formulation.
This does not mean, however, that the models make no distinction between nontarget
voxels. In model I, for instance, we can impose a smaller upper bound on the dose for
the critical voxels than for the normal voxels, by modifying the “critical” components
of the vector xU

N
appropriately. We can also impose a larger penalty for dose to a

critical voxel than to a normal voxel by adjusting the components of the cost vector
cN .

3.1. Model I: A Formulation with Explicit Bounds on Voxel Doses.
In the first formulation we consider, the treatment area is partitioned into a target
region T consisting of nT voxels and a normal region N consisting of nN voxels. The
dose delivered to T is constrained to lie between a lower bound vector xL

T
and an

upper bound vector xU
T

. Dosage delivered to N is bounded above by xU
N

. We wish to
minimize a weighted sum of doses delivered to the normal voxels, where the weights
are components of a cost vector cN . Defining the variables to be w (the vector of
beam weights), xT (the vector of doses to the target voxels), and xN (the vector of
doses to the normal voxels), we can express the model as follows.

min
w,xT ,xN

cT
N

xN s.t. (3.1a)

xT = AT w, (3.1b)

xN = ANw, (3.1c)

xN ≤ xU
N

, (3.1d)

xL
T
≤xT ≤ xU

T
, (3.1e)

w ≥ 0. (3.1f)

The submatrices AT ∈ IRnT ×p and AN ∈ IRnN×p are dose matrices for the target and
normal regions, respectively.
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Bahr et al. in [1, Fig. 8] was apparently the first to propose formulation (3.1).
Since then it has appeared in similar format in various papers, sometimes with addi-
tional constraints. Hodes in [9] used this model without the upper bounds xU

T
on the

tumor. Morrill et al. [17] used the same constraints but a slightly different objective.
The formulation appears unchanged in Rosen et al. [19, p. 143]. By omitting the
upper bound xU

N
on normal tissue voxels we obtain the model described by Shepard

et al. [21, p. 731]. Sonderman and Abrahamson [22, p. 720] added restrictions on the
number of beams that may be used by adding binary variables to the formulation,
thereby obtaining a mixed integer program rather than a linear program.

The formulation (3.1) avoids hot and cold spots by applying explicit bounds to the
dose on each target voxel. The advantage of this model is its simplicity and flexibility,
in that choice of bounds can vary from voxel to voxel, as can choice of penalties in the
objective. The disadvantages are that it may be infeasible and that it does not impose
DV constraints. Hence the objective may not capture well the relative desirability of
different treatment plans.

We can compress (3.1) by eliminating the xN variable to obtain

min
w

(AT
N

cN )T w s.t. (3.2a)

xT = AT w, (3.2b)

ANw ≤ xU
N

, (3.2c)

xL
T
≤xT ≤ xU

T
, (3.2d)

w ≥ 0. (3.2e)

We call this form the reduced primal model. The xT variable could also be eliminated,
leaving w as the only variable but yielding the following two general inequality con-
straints: AT w ≤ xU

T
and AT w ≥ xL

T
. Although it reduces the number of unknowns,

this formulation replaces a two-sided bound with two general constraints, so its ben-
efits are dubious. In any case, since the target region is typically much smaller than
the normal region, the effect of this reduction on solution time is not great.

The dual of (3.1) can be written as follows:

max
λ,µL,µU

−(xU
N

)T µB+(xL
T
)T µL − (xU

T
)T µU s.t. (3.3a)

µT + µL − µU = 0, (3.3b)

µN − µB = cN , (3.3c)

−AT
T
µT ≤ AT

N
µN , (3.3d)

µL, µU , µB ≥ 0. (3.3e)

We can eliminate the equality constraints by substituting for µT and µN to obtain the
reduced dual form:

max
λ,µL,µU

−(xU
N

)T µB+(xL
T
)T µL − (xU

T
)T µU s.t. (3.4a)

AT
T
(µL − µU) ≤ AT

N
(cN + µB), (3.4b)

µL, µU , µB ≥ 0. (3.4c)

In our computational experiments, we formulated each of the three models (3.1),
(3.2), and (3.4) explicitly in GAMS and passed them to CPLEX. We also solved the
full-size model (3.1) with the predual option set; this forces GAMS to formulate the
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dual of this model internally before calling CPLEX. Note that we did not perform
extensive experiments with the full-sized dual (3.3) since this model is obviously inef-
ficient. (Indeed, our limited experiments showed that the majority of time in solving
(3.3) was consumed in the presolve phase, in removing most of the rows and columns
from the formulation.)

Our computational results are reported in detail in Section 5.1. We note here
that when the bound (3.1d) on normal voxel dose is removed, the problems can be
solved very rapidly. This observation motivates an practical approach in which we
obtain a warm start for the actual problem by first solving the simplified problem
with xU

N
= ∞. We report on some experience with this approach in Section 5.1.

3.2. Model II: A Formulation with DV Constraints. We now consider a
linear programming formulation that arises when DV constraints are present. As men-
tioned earlier, such constraints typically have the form that no more than a fraction
f of the voxels in a critical region receives a dose higher than a specified threshold δ.
This type of constraint was apparently first suggested by Langer and Leong in [12].
An exact formulation can be obtained by means of binary variables as follows. First,
we denote the critical region by C (with nC voxels) and the dose matrix for this region
by AC. Introducing the binary vector χC (with nC components, each of which must
be either 0 or 1), we formulate the constraint as

xC = ACw, xC ≤ δeC + MχC, eT
C
χC ≤ fnC, χC ∈ {0, 1}nC , (3.5)

where xC is the dose vector for the critical region, M is a large constant and eC is the
vector of all 1s and dimension nC. The components for which χi = 1 are those that
are allowed to exceed the threshold. A formulation of this type was first proposed by
Langer et al. [11, p. 889] and has since appeared in Langer et al. [13, p. 959], Shepard
et al. [21, p. 738] and Preciado-Walters et al. [18, Eq. 6].

Lee, Fox, and Crocker [14] use the model (3.5) and add a similar type of con-
straint to the target (requiring, for instance, that at least 95% of target voxels receive
the prescribed dose). They devise a specialized branch-and-bound solver that uses
column generation on the linear programming relaxations disjunctive cuts, and vari-
ous heuristics. Their computation times indicate that the problems are quite difficult
to solve. Preciado-Walters et al. [18] solve the mixed-integer program for the IMRT
problem, using a column generation procedure in which each generated column is
the dose distribution from a certain aperture consisting of a subset of beamlets, cho-
sen using dual-variable information to be potentially useful for the problem at hand.
Langer et al. [13] uses a heuristic based on solving a sequence of linear programs,
using dual information to decide which voxels should have doses below the threshold.
(They compare this approach to simulated annealing.)

Another approach (Shepard [20]) is to start by solving a problem like the one in
(3.1) without the upper bound in (3.1d), applying a uniform penalty to all voxels in
C. If too many critical voxels have doses above the threshold, a new linear program
is formulated (see below) in which the dose in excess of the threshold is penalized for
some of the above-threshold voxels. In fact, we can form a sequence of similar linear
programs, varying the penalties and the threshold values, until we obtain a solution
that satisfies the original DV constraint.

A typical linear program arising in the course of the heuristic just described (and
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possibly others) is as follows:

min
w,xT ,xN ,xC ,xE

cT
N

xN + cT
E
xE s.t. (3.6a)

xT = AT w, (3.6b)

xN = ANw, (3.6c)

xC = ACw, (3.6d)

xL
T
≤xT ≤ xU

T
, (3.6e)

xE ≥ xC − b, (3.6f)

w, xE ≥ 0, (3.6g)

where b is a vector of thresholds for the voxels in C (different thresholds may apply for
different voxels in C), xE represents the dose to the critical voxels in excess of the doses
specified in b. The cost vectors cE and cN are the penalties applied to excess doses
in the C voxels and to any nonnegative dose in the N voxels. The threshold vector
b and weight vector cE are the quantities that are manipulated between iterations of
the heuristic in an attempt to satisfy the given DV constraints.

The vectors xN and xC can be eliminated from (3.6) to obtain:

min
w,xT ,xE

cT
N

ANw + cT
E
xE s.t. (3.7a)

xT = AT w, (3.7b)

xL
T
≤xT ≤ xU

T
, (3.7c)

xE ≥ ACw − b, (3.7d)

w, xE ≥ 0, (3.7e)

which we refer to as the reduced primal form.
The dual of (3.6) is

max
µL,µU ,µN ,µT ,µC ,µE

(xL
T
)T µL − (xU

T
)T µU − bT µE s.t. (3.8a)

µT + µL − µU = 0, (3.8b)

µN = cN , (3.8c)

µC − µE = 0, (3.8d)

µE ≤ cE , (3.8e)

−AT
T
µT − AT

N
µN − AT

C
µC ≤ 0, (3.8f)

µL, µU , µE ≥ 0. (3.8g)

By eliminating µC, µN , and µT , we obtain

max
µL,µU ,µN ,µT ,µC ,µE

(xL
T
)T µL − (xU

T
)T µU − bT µE s.t. (3.9a)

0 ≤µE ≤ cE , (3.9b)

AT
T
(µL − µU) − AT

C
µE ≤ AT

N
cN , (3.9c)

µL, µU ≥ 0. (3.9d)

which we refer to as the reduced dual form. The target dose matrix AT
T

appears
twice in constraint (3.9c), so it is reasonable to ask whether it might be better to
avoid elimination of µT and leave the constraint (3.9c) in the form (3.8b) and (3.8f).
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However, the target dose matrix AT is often smaller than the critical dose matrix AC,
and experiments with the two formulations did not show a significant difference in
runtime for the best choices of algorithm and pivot rule.

Presolving may reduce the size of the reduced dual model (3.9) significantly. If,
for instance, column j of both AT and AC is zero (which would occur if the beam
corresponding to this column does not deposit significant dose into any voxels of the
target or critical regions), the jth row of (3.9c) can be deleted from the formulation.
Similarly, if column j of AT is zero while column j of AC contains a single nonzero,
the jth row of (3.9c) reduces to a bound, which can be handled more efficiently than
a general linear constraint by most linear programming software.

3.3. Model III: A Formulation with Range Constraints and Penalties.
Our third formulation contains no DV constraints, but instead specifies a required
range for dose to the target voxels, together with a desired dose inside this range.
The differences with model I are the inclusion of a penalty term in the objective for
any deviation from the desired dose, and the omission of an upper bound on dose to
normal voxels.

We write the Model III formulation as follows:

min
s,t,w,xN ,xT

cT
T
(s + t) + cT

N
xN s.t. (3.10a)

xT = AT w, (3.10b)

xN = ANw, (3.10c)

xL
T
≤xT ≤ xU

T
, (3.10d)

s − t = xT − d, (3.10e)

w, s, t ≥ 0, (3.10f)

where d is the desired dose vector. The variable vector s represents the overdose
(amount by which the actual dose exceeds the target dose), while t represents the
underdose, so the term cT

T
(s + t) in the objective function penalizes the ℓ1 norm of

the deviation from the prescribed dose. We could modify this model easily to apply a
more severe penalty for underdose than for overdose, but for simplicity of description
we have chosen to use the same penalty vector cT for both underdose and overdose.

A similar model to (3.10) is used by Wu [23], except that the objective is replaced
by a sum-of-squares measure (see Section 3.4). It is also similar to the form in Shepard
et al. [21, p. 733], which includes a bound on the total dose to the critical structures
and constraints on the weights w.

Elimination of xN from (3.10) yields the following reduced primal form:

min
s,t,w,xT

cT
T
(s + t) + (AT

N
cN )T w s.t. (3.11a)

xT = AT w, (3.11b)

xL
T
≤xT ≤ xU

T
, (3.11c)

s − t = xT − d, (3.11d)

w, s, t ≥ 0. (3.11e)
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The dual of (3.10) is as follows:

max
µT ,µN ,µU ,µL,µD

−(xU
T

)T µU + (xL
T
)T µL + dT µD s.t. (3.12a)

µT + µU − µL − µD = 0, (3.12b)

µN = −cN , (3.12c)

−AT
T
µT − AT

N
µN ≥ 0, (3.12d)

µD ≥ −cT , (3.12e)

−µD ≥ −cT , (3.12f)

µL, µU ≥ 0, (3.12g)

and after an obvious simplification we obtain the following reduced dual form:

max
µT ,µU ,µL,µD

−(xU
T

)T µU + (xL
T
)T µL + dT µD s.t. (3.13a)

µT + µU − µL − µD = 0, (3.13b)

AT
T
µT ≥ −AT

N
cN , (3.13c)

−cT ≤µD ≤ cT , (3.13d)

µL, µU ≥ 0. (3.13e)

We also experimented with a variant of this model in which the single target dose
d was replaced by a range [dL, dU ] (with xL

T
≤ dL ≤ dU ≤ xU

T
), and penalties were

imposed only if d was outside the interval [dL, dU ]. The computational runtimes for
this model were quite similar to those obtained for (3.10), (3.11), (3.12), (3.13), so we
do not discuss it further.

3.4. Model IV: A Quadratic Programming Formulation. Model IV is
similar to model III, the only difference being that we replace the ℓ1 penalty for
deviating from a prescribed dose by a sum-of-squares term.

Quadratic programming software is less widely available than linear programming
software (although this situation is changing for convex quadratic programs, with the
recent availability of interior-point codes) and quadratic programs have traditionally
been thought of as requiring significantly more computation time than linear programs
of similar dimension and sparsity. However, as our results with the CPLEX quadratic
programming solver show, this view is not necessarily correct.

By modifying (3.10), defining γT to be a positive scalar, we obtain the following
quadratic model (see Wu [23]):

min
w,xN ,xT

1

2
γT yT Qy + cT

N
xN s.t. (3.14a)

xT = AT w, (3.14b)

xN = ANw, (3.14c)

xL
T
≤xT ≤ xU

T
, (3.14d)

y = xT − d, (3.14e)

w ≥ 0, (3.14f)

where Q is a positive definite matrix. When Q = I, a sum-of-squares of the elements
of xT − d replaces the ℓ1 norm of model III.
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Table 4.1

Pancreatic Data Set: Voxels per Region.

Region—Tissue # of voxels
Target 1244
Normal 747667
Critical—Spinal Cord 514
Critical—Liver 53244
Critical—Left Kidney 9406
Critical—Right Kidney 6158
Total 818181

By eliminating xT and xN we obtain the reduced primal form:

min
w,xN ,xT

1

2
γT yT Qy + cT

N
ANw s.t. (3.15a)

xL
T
≤ y + d ≤ xU

T
, (3.15b)

y = AT w − d, (3.15c)

w ≥ 0. (3.15d)

The corresponding reduced dual form is as follows:

max
y,µU ,µL,µD

−
1

2
γT yT Qy + µT

U
(d − xU

T
) + µT

L
(xL

T
− d) + µT

D
d s.t. (3.16a)

γT Qy + µU − µL + µD = 0, (3.16b)

−AT
T
µD ≥ −AT

N
cN , (3.16c)

µL, µU ≥ 0. (3.16d)

4. Data Sets. In this section we briefly describe the data sets used in experi-
ments with the models of Section 3. For conformal therapy data sets (with relatively
few beams), both real data and randomly generated data sets were tried. We used
only a real data set for the IMRT case (which has many beams and a sparser dose
matrix).

4.1. Conformal Therapy (Random and Pancreatic Data Sets). Our first
data set was from a patient with pancreatic cancer (the same set used in Lim et
al. [15]), which contained several critical structures (liver, spinal cord, and left and
right kidney). Distribution of voxels between the target, critical regions, and normal
regions is shown in Table 4.1. Note that the total voxel count is slightly different from
the sum of the voxels in all regions, because there are 52 voxels that are counted as
belonging to both the liver and to the right kidney.

We used 36 beams in the model, where each beam is aimed from a different angle
around the patient (angles separated by 10◦). The beam from each angle is shaped
to match the profile of the tumor, as viewed from that angle. The full dose matrix
has only 36 columns (one for each beam) but more than 800000 rows (one for each
voxel). We set the entry in the dose matrix to zero if its dose was less than 10−5 of
the maximum dose in the matrix. The dose matrix has many zeros but is still quite
dense, since each of the 36 beams delivers dose to a large fraction of the voxels in the
treatment region.

The random data set has similar dimensions and properties to the pancreatic set.
Since we have control over the various dimensions of the problem (see Table 4.2), we
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Table 4.2

Random Data Set: Voxels per Region.

Region # of voxels
Target 500
Normal 100000
Critical 15000
Total 115500

Table 4.3

IMRT Data Set: Voxels per Region.

Region—Subclass # of voxels
Target—Target 884
Target—Regional 4246
Critical—Spinal Cord 406
Critical—Parotids 692
Normal 17772
Total 24000

are more able to infer the effects of aggregation and preprocessing performed by the
software than for the real data set (indeed, this was a primary motivation for working
with the random set). We used a fully dense dose matrix whose entries were drawn
from a uniform distribution on the interval [0, 1].

4.2. IMRT Data Set (Nasopharyngeal). In intensity modulated radiation
therapy (IMRT), each beam is split into pencil beams or beamlets, usually by dividing
its rectangular aperture by a rectangular mesh. A typical data set has 25-200 beamlets
from each of 7-72 possible angles, where each beamlet has its own dose distribution.
The solutions of the models we describe in Section 3 yield a weight for each beamlet. A
postprocessing procedure known as leaf sequencing must then be applied to translate
these individual weights into a sequence of deliverable aperture shapes.We refer the
interested reader to Boland, Hamacher, and Lenzen [2], Kalinowski [10], and Engel [5]
for leaf sequencing algorithms.

Our data set for IMRT is a case of a nasopharyngeal tumor, also used by Wu [23].
There are 51 beam angles, with 39 beamlets from each angle, giving a total of 1989
beamlets (that is, 1989 columns in the dose matrix). The 24000 voxels are divided into
five regions, as shown in Table 4.3. The target region is subdivided into a “target”
region containing the actual tumor and a “regional” part, corresponding to voxels near
the tumor that we wish to control in the same way as tumor voxels (by specifying
target values on their doses, for instance). The critical region is subdivided into the
spinal cord and the parotids. In summary, the dose matrix A has 24000 rows and
1989 columns.

5. Computational Results. We now give details of the computational exper-
iments with the models and formulations of Section 3 on the data sets of Section 4,
using the software tools described in Section 2. Our analysis of these results indicates
that the most obvious formulations and the default algorithmic parameter selections
often do not yield the best execution times. We believe that our results can be used to
guide the choice of formulations and algorithms for other treatment planning problems
based on linear and quadratic programming models.
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We have split this section into subsections for each type of model. For each
model we discuss separately the results for conformal radiotherapy and IMRT. The
experiments are based on comparisons of the solve time for each model by using
different formulations and options in CPLEX. We apply both simplex and interior
point method to models I, II, and III in turn; to the full-size and reduced variants;
and to the primal and dual formulations of each model. Model IV is only solved with
the interior point method, for the reduced forms of the problems.

In all the following experiments, we set the normal voxel penalty vector cN to
e = (1, 1, . . . , 1)T . For the pancreatic data set, we used xL

T
= 0.95e and xU

T
= 1.07e as

bounds on the target voxel dose, and xL
T

= 50e and xU
T

= 75e for the IMRT data set.
(These bounds were chosen to produce solutions with reasonable characteristics.) The
lower and upper bound for the random data were generated by setting every third
element of w to 1 and x = AT w. Then

xL
T

= 0.65 ∗

∑|T |
i=1 xi

|T |
and xU

T
= 1.35 ∗

∑|T |
i=1 xi

|T |
. (5.1)

A similar technique was used to generate the threshold value b:

x = AT w, b =





|C|
∑

i=1

xi/|C|



 e. (5.2)

For model III, the penalty vector cT for the deviation from the desired dose is set to
e. In model IV we used cT = 2e.

All experiments were performed on a computer running Redhat Linux 7.2 with a
1.6GHz Intel Pentium 4 processor with cache size 256 KB and total memory 1 GB.

5.1. Model I Results. The parameter specific to model I is the upper bound
vector xU

N
on the normal voxel dose. To choose an appropriate value for this bound,

we first solved the problem without these bounds. For the pancreatic data set, the
highest doses to a voxel in each critical region (measured in relative units) were: .461
(spinal cord), .915 (liver), .111 (left kidney) and .612 (right kidney) (see Table 4.1 for
a summary of the voxel distribution for this data set). To ensure that the bounds
were active for at least some voxels, we set the components of the bound vectors for
these different regions as follows: 1.07 (normal and target regions), .40 (spinal cord),
.10 (left kidney), .55 (right kidney). For the IMRT data set, the non-bounded solution
had maximum doses to the parotids of 56.15 Gy (where “Gy” denotes “Grey”, the
unit of radiation) and to the spinal cord of 14.13 Gy. We set the bounds as follows:
75 Gy (target and normal tissue), 50 Gy (parotids), and 10 Gy (spinal cord).

At the solution, the pancreatic data set yielded only 5 normal voxels at their
upper bound. As noted earlier, this model solves in a fraction of a second if these
upper bounds are removed. Hence, although the upper bounds have little effect on the
actual solution of the treatment planning problem in this case, they greatly increase
the time required to solve it. The IMRT data set yields a solution with only 10 normal
voxels at their upper bound. For the IMRT data, removal of the normal voxel bounds
improves the solution time considerably, but not by as much as for the conformal
problem. (The fastest solution time for an unbounded model is about a factor-of-2
improvement on the fastest solution times reported below.) Because the dose matrix
for this data set is large and sparse, the linear program is nontrivial even when the
normal voxel bounds are not present in the problem.
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Table 5.1

Model I Problem Sizes and Effects of Preprocessing.

Before presolve After presolve Avg. presolve
Data Formulation Rows Columns Rows Columns time (sec)
Conf. Full Primal 801815 801851 222690 222726 13.4
Conf. Full Dual 801851 1025785 222726 446660 13.8
Conf. Red. Primal 239058 1281 72496 1280 1.9
Conf. Red. Dual 37 819426 36 73740 4.1
IMRT Full Primal 23999 25604 16260 17435 3.2
IMRT Full Dual 25174 45820 17435 37651 3.8
IMRT Red. Primal 16263 6736 16224 6305 2.7
IMRT Red. Dual 1606 29131 1175 21354 4.0

5.1.1. Presolving. The dimensions of the formulations before and after pre-
solving are shown in Table 5.1. The first line shows that the number of rows in the
formulation (3.1) for the Pancreatic data set is approximately equal to the total num-
ber of voxels (see Table 4.1), while the number of columns exceeds this by 36, which
is the number of components in w. Presolving eliminates all those rows and columns
corresponding to components of xN that are intersected by none of the 36 beams
(and therefore yield a zero row in the matrix AN ). It also eliminates other rows and
columns using other techniques. The dual formulation contains approximately twice
as many variables after presolving (see the second line of Table 5.1) because there
are two dual variables µN and µB corresponding to the normal voxels. The reduced
primal form (3.2) (line 3 of the table) initially contains only as many rows as there
are target voxels and normal voxels intersected by the beams; the zero rows of AN

are eliminated by GAMS prior to calling CPLEX. The number of columns equals the
number of target voxels in xT plus the number of beam weights. General presolving
techniques reduce the number of rows by a factor of 3. The reduced dual formulation
(3.4) (line 4 of the table) has only as many rows as there are beams. The number
of columns is initially the number of normal voxels plus twice the number of target
voxels, but presolving reduces this number by more than a factor of 10.

Lines 5-8 of Table 5.1 give results for the IMRT data set. Explanations of the
problem dimensions before and after presolving are similar to the pancreatic data
set, though the presolving reductions are less dramatic because almost all voxels are
intersected by at least one of the beams. The reduction in line 8 comes from the fact
that 1605 beams intersect any voxel, whereas only 1175 of these beams intersect a
target voxel. The remaining beams correspond to zero rows in AT

T , which are then
eliminated in the preprocessing of the constraint (3.4b).

5.1.2. Conformal Data Set: Pancreatic. Results for CPLEX simplex codes
on the Pancreatic data set are shown in Table 5.2. We start by explaining the structure
of the table. It consists of two groups of nine lines each. The first group contains
results for the full-size primal formulation (3.1) (columns 4 and 5) and the reduced
primal formulation (3.2) (columns 6 and 7), while the second group of lines contains
results for the formulation (3.1) with the predual option set (columns 4 and 5) and
the reduced dual formulation (3.4) (columns 6 and 7). Within each group, the first
four lines represent results for the dual simplex method with four different pivot rules
(standard dual pricing, steepest-edge, steepest-edge with slacks, and steepest-edge
with unit initial norms), and the last five give results for the primal simplex method
with five different pivot rules (reduced-cost pricing, hybrid reduced-cost and devex
pricing, devex, steepest-edge, and steepest-edge with slacks). For each combination
of parameter setting, formulation, algorithm, and pivot rule, both the execution time
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Table 5.2

Model I, Pancreatic Data Set, CPLEX Simplex Results.

Full size form Reduced form
n Method Pricing sec iter sec iter

Primal formulation
1 d spx standard 1541.2 223135 10.3 83
2 d spx st edge 1777.9 221606 9.9 69
3 d spx st edge/sl - - 9.4 40
4 d spx st edge/no 1766.4 221606 9.7 69
5 p spx reduced 57.1 101 17.2 153
6 p spx combined 54.7 101 16.9 155
7 p spx devex 53.7 92 17.8 136
8 p spx st edge 69.0 112 20.4 130
9 p spx st edge/sl 65.8 115 25.0 158

Dual formulation
10 d spx standard 61.2 148 18.1 96
11 d spx st edge 67.7 121 17.5 77
12 d spx st edge/sl 72.5 121 21.4 119
13 d spx st edge/no 95.1 189 17.7 77
14 p spx reduced 39.0 89 13.9 122
15 p spx combined 38.1 39 13.5 122
16 p spx devex 37.6 39 13.9 53
17 p spx st edge 40.2 30 13.7 32
18 p spx st edge/sl 40.7 38 13.8 32

in seconds and the simplex iteration count are given. Preprocessing is applied in all
cases.

The first observation to be made from Table 5.2 is the poor performance of the
full-size formulation (3.1) when the dual simplex method is used. (Note that a time
limit of 4000 seconds was used; the full-size formulation in line 3 reached this limit
and was terminated.) Examination of the log of this run showed that almost all of the
more than 220, 000 iterations involved swapping an artificial variable for the constraint
(3.1c) with the corresponding component of xN . Apparently dual simplex was unable
to form an initial basis without introducing artificial variables. The most efficient
combination of formulation and algorithm was the primal reduced form and dual
simplex, which required around 10 seconds of run time, regardless of pivot rule. Other
results for the reduced primal and reduced dual formulations were only marginally
slower. With the exceptions noted above, the full-sized formulations required between
38 and 95 seconds, approximately 13 seconds of which is taken up in the presolve phase
(see Table 5.1). It is apparent from these results that the primal-formulation, dual-
simplex combination must be avoided, and that the reduced formulations (primal and
dual) have a significant advantage over the other full-sized formulations.

As an additional experiment, we tried formulating the full-size dual model (3.3)
explicitly in GAMS, rather than using the predual option in GAMS to form the
dual. The computations results for both primal and dual simplex were different, but
generally similar to those in lines 10-18 of Table 5.2, so we do not report them here.

As mentioned earlier, we can warm-start the solution procedure for model I by
first solving version of the problem without the upper bound xU

N
on the normal voxel

doses. Although this simplified problem solves quickly, we found that the warm
start had little effect on the total solution time for the fastest models. Some of the
longest runtimes for the full-size models were reduced considerably, but since these
improvements are of little practical interest, we do not report them here.

Results for the interior-point code CPLEX Barrier are shown in Table 5.3. The
three lines of the table correspond to the models (3.1), (3.2), and (3.4), respectively.
The number of iterations together with the total time is shown. We also report
times for the major stages of the solution process: presolve time (similar to the times
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Table 5.3

Model I, Pancreatic Data Set, CPLEX Barrier Results.

Formulation iter sec presolve barrier crossover
Full size 75 133.3 14.1 93.3 9.7

Reduced primal 23 20.2 1.9 11.8 3.6
Reduced dual 37 26.5 4.1 13.0 1.1

reported in Table 5.1), time for the interior-point algorithm, and time required in the
“crossover” phase in which a simplex-like method is used to move the interior-point
solution to a vertex of the feasible region.

The total time required by the reduced primal and reduced dual formulations
(lines 2 and 3 of the table) is 20 and 26 seconds, respectively—competitive with the
best simplex run times from Table 5.2. The full-sized primal formulation required
considerably more iterations (75) and about six times more CPU time. The poor
performance of the full-sized variant is due to the 13 seconds of presolving time and
the fact that the symmetric-positive-definite matrix to be factored at each iteration
has three times as many rows as in the reduced primal case and approximately twice
as many nonzeros in the Cholesky factor. (This matrix has the form ADAT , where
A is the constraint matrix and D is a diagonal scaling matrix.) In both the full-sized
and reduced primal case, the factorization routine correctly detected that 36 columns
in the constraint matrix (specifically, the columns corresponding to w) were dense,
and it handled them accordingly. In the reduced dual case, the matrix to be factored
at each interior-point iteration has just 36 rows, However, formation of this matrix
ADAT is expensive, since A has many columns.

Table 5.4

Model I, IMRT Data Set, CPLEX Simplex Results.

Full size form Reduced form
n Method Pricing sec iter sec iter

Primal formulation
1 d spx standard 2046 67091 132 14008
2 d spx st edge 2826 37400 34 1598
3 d spx st edge/sl 2579 23034 63 1570
4 d spx st edge/no - - 35 1598
5 p spx reduced 153 12933 182 16097
6 p spx combined 153 12933 179 16097
7 p spx devex 89 11262 98 12873
8 p spx st edge 209 5407 176 4628
9 p spx st edge/sl 208 5590 174 4628

Dual formulation
10 d spx standard 257 12382 418 26341
11 d spx st edge 498 7124 108 5918
12 d spx st edge/sl 441 6282 317 7174
13 d spx st edge/no 663 9177 107 5918
14 p spx reduced 53 5992 30 6586
15 p spx combined 40 2596 30 6586
16 p spx devex 40 2596 48 2816
17 p spx st edge 49 1048 46 1192
18 p spx st edge/sl 90 2510 46 1192

5.1.3. IMRT Data Set. Results for the CPLEX Simplex codes on the IMRT
data set are shown in Table 5.4. As for the conformal model, the worst performance is
turned in by the dual simplex method on the full-size formulation (3.1). Dual simplex
with dual-steepest-norm pricing, reported on line 4 of the table, reaches the runtime
limit of 4000 seconds. Remarkably, this happens to be the default combination of
algorithm/parameter chosen by GAMS/CPLEX when run without an option file.
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This observation suggests that it is crucial to make explicit choices of algorithm and
parameter for these models, and not to rely on the default choices of the modeling
system and optimization software.

As in the conformal data sets, dual simplex applied to the full-size primal models
spends many iterations swapping artificial variables for the constraint (3.1c) with the
corresponding component of xN . Since this data set is so different in nature from the
conformal data sets (the dose matrix is sparse with 1175 columns, instead of dense
with 36 columns), the more efficient formulations and algorithms do not give quite as
dramatic an improvement in runtime as in Table 5.2. However, there is still almost
a two-order-of magnitude difference between runtime for the dual simplex/full-size
primal models and runtime for the best reduced model.

As in Table 5.2, the fastest runtimes were obtained with the reduced models. For
the reduced primal model, dual simplex was distinctly faster than primal simplex,
while for the reduced dual, primal simplex is better. (These same combinations were
the best for the conformal data set too, but for the IMRT data set the advantages are
more dramatic.) The choice of pivot rule also had a significant effect on runtime in
some cases. For the dual simplex algorithm applied to the reduced primal formulation,
two of the steepest-edge rules led to a solution being found in around 35 seconds, while
the standard rule required more than 130 seconds. For primal simplex applied to the
reduced dual, on the other hand, standard reduced-cost pricing gave slightly faster
runtimes than devex or steepest-edge rule—about 30 seconds as opposed to 45-50
seconds.

Table 5.5

Model I, IMRT Data Set, CPLEX Barrier Results.

Formulation iter sec presolve barrier crossover
Full 3 time limit reached

Red. Primal 0 memory exceeded
Red. Dual 19 101 4.0 94.8 1.1

Results for CPLEX Barrier applied to the IMRT data set are shown in Table 5.5.
We obtained a solution to just one of the three models with this code: the reduced
dual model (3.4). The full-size model (line 1 of the table) performed three interior-
point iterations before reaching the time limit of 4000 seconds. After presolving, the
problem had 16,260 rows and 17,345 columns, with 147 columns being designated as
“dense” by the linear factorization routine in CPLEX Barrier. This code reported
that the Cholesky factor of the ADAT matrix required about 1.3 × 108 storage loca-
tions and about 1.5× 1012 operations to compute. In the reduced primal formulation
(line 2), 150 dense columns were detected, and the estimated storage and computa-
tion requirements for the factorization were similar to the full-size case. However,
this model terminated with an “out-of-memory” message before performing the first
iteration. The reduced dual formulation solved in about 100 seconds, using 19 iter-
ations. Dimensions of the reduced LP were modest (1175 × 21354) as were storage
and computation times for the Cholesky factorization (7 × 105 locations and 5 × 108

operations). Given the large number of columns, however, computation of the ADAT

matrix also contributes significantly to the total computation time. We conclude
that the interior-point approach applied to the reduced dual formulation is a reason-
able approach, requiring about a factor of 3 more in runtime than the best simplex
formulations.

16



5.2. Model II Results. Model II, which is targeted at formulations with DV
constraints, contains two important formulation parameters that affect the difficulty
of the problem considerably. One is the threshold value b (3.6f). Lower values of b in
our model tend to force more voxels to be above-threshold, thus causing more of the
components of the excess vector xE to be positive. The second important parameter
is cE , the penalties applied to the excess doses. Larger values of the components of
cE tend to force more of the voxels below the threshold. For each of our three data
sets, we report on values of these parameters that give a wide range of proportions
of above-threshold voxels, to illustrate the performance of our methods under these
different conditions.

5.2.1. Presolving. The dimensions of our various formulations before and after
presolving are shown in Table 5.6. The effects of presolving on the random data set
are particularly instructive, since elimination of rows and columns for this set are
made possible only by structural considerations and not for any reasons of sparsity
in the dose matrices (which are deliberately chosen to be dense). The first row of
Table 5.6 suggests that, prior to presolving, the full primal model contains the vari-
ables xN , xE , xT , and w; the critical dose vector xC has apparently been eliminated
by GAMS. Presolving eliminates the xN vector as well, by means of the constraint
(3.6c), at a considerable overhead in computation time (approximately 36 seconds).
The second row of Table 5.6 indicates that in the dual formulation, the presolved
model retains constraints (3.8b) and (3.8f), enforcing (3.8e) as a bound rather than
a general constraint. Again, the overhead in computational time is significant. Our
reduced primal formulation (3.7) (line 3 in Table 5.6) appears to be identical to the
formulation obtained by presolving the full-sized primal formulation (3.6), while our
reduced dual formulation (line 4) differs from the presolved version of the full dual
by the absence of the µT variables by means of (3.8b). As we see below, the compu-
tational benefits obtained by performing this additional elimination by hand appears
to be considerable.

Table 5.6

Model II, Problem Sizes and Effects of Preprocessing. (Conformal Therapy Used on Random
and Pancreatic Data.)

Before presolve After presolve Avg. presolve
Data Formulation Rows Columns Rows Columns time (sec)

Random Full primal 115501 115531 15500 15530 35.8
Random Full dual 100531 131501 530 16500 35.9
Random Red. primal 15501 15531 15500 15530 0.5
Random Red. dual 31 16001 30 16000 0.5

Pancreatic Full primal 858373 858409 29464 29500 16.1
Pancreatic Full dual 832394 886876 1280 29747 16.2
Pancreatic Red. primal 70515 70551 29464 29500 0.6
Pancreatic Red. dual 37 71759 36 30708 0.6

IMRT Full primal 24001 25606 6228 7403 3.0
IMRT Full dual 24077 35790 6304 16488 3.2
IMRT Red. primal 6229 7834 6228 7403 0.9
IMRT Red. dual 1204 11359 1175 11358 2.2

Presolving has similar effects on the dimensions for the other two data sets (lines
5-12 of Table 5.6), with additional reductions due to sparsity in the dose matrices. We
note that the computational times for preprocessing the full models are considerably
less than for the random data set, again because of the sparsity of the matrices
involved.
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5.2.2. Conformal Data Set: Random. Table 5.7 shows results for CPLEX’s
simplex codes on the random data set, for different values of the parameters b and
cE , various formulations, and various pivot rules. We first explain the structure of the
table briefly. It is divided into four groups of seven lines each. The first two groups
(lines 1-14) give results for the parameter setting b = 0.8, for which about 53% of the
voxels in the critical region exceed b at the solution. Columns 3-6 contain the results
obtained by setting cE = e, where e is the vector of all 1s of appropriate dimension,
while columns 7-10 are for cE = 8e.

The third and fourth groups (lines 15-28) give results for b = 1.0 (approximately
2.5% of voxels over threshold). The first and third groups present results for the full
primal formulation (3.6) (including presolving) and the reduced primal formulation
(3.7). The second and fourth groups give results obtained by the GAMS-constructed
full-size dual formulation (using the predual option), and from the reduced dual
formulation (3.9). Note that for each group we also ran experiments using (a) dual
simplex/steepest-edge with unit norms and (b) primal simplex/steepest-edge with
slacks. We do not report these results in this table or in Tables 5.9 and 5.11 since
they add little of interest to our conclusions.

The most striking feature of the results is the wide variation in performance
for different formulations, algorithms, and pivot rules. As seen in columns 3-4 and
7-8 of the table, the most “obvious” formulation—the full-size primal model (3.6),
with preprocessing—gives inferior performance, even if the best possible pivot rule is
chosen, and even if the predual option is used to formulate its dual automatically. For
all parameter settings, the best execution time is obtained by formulating the reduced
dual (3.9) by hand, and using primal simplex with the simplest pivot rule (reduced-
cost pricing); see row 4, columns 5-6 and 7-8 in the second and fourth groups. For all
parameter settings, this strategy led to a runtime of no more than 5 seconds, while
runtimes of more than 10 minutes were observed for other choices of formulation and
pivot rule. The number of simplex pivots performed by the optimal strategy in just a
few seconds seems remarkable; for example, line 11 shows 14,411 pivots in 3 seconds
for b = 0.8 and cE = e. Closer examination shows that since the constraint matrix has
just 30 rows, each pivot requires an update of a factorization of a 30× 30 matrix—an
inexpensive operation. Moreover, a refactorization of the matrix occurs only about
once every 50 iterations. Potentially, the most expensive operation in each simplex
iteration is pricing, since there are approximately 16,000 columns in the constraint
matrix. Apparently, the partial pricing strategy used by CPLEX ensures that the
pricing operation does not examine this entire matrix at each iteration, so this part
of the per-iteration cost is also inexpensive in absolute terms.

Several other general observations about the results of Table 5.7 follow.

• For the primal formulations (the first and third groups of lines), the number of
iterations required by the presolved version of the full model (3.6) is identical
to the number of iterations required by the reduced primal formulation (3.7).
This observation confirms that the reductions obtained automatically by the
presolver correspond exactly to the ones we found manually in (3.7), and that
the initialization of the model was the same in both cases. The additional
cost of 40-50 seconds per instance for the full model arises from the cost of
preprocessing and the cost of recovering the eliminated variables xN after the
solution has been obtained.

• The use of primal formulations (3.6) or (3.7) is almost uniformly worse than
using the dual formulation (3.9).
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Table 5.7

Model II, Random Data Set, CPLEX Simplex Results.

Full size form Reduced form Full size form Reduced form
Method Pricing sec iter sec iter sec iter sec iter
Primal form, b=0.8 cE = e, 53% over threshold cE = 8e, 52.9% over threshold
d spx reduced 102 14569 61 14569 182 15289 141 15289
d spx st edge 147 10277 102 10277 182 8845 142 8845
d spx st edge/sl 152 8914 112 8914 193 8406 150 8406
p spx reduced 465 51989 429 51989 564 60986 516 60986
p spx combined 492 59019 439 59019 451 56641 420 56641
p spx devex 328 57177 281 57177 356 60457 303 60457
p spx st edge 688 51307 647 51307 716 51734 667 51734
Dual form, b=0.8 cE = e, 53% over threshold cE = 8e, 52.9% over threshold
d spx reduced 239 22220 136 22315 340 22224 137 22314
d spx st edge 237 19764 118 19695 200 19768 118 19696
d spx st edge/sl 411 19698 192 20114 330 19701 193 20123
p spx reduced 46 16460 3 14411 48 16145 5 14036
p spx combined 46 16460 3 14411 48 16145 5 14036
p spx devex 134 15380 71 14681 129 11307 106 11019
p spx st edge 66 9786 46 8772 116 8659 84 8991

Primal form, b=1.0 cE = e, 2.5% over threshold cE = 8e, 2.5% over threshold
d spx reduced 47 1567 6 1567 50 1303 9 1303
d spx st edge 53 798 12 798 55 874 14 874
d spx st edge/sl 52 626 11 626 53 602 12 602
p spx reduced 524 56502 464 56502 486 53483 440 53483
p spx combined 440 57855 396 57855 436 56943 387 56943
p spx devex 283 53834 227 53834 270 53711 232 53711
p spx st edge 593 47720 542 47720 571 46945 526 46945
Dual form, b=1.0 cE = e, 2.5% over threshold cE = 8e, 2.5% over threshold
d spx reduced 54 996 8 1042 54 993 8 1042
d spx st edge 53 891 8 1016 53 892 8 1018
d spx st edge/sl 57 848 10 884 58 851 10 888
p spx reduced 45 3689 2 3874 45 2720 2 2263
p spx combined 44 3689 2 3874 44 2720 2 2263
p spx devex 45 1493 3 1165 49 1753 8 1561
p spx st edge 45 1169 3 791 47 824 5 746

• While the best formulation/algorithm/pivot combination was always reduced
dual formulation/primal simplex/reduced-cost pivoting, the difference be-
tween this combination and the other reduced dual formulations decreases
markedly as the number of above-threshold voxels falls. In the fourth group
of lines, the runtimes are similar for all algorithm/pivot combinations, while
in the second group of lines, variations of more than an order of magnitude
can be observed.

• For the dual formulations (3.8) and (3.9), primal simplex uniformly performs
better than dual simplex. This is because dual simplex needs to use a phase I
procedure to find an initial point, whereas an initial point for primal simplex
is obvious (from (3.8c)) and no phase I is needed. The problem becomes
simpler when b increases, so the importance of phase I iterations decreases
and the run times for dual simplex become more competitive.

• For the reduced primal form (the first and third groups of lines), phase I iter-
ations also explain the runtime differences between primal and dual simplex.
In these cases, it is primal simplex that requires phase I. For example, in lines
4-7 for cE = e the phase I iterations vary from 25408 to 30554 iterations.

• The “combined” pivot rule in primal simplex generally reverted to the reduced-
cost rule, with only occasional devex pivots. Thus, runtimes for the combined
rule were almost as good as for the reduced-cost rule.

• There are occasional surprising differences in runtime between similar in-
stances. For example, in line 1, the reduced formulation for cE = e performs
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14,569 iterations in 61 seconds while the reduced formulation for cE = 8e
performs 15,289 iterations in 141 seconds—a considerably slower rate of iter-
ations/second. The difference seems due mainly to the lesser number of basis
refactorizations required in the first case (18 factorizations) as compared to
the second case (33 factorizations).

Results for the CPLEX Barrier method for these data sets and parameter choices
are shown in Table 5.8. We consider the same choices of problem parameters as in
Table 5.7 (b = 0.8, 1.0 and cE = e, 8e), and the full-size, reduced primal, and reduced
dual formulations (3.6), (3.7), and (3.9). Presolving was performed, with the same
reductions in dimension as seen in Table 5.6. (The presolve is independent of whether
the Simplex or Barrier solvers are used.) Similarly to Table 5.3, the columns of
Table 5.8 show the number of interior-point iterations, the total time required, the
time spent in presolving, the time spent in the barrier algorithm itself, and finally the
time required for the crossover phase.

Table 5.8

Model II, Random Data Set, CPLEX Barrier Results.

cE = e cE = 8e

Form. b iter sec pre barr cross iter sec pre barr cross
Full size 0.8 21 48.0 35.8 4.6 3.4 18 48.0 35.6 4.1 4.0
Full size 1.0 25 48.5 35.6 5.3 3.3 19 47.6 35.7 4.3 3.4
R. primal 0.8 21 6.5 0.1 4.6 1.1 18 7.0 0.5 4.1 1.6
R. primal 1.0 25 7.5 0.5 5.3 1.0 19 6.5 0.5 4.3 1.0
R. dual 0.8 19 4.8 0.5 3.5 0.2 20 5.0 0.5 3.7 0.2
R. dual 1.0 15 3.9 0.5 2.6 0.1 16 4.2 0.5 3.0 0.2

We note that for the reduced models, the total CPLEX Barrier runtimes are
similar to the runtimes for the best variants of CPLEX Simplex—just a few seconds
in total. The full size model requires about 40 seconds longer, but the difference is
entirely due to the cost of preprocessing and of recovering the eliminated variables
after solving (the latter is included in “crossover” time). The reduced dual formulation
is slightly faster. Note that the matrix to be factored at each iteration of the reduced
dual formulation is only 30 × 30 and completely dense, so the row/column ordering
is not an issue. For the primal formulations, the matrix is considerably larger, but
it has a special structure—a rank-30 update of an extremely sparse matrix—arising
from the fact that the dose matrix A has just 30 dense columns. The factorizer in
CPLEX is able to detect and exploit this structure, so formation and factorization of
the linear system at each interior-point iteration does not cost much more than for
the more compact dual formulation.

5.2.3. Conformal Data Set: Pancreatic. Results for the CPLEX Simplex
codes on the pancreatic data set, presented in Table 5.9, showed many of the same
patterns observed in the random data set. We report on two different values of the
parameter b (.02 and .21), and two different settings for the penalty vector cE ( e
and 8e). These values produced a range in the proportion of above-threshold critical
voxels from about 5% to about 32%. Unlike the random data set, the penalty vector
had a considerable effect on the proportion of above-threshold voxels.

Again, we see that the reduced dual formulation (3.9), in conjunction with primal
simplex and reduced-cost pricing, yielded the most effective strategy for solving the
problem. This strategy required less than 10 seconds of runtime for each of the four
parameter combinations tried. As in the random data set, the performance difference
between this strategy and other strategies based on the dual formulation fades as the
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Table 5.9

Model II, Pancreatic Data Set, CPLEX Simplex Results.

Full size form Reduced form Full size form Reduced form
Method Pricing sec iter sec iter sec iter sec iter
Primal form, b=0.02 cE = e, 31.9% over threshold cE = 8e, 9.7% over threshold
d spx reduced 300 43809 280 43809 286 33333 248 33333
d spx st edge 332 28995 297 28995 256 15053 225 15053
d spx st edge/sl 519 28641 498 28641 296 14266 265 14266
p spx reduced 305 42005 268 42005 211 32060 179 32060
p spx combined 348 60249 315 60249 232 41896 201 41896
p spx devex 282 56497 249 56497 178 41774 156 41774
p spx st edge 545 36123 495 36123 276 20057 228 20057
Dual form, b=0.02 cE = e, 31.9% over threshold cE = 8e, 9.7% over threshold
d spx reduced 212 30943 237 45110 207 30966 233 45090
d spx st edge 201 23536 113 23538 201 23638 112 23648
d spx st edge/sl 206 17656 96 13479 181 17654 95 13330
p spx reduced 52 58002 9 54183 59 50343 7 39549
p spx combined 53 58002 9 54183 59 50343 8 39549
p spx devex 108 29221 94 29021 169 29302 85 16675
p spx st edge 224 41201 108 24909 198 20750 109 13897

Primal form, b=0.21 cE = e, 11.3% over threshold cE = 8e, 5.6% over threshold
d spx reduced 235 32120 207 32120 139 13784 104 13784
d spx st edge 213 17799 180 17799 143 8230 110 8230
d spx st edge/sl 297 16320 262 16320 177 7919 142 7919
p spx reduced 219 27470 186 27470 210 25509 174 25509
p spx combined 332 50119 305 50119 226 32673 191 32673
p spx devex 335 60427 292 60427 165 32191 132 32191
p spx st edge 556 39652 516 39652 302 24329 270 24329
Dual form, b=0.21 cE = e, 11.3% over threshold cE = 8e, 5.6% over threshold
d spx reduced 107 12988 68 13550 107 13115 65 13615
d spx st edge 109 9998 48 8964 105 10053 46 8937
d spx st edge/sl 119 8581 72 8810 120 8657 69 8832
p spx reduced 47 29863 6 35187 49 25222 6 24881
p spx combined 47 29863 7 35187 49 25222 6 24881
p spx devex 86 13245 64 14904 108 13090 45 8115
p spx st edge 138 14166 95 12674 125 10144 64 7135

number of above-threshold voxels drops, but the difference is still up to an order of
magnitude in the fourth group of lines. The reason is probably that there are still
5 − 11% of voxels above threshold in this part of the table, whereas for the fourth
group of lines in Table 5.7, only 2.5% of critical voxels remain above threshold. Note
too that in Table 5.9, results for even the worst dual formulation cases are better than
the best cases for the primal formulation.

As for the random data set, the full size model and the reduced primal model
became identical after preprocessing, so the number of simplex iterations for these
two variants is the same in the first and third groups of lines. The differences in times
can again be accounted for by the cost of presolving and of recovering the eliminated
variables.

Table 5.10

Model II, Pancreatic Data Set, CPLEX Barrier Results.

cE = e cE = 8e

Form. b iter sec pre barr cross iter sec pre barr cross
Full size 0.02 34 47 16.1 6.6 7.2 234 77 16.3 40.1 4.0
Full size 0.21 86 52 16.2 14.2 3.9 100 62 16.4 16.4 12.0
R. primal 0.02 34 14 0.7 6.6 5.1 234 44 0.7 40.0 1.9
R. primal 0.21 86 18 0.6 14.3 1.8 100 28 0.7 16.4 9.8
R. dual 0.02 295 38 0.6 35.6 1.1 195 25 0.6 3.6 0.2
R. dual 0.21 29 5 0.6 3.5 0.2 75 10 0.6 8.8 0.2

Table 5.10 shows results obtained with CPLEX Barrier on the same four param-
eter combinations as reported in Table 5.9. As for the random data set, the results
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obtained for the full-sized formulation (lines 1-2 of the table) differ from those ob-
tained from the reduced primal formulation (lines 3-4) only in the cost of presolving
and recovery of the eliminated variables. We do however see some marked difference
with the random data set (Table 5.8) and also with the IMRT data set (Table 5.12),
in that the number of interior-point iterations is unusually large for some parameter
combinations—up to 295 iterations, for instance, for the reduced dual formulation
applied to b = 0.02 and cE = e. Still, for all but the latter parameter combination,
the reduced dual formulation gave the best solution times. The best CPLEX Barrier
times (obtained for the reduced dual formulation) are generally slower than the best
CPLEX Simplex times, though still much faster than many of non-optimal CPLEX
Simplex variants.

In summary, the results for the random and pancreatic data sets suggest that
the best strategies in general for model II applied to conformal data sets are (i)
reduced dual formulation/primal simplex/reduced-cost pivoting; and (ii) reduced dual
formulation/interior-point method.

Table 5.11

Model II, IMRT Data Set, CPLEX Simplex Results.

Full size form Reduced form Full size form Reduced form
Method Pricing sec iter sec iter sec iter sec iter
Primal form, b=30 cE = e, 56.4% over threshold cE = 8e, 21% over threshold
d spx reduced 55 7434 48 7318 54 6776 58 7629
d spx st edge 26 2366 22 2322 30 2624 25 2559
d spx st edge/sl 51 2673 52 2429 56 2907 54 2654
p spx reduced 193 36830 186 36830 210 38514 201 38514
p spx combined 161 32950 156 32950 181 35766 172 35766
p spx devex 161 38741 157 38741 187 44032 183 44032
p spx st edge 289 18951 286 18951 259 16988 251 16988
Dual form, b=30 cE = e, 56.4% over threshold cE = 8e, 21% over threshold

d spx reduced 313 24980 425 31113 294 21956 398 27814
d spx st edge 170 6303 107 6839 171 6281 109 6715
d spx st edge/sl 205 6839 207 6931 204 6768 205 6614
p spx reduced 61 13666 26 9406 97 21803 28 10028
p spx combined 59 9048 27 9406 91 13701 27 10028
p spx devex 60 9048 29 3496 90 13701 36 4059
p spx st edge 67 3936 45 1961 72 3924 44 1774

Primal form, b=50 cE = e, 12.6% over threshold cE = 8e, 2.9% over threshold
d spx reduced 48 6949 40 6366 35 4404 27 3980
d spx st edge 17 1387 17 1964 18 1522 14 1462
d spx st edge/sl 34 1776 39 2046 32 1589 32 1660
p spx reduced 186 35700 181 35700 152 29009 151 29009
p spx combined 156 31489 151 31489 136 26565 132 26565
p spx devex 155 38051 150 38051 149 35994 145 35994
p spx st edge 302 20139 299 20139 222 14582 216 14582
Dual form, b=50 cE = e, 12.6% over threshold cE = 8e, 2.9% over threshold

d spx reduced 216 19058 277 22245 216 19368 277 23015
d spx st edge 176 6688 52 4241 164 6230 53 4496
d spx st edge/sl 179 6064 157 5501 188 6380 160 5658
p spx reduced 31 6319 22 7379 35 7106 20 6522
p spx combined 25 3021 22 7379 27 3503 21 6522
p spx devex 24 3021 24 2864 27 3503 24 2551
p spx st edge 35 1723 37 1575 37 1796 33 1304

5.2.4. IMRT Data Set. The performance results obtained from the IMRT
data are quite different in character from those of the conformal data sets. Again,
we tried four parameter combinations—two values of b and two values of cE , resulting
in between 3% and 56% of critical voxels being above-threshold at the solution. As
in the pancreatic data set (but unlike the random data set), the choice of cE made a
significant difference in the number of over-threshold voxels.

Table 5.11 shows performance results for CPLEX Simplex. While the best strat-
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egy for the conformal data sets—reduced dual formulation/primal simplex/reduced-
cost pivoting—remains a good choice for the IMRT data, other strategies are as good
or better. For any choice of pivot rule, the use of reduced dual formulation with primal
simplex gives good results; see lines 11-14 and 25-28 of the table. More surprisingly,
the use of a primal formulation in conjunction with dual simplex gives competitive
and even superior performance; see lines 1-3 and 15-17.

Note for this data set that the times per iteration have generally increased over
those reported in Tables 5.7 and 5.9, since we are dealing with sparse factorizations
of much larger basis matrices than in these conformal data sets.

Interestingly, for the CPLEX Simplex method applied to Model II for all three
data sets (Tables 5.7, 5.9, and 5.11), the solution time for the best cases is not sensitive
to changes in the parameters b and cE . On the other hand, the solution time for the
poorly performing simplex variants varies greatly. This observation illustrates the
importance of choosing the right combination of method and options.

Note that the proportion over threshold reported in Table 5.11 are obtained from
the results for the full-sized formulation. In this case (and only this case) we observed
that there were multiple solutions to the problem, which gave rise to slight variations
in the number of voxels above threshold.

Table 5.12

Model II, IMRT Data Set, CPLEX Barrier Results.

cE = e cE = 8e

Form. b iter sec pre barr cross iter sec pre barr cross
Full size 30 13 844 3.03 838 2.04 11 730 3.05 724 1.77
Full size 50 11 735 3.01 729 1.78 13 849 2.88 843 2.34

Red. primal 30 13 865 0.95 862 1.29 11 745 0.95 742 1.25
Red. primal 50 11 745 0.94 742 1.30 13 868 0.94 865 1.60
Red. dual 30 15 53 2.20 49 0.64 17 58 2.20 54 0.67
Red. dual 50 15 52 2.01 48 0.70 18 60 2.14 57 0.32

Results for CPLEX Barrier applied to the IMRT data set are given in Table 5.12.
As in the conformal cases, the full-size formulations (lines 1-2) and the reduced primal
formulations (lines 3-4) reduce to the same problem after preprocessing. However,
both of these formulations are far less efficient than the reduced dual formulation
(lines 5-6), which yields runtimes of between 50 and 65 second on the four parameter
combinations. These times are within factor of 3 of the best simplex results from
Table 5.11. The large difference between the performance of the reduced primal and
reduced dual models in Table 5.12 can be accounted for by the much greater time
per interior-point iteration associated with the primal formulations. In the primal
formulations, the matrix to be factored at each interior-point iteration has dimension
6228 and is dense. Although the dose matrix (which forms 1175 columns of the
constraint matrix, is sparse) its outer product with itself is quite dense. The columns
of the dose matrix cannot be extracted and handled separately by the linear algebra
routines, as happens to the 30 or 36 dense columns in the conformal models. In the
reduced dual formulation, on the other hand, the dense matrix to be factored at each
iteration has dimension 1175. As can be observed by comparing lines 5-6 of Table 5.12
with lines 1-4, the cost of forming and factoring this matrix is more than an order of
magnitude less than the cost of working with the much larger matrix arising in the
primal formulations.

5.2.5. Sampling from the Critical Structures. In comparing the results for
model I with those for model II, we see that imposition of DV constraints on the critical
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Table 5.13

Model II, Sampling from the Pancreatic Data Set with Excess Penalty e.

Method Form. Pricing b Sampled Prop sec iter
p spx red. pri. devex 0.02 0.125 0.321 10 6569
p spx red. pri. devex 0.02 0.250 0.323 12 9877
p spx red. pri. devex 0.02 0.500 0.311 68 29160
p spx red. pri. devex 0.02 1.000 0.319 245 56497
d spx red. pri. st. edge 0.21 0.125 0.156 3 2928
d spx red. pri. st. edge 0.21 0.250 0.167 13 7454
d spx red. pri. st. edge 0.21 0.500 0.148 45 11309
d spx red. pri. st. edge 0.21 1.000 0.113 180 17799
p spx red. dual reduced 0.02 0.125 0.321 1 6168
p spx red. dual reduced 0.02 0.250 0.323 1 13345
p spx red. dual reduced 0.02 0.500 0.311 3 25259
p spx red. dual reduced 0.02 1.000 0.319 9 54183
p spx red. dual reduced 0.21 0.125 0.156 1 7322
p spx red. dual reduced 0.21 0.250 0.167 2 12862
p spx red. dual reduced 0.21 0.500 0.148 3 18088
p spx red. dual reduced 0.21 1.000 0.113 7 35187

structure voxels makes the linear program considerably harder to solve. Lim et al. [16]
showed that a sampling strategy (in which just a subset of critical voxels is included
in the formulation, or adjoining voxels are aggregated into a single larger voxel) has
the potential to reduce the size and solution time considerably while degrading the
quality of the solution only minimally. We used the conformal pancreatic data set
to study the effects of these sampling strategies on solve time. We tested only those
methods and pivot rules that gave the best results in columns 3-6 of Table 5.9 (for
which the critical voxel weight vector cE is set to e).

Results are shown in Tables 5.13. For each case, we tried sampling four different
fractions of the critical voxels in the constraint (3.6f): 0.125, 0.25, 0.5, and 1.0. (Of
course, the fraction 1 is simply the original problem reported in Table 5.9.) Steepest-
edge with norms pricing was used in lines 5-8. As each group of four lines in these
tables shows, sampling caused a dramatic reduction in runtime in each case; in fact,
the runtime appears to grow superlinearly with the size of the sample fraction.

The third-last column of the tables shows the proportion of critical voxels over
the threshold value. Note that these values fluctuate as the sample size changes.
For instance, when b = 0.21, 15.6% are over threshold when a sample fraction of
.125 is used, compared to a proportion of 11.3% when the full set of voxels is used
(sample fraction 1.0). Not surprisingly, the solution is changing as the sample size
changes. Since the small-sample formulation is so inexpensive to solve, however, it
is cheaper to adjust the parameter b and re-solve this model to achieve the target
proportion-over-threshold value than to work with the full model.

5.3. Model III results. Most parameters for model III have already appeared
in earlier models, and the same values are used in the experiments reported in this
section. The exception is the desired dose d for the tumor voxels. For the random
data and the pancreatic data, we set d = 1.0. For the IMRT data, the desired dose is
based on the sets shown in Table 4.3. The set “Regional” has d = 60.0 while “Target”
has d = 70.0.

Dimensions of the problems and formulations before and after preprocessing are
shown in Table 5.14. Note here that the preprocessor was able to find the same reduc-
tions that we applied to obtain the reduced primal and dual models from the full-sized
primal and dual models; after presolving, the reduced models had the same dimen-
sions as the full models. For the IMRT data set, the presolver was able to eliminate
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Table 5.14

Model III, Problem Sizes and Effect of Preprocessing. (Conformal Therapy Used on Random
and Pancreatic Data.)

Before presolve After presolve Avg. presolve
Data Formulation Rows Columns Rows Columns time (sec)

Random Full primal 116001 116531 1000 1530 1.9
Random Full dual 115531 118001 530 2000 2.0
Random Red. primal 1001 1531 1000 1530 0.0
Random Red. dual 531 2001 530 2000 0.0

Pancreatic Full primal 819426 820706 2488 3768 3.5
Pancreatic Full dual 818218 824402 1280 4976 3.6
Pancreatic Red. primal 2489 3769 2488 3768 0.0
Pancreatic Red. dual 1281 4977 1280 4976 0.0

IMRT Full primal 29131 35866 10260 16565 1.9
IMRT Full dual 25175 49198 6304 19636 2.1
IMRT Red. primal 10261 16996 10260 16565 0.4
IMRT Red. dual 6306 20521 6304 19636 0.3

approximately 400 variables from the reduced primal model and 900 variables from
the reduced dual model.

Table 5.15

Model III, Random Data Set, CPLEX Simplex Results.

Full size Reduced
Form Method Pricing sec iter sec iter
primal d spx reduced 8.9 672 0.5 704
primal d spx st edge 8.4 656 0.5 639
primal d spx st edge/sl 8.7 585 0.6 574
primal d spx st edge/no 8.2 656 0.5 639
primal p spx reduced 9.4 1305 1.2 1305
primal p spx combined 8.7 1088 1.1 1088
primal p spx devex 9.4 1211 1.3 1211
primal p spx st edge 9.5 955 1.2 955
primal p spx st edge/sl 8.7 853 1.1 853
dual d spx reduced 8.7 197 0.6 197
dual d spx st edge 8.7 174 0.6 174
dual d spx st edge/sl 8.8 174 0.6 174
dual d spx st edge/no 8.8 179 0.6 179
dual p spx reduced 8.6 651 0.5 193
dual p spx combined 8.2 657 0.5 173
dual p spx devex 8.7 657 0.5 173
dual p spx st edge 8.5 583 0.5 85
dual p spx st edge/sl 8.0 634 0.5 115

5.3.1. Conformal Data Sets. Results for the random data set appear in Ta-
ble 5.15 and in the first 3 lines of Table 5.18. From Table 5.15, we see that for the
reduced models the simplex method always required less than 2 seconds to solve this
model, no matter what variant of algorithm and pivot rule is used. When the full-size
model is passed to the solver, approximately 8 seconds are required for preprocessing.
Although, as noted above, both full-size and reduced models result in the same formu-
lation after preprocessing, the iteration counts are sometimes different. This may be
due to the use of different starting points. The barrier method (Table 5.18) also takes
approximately one second, with an additional 8 seconds required for preprocessing of
the full-size model.

The pancreatic data set also yields very fast solutions times, again less than 2
seconds for any simplex variant, with an additional 20 seconds approximately for
preprocessing the full-size model; see Table 5.16. Results for the barrier code are
shown in the second section (lines 4-6) of Table 5.18. The primal models (full-size
and reduced) were not competitive in this case, requiring 12 seconds for the reduced
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Table 5.16

Model III, Pancreatic Data Set, CPLEX Simplex Results.

Full size form Reduced form
Form Method Pricing sec iter sec iter
primal d spx reduced 21.6 2444 0.3 2459
primal d spx st edge 21.7 1371 0.6 1339
primal d spx st edge/sl 21.8 1391 1.2 1405
primal d spx st edge/no 21.2 2179 0.6 2219
primal p spx reduced 22.6 1476 1.8 1476
primal p spx combined 22.8 1375 1.6 1375
primal p spx devex 21.3 754 1.1 754
primal p spx st edge 22.8 727 1.8 727
primal p spx st edge/sl 24.7 1822 3.6 1822
dual d spx reduced 21.5 260 0.6 260
dual d spx st edge 21.4 141 0.6 141
dual d spx st edge/sl 21.3 128 0.6 128
dual d spx st edge/no 21.9 253 0.8 253
dual p spx reduced 21.8 2489 0.4 1679
dual p spx combined 20.7 2316 0.4 1106
dual p spx devex 21.6 2316 0.3 1106
dual p spx st edge 20.9 842 0.4 1029
dual p spx st edge/sl 21.1 2187 0.4 979

model and 34 seconds for the full-size model. The reason for these poor times was
the high cost of factoring the coefficient matrix of the linear system to be solved at
each interior-point iteration. This matrix has dimension 2488 and its lower triangular
factor has approximately 7.7 × 105 nonzeros. The dual formulation yielded a matrix
with only 1280 rows, with 4.5 × 103 nonzeros in the L factor. Hence, each interior-
point iteration for the reduced dual problem was much less expensive and the code
required less than 1 second to solve this formulation.

Table 5.17

Model III, IMRT Data Set, CPLEX Simplex Results.

Full size form Reduced form
Form Method Pricing sec iter sec iter
primal d spx reduced 215 25768 216 25768
primal d spx st edge 120 10545 124 10545
primal d spx st edge/sl 176 11314 172 11314
primal d spx st edge/no 165 10946 110 10946
primal p spx reduced 2795 149734 2838 149734
primal p spx combined 1220 63747 1225 63747
primal p spx devex 1542 240848 1555 240848
primal p spx st edge 1266 76789 1238 76789
primal p spx st edge/sl 1908 119596 1924 119596
dual d spx reduced 204 14198 226 15797
dual d spx st edge 225 9746 211 8431
dual d spx st edge/sl 193 8666 181 7134
dual d spx st edge/no 279 12473 228 11054
dual p spx reduced 161 36914 183 39015
dual p spx combined 131 21024 152 20464
dual p spx devex 131 21024 151 20464
dual p spx st edge 180 13261 264 17376
dual p spx st edge/sl 488 35290 459 30681

5.3.2. IMRT. The solution times for the IMRT data set were considerably
longer than for the conformal data sets, due mainly to the considerably larger size
of these models after preprocessing. Results for the simplex method are shown in
Table 5.17. The most obvious feature of these results was the poor performance of
the primal simplex method on the primal formulation, which yielded run times almost
an order of magnitude higher on average than the other formulations and algorithms.
The best time was turned in by the dual simplex applied to the reduced primal formu-
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Table 5.18

Model III, CPLEX Barrier Results.

Data Form. iter sec presolve barrier crossover
Random Full size 10 9 2.01 0.96 2.67

R. primal 10 1 0.02 0.94 0.02
R. dual 16 0 0.02 0.16 0.01

Pancreatic Full size 12 34 3.70 12.66 2.06
R. primal 12 12 0.05 12.18 0.09
R. dual 18 1 0.06 0.62 0.05

IMRT Full size 10 400 1.88 394.24 2.16
R. primal 10 408 0.78 405.00 1.35
R. dual 31 88 0.87 83.69 2.99

lation, using the steepest edge/norms pivot rule (110 seconds). However, most other
run times were within a factor of three of this number. In general, the safest strategy is
to use the dual formulation, since all run times for this formulation (with the possible
exception of primal simplex with the steepest edge/slacks rule) were reasonable.

Results for the barrier code applied to this data set are shown in the last three
lines of Table 5.18. For the reduced dual formulation, only 88 seconds are required—
faster than any simplex variant. The matrix to be factored at each barrier iteration
has dimension 6304 and its lower triangular factor contains about 1.2× 106 nonzeros.
For the primal formulation, the lower triangular factor contains more than ten times
as many nonzeros, so even though fewer barrier iterations are required, the total run
time is higher.

It is particularly interesting to compare the relative behavior of models II and
III on all data sets. For the conformal data set, model III is invariably easy to solve,
while model II is fast only for some choices of algorithm and pivot rule (though even
then considerably slower than model III). For the IMRT data set, on the other hand,
model III is much more challenging from a computational point of view. Part of the
explanation lies in the dimensions of the problems. For the conformal data sets in
model II, the number of columns is between 15,000 and 31,000. Even though the
number of rows is as small as 30 or 36 (for the reduced dual formulations), the large
number of columns results in many thousands of simplex iterations. Moreover, pricing
is more expensive, even when reduced pricing strategies are used. In model III, at
most 5,000 columns appear in the formulations, and the number of simplex iterations
is rarely greater than 1000. For the IMRT data set, on the other hand, the size of the
model III formulations is significantly larger than the model II formulations, and the
number of simplex iterations is correspondingly larger as well.

5.4. Model IV results. Model IV is closely related to model III, so in this
section we will tend to compare the computational results of these two models rather
than to evaluate model IV results in absolute terms. Because of the quadratic objec-
tive function in model IV, we cannot use CPLEX’s Simplex solver, only the Barrier
solver. Since the full-size model results are uniformly slower than those obtained for
the reduced model, we report only the latter here.

We set the Hessian Q to be the identity in these tests. The penalty factor γT was
set to 2 while the normal penalty vector cN was 1e.

Table 5.19 shows the problem sizes before and after presolving for each data
set and formulation. By comparing the reduced primal formulations for model III
(3.11) and model IV (3.15) we see that there are |T | fewer constraints in (3.15).
There are also |T | fewer variables, because the single violation variable y in model IV
replaces the two variables s and t in model III. The dimensions of the reduced dual
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Table 5.19

Model IV, Problem Sizes and Effects of Preprocessing.

Data Formulation Before presolve After presolve
Rows Columns Rows Columns

Random Red. primal 501 531 500 530
Random Red. dual 531 2001 530 2000

Pancreatic Red. primal 1245 1281 1244 1280
Pancreatic Red. dual 1281 4977 1280 4976

IMRT Red. primal 5131 6736 5130 6305
IMRT Red. dual 6306 20521 6304 20520

Table 5.20

Model IV, CPLEX Barrier Results.

Data set Formulation sec iter
Random Red. primal 1.3 10

Red. primal 1.3 10
Red. primal 1.2 10
Red. dual 0.5 18
Red. dual 0.5 18
Red. dual 0.5 17

Pancreatic Red. primal 11.8 12
Red. dual 0.9 22

IMRT Red. primal 326 8
Red. dual 47 13

models (3.13), (3.16) are identical, as the variable µT in model III is replaced by y
in model IV. The preprocessor had essentially no effect in these cases; many of the
preprocessing techniques that can be used for linear programs cannot be applied to
quadratic programs.

Table 5.20 shows the results for all data sets using model IV. For the random
data set, the barrier method converges in 10-18 iterations, and the runtimes are all
less than 2 seconds. By comparing with Tables 5.15 and 5.18, we see that model IV
appears to be just as easy to solve as model III for this data set.

For the pancreatic data set, the reduced primal model required almost 12 seconds
to solve, while the reduced dual model required less than one second. Both times were
similar to the times required for the corresponding model III formulations reported in
Table 5.18. Again, introduction of the quadratic term in model IV does not appear
to have made the problem more difficult to solve than model III.

For the IMRT data set (the last two lines of Table 5.20), the reduced dual model
gave the shorter run time; in fact, the time required was only about half of the
corresponding model III formulation (see the last line of Table 5.18) and more than
a factor of three faster than the best results for the simplex method on model III
(see Table 5.17). This exceptionally good result is due in part to the small number
of interior-point iterations required—only 13, as opposed to 31 for the corresponding
model III result. (Since the number of interior-point iterations required for a given
problem is hard to predict or explain in general, we do not speculate on the reasons
for this improvement here.) Similarly to the results for the conformal-pancreatic data
set, the reduced primal form is much slower to solve than the reduced dual form.

The key observations to be made regarding model IV are as follows. First, despite
being a quadratic programming model rather than model III’s linear program, it
appears to be no more difficult to solve. Second, the reduced dual formulation, while
a less obvious way to pose the problem than the reduced primal formulation, gives
vastly better computational results.

28



6. Conclusions. We have performed an extensive computational study of the
linear and quadratic programs that arise in treatment planning problems. Our most
important conclusions are that the choice of formulation, algorithm, and pivot rule can
be crucial to the efficiency of the solution procedure, and that the “default” choices
are sometimes unacceptable. We also noted that interior-point methods are often
a good choice, and that quadratic programming formulations can be solved (using
interior-point methods) as fast or faster than the corresponding linear programming
formulations.

It is important to note that solution of linear programs such as those described
here represents only a part of the computational and human effort required in the
treatment planning process. Calculation of the dose matrices and the cost of setting
the model up in GAMS are significant. Moreover, enhancements of the models that
require the introduction of binary or integer variables (such as limits on the number of
beams or directions that can be used in the treatment plan) open up a new collection
of algorithmic and computational issues.
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