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Abstract

Transactions are used for concurrency control in parallel programs. They allow programmers to identify

sections of code as atomic, leaving the implementation to provide atomicity and isolation. Atomic blocks

are also used for exception recovery, where the updates of a transaction can be rolled back in case of

an exception. In this project, we develop a log-based transaction system based on LogTM, a hardware

transactional memory. Our system guarantees atomicity of transactions (and not isolation). It provides the

three transaction primitives, begin, commit and abort. It also supports nested transactions. Evaluation of

the system on some selected applications shows an average overhead of 50 cycles per store and 10 cycles

per abort.

1 Introduction

A transaction is a block of statements that is guaranteed to execute atomically and in isolation from other

transactions. Some machine instructions liketest-and-setandswapperform a predefined operation atomi-

cally and in isolation. Transactions can be viewed as a generalization of this idea, where the programmer

can specify the operation to be executed atomically. Transactions are widely used in database systems for

concurrency control. [4] proposes an architecture called Transactional Memory to provide synchronization

in parallel programs. Transactional Memory provides a simple and intuitive interface to write parallel pro-

grams. It avoids common problems in lock-based techniques like priority inversion, convoying and deadlocks.

Transactions can also be used in exception recovery. Exception recovery involves restoring program state and

invariants and freeing resources when an exception occurs. This can be hard to implement and difficult to

test [9]. The atomicity guaranteed by transactions can simplify restoring program state and invariants. For

example, consider a function that moves an element from one list to another. Suppose, an exception occurs

after the removal is performed, but before the insertion completes. In such a situation, the lists can be restored
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to their initial state by performing an abort operation. On the other hand, error recovery in a non-transactional

world is considerably complicated.

In this project, we implement a software transaction system for SPARC processors based on LogTM

[7], a hardware transactional memory. It is implemented using EEL [6], an Executable Editing Library for

SPARC binaries. Our system guarantees atomicity but doesnot provide isolation. So, it is applicable only to

single-threaded programs. It supports the three transaction operations:begin, commitandabort. Thebegin

primitive marks the beginning of a transaction.Commit marks the completion of the transaction.Abort

is used in case of an exception, to undo and discard the work done by the transaction. Our implemetation

also supports nested transactions. We use data-flow analysis to identify program points that occur within

transactions. We evaluate the system on two encryption algorithms (MD5 and SHA), quicksort and matrix

multiplication. They showed an average overhead of 50 cycles per store and 10 cycles per abort. Overall

execution overhead varied from 36% to 310%.

Section 2 discusses some background information related to our project. Section 2.1 discusses the motiva-

tion behind Transactional Memories and Section 2.2 introduces a particular implementation namely LogTM.

Section 2.3 discusses about EEL, a library which we use to implement our project. Section 3 gives a high

level design of our project. Section 4 discusses the implementation details and the results are presented in

Section 5. We discuss some directions for future work in section 6 and conclude in section 7.

2 Background

2.1 Transactional Memory

Programmers need to adhere to strict programming discipline while writing multithreaded programs. When

a location is shared between threads, accesses to it must be controlled by a lock. Fine grained locks provide

concurrency, but are more complex and often lead to deadlock situations. Coarse grained locks, on the other

hand do not scale well. Thus there is a tradeoff between concurrency and ease of programming. Also, lock

based synchronization suffers from problems such as deadlocks, priority inversion, convoying and lack of

fault tolerance. Transactional memory is an optimistic concurrency technique proposed as an alternative to

pessimistic lock based scheme. Transactions provide optimistic concurrency control by allowing multiple

transactions to execute concurrently. In case of a conflict between two transactions, one of the transactions

proceeds to completion and the other gets aborted. The programmer need not concentrate on concurrency as
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transactional memory handles it implicitly. Transactional memories could be implemented either in hardware

( [7] [2] [1]) or in software ( [8]).

2.2 LogTM: Log based Transactional Memory

LogTM is an implementation of transactional memory that performs eager version management. It makes the

common case faster by storing new values in place and old values in a log. It handles commits and logging in

hardware and aborts in software. LogTM handlescommits by discarding the log and resetting a log pointer.

During anabort, it walks the log and restores the values. We implement a similar log-based transactional

system in software. While LogTM performs logging at the granularity of the cache block, we do it at the

granularity of a word.

2.3 EEL: Executable Editing Library

EEL (Executable Editing Library) is a library for analyzing and modifying an executable (compiled) program.

It provides 4 abstractions:executable, routine, control-flow graph (CFG) and instructionfor analyzing the

executables at different granularities. It provides asnippetabstraction to encapsulate new code that is added

to an executable. It also supports interprocedural analysis by providing an abstraction for the call-graph of

the executable.

3 Design

Figure 1 gives a high level view of the design of the system. Our system has two components, the header

file transact.hand theexecutable editor. The header file has the definitions for the transaction primitives,

begin, commitandabort. These definitions are inline SPARC assembly instructions that copy a value into

the register %g0. These instructions are essentially nops because %g0 is immutable. The value of the first

operand in the instruction is used to distinguish between the different transaction primitives. The executable

editor identifies the instructions corresponding tobegin, commitand abort and replaces them with code

snippets that implement the semantics of these functions. The executable editor also inserts snippets that log

old values before each store inside a transaction.

The system uses the following three structures to implement the semantics of a transaction.

• Log: It is used to store the old value at the memory locations updated during a transaction. We maintain
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Figure 1: System Design.The high level design of the system.

a pointer to the next empty location in the log called the log-pointer (log-ptr).

• Begin-pointer Stack: The Begin-pointer Stack (BS) is introduced to support nested transaction. Nested

transactions are discussed in section 3.1.

• Register Checkpoint Stack:During anabort, register modifications done by the transaction must be

undone. Since the register file is considerably small we checkpoint the registers before eachbegin

and replay values from the register checkpoint stack during anabort. The Register Checkpoint Stack

(RCS) is used for this purpose. To avoid checkpointing the entire register window, we disable register

windows by giving the−mflat flag to gcc.

A=0
BEGIN
A=1
A=2
ABORT

Figure 2: Example Transaction
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Example of a simple transaction:

Consider the simple code snippet in Figure 2 where the variable ’A’ is initialized to 0 and updated twice inside

a transaction. When the control reaches thebegin , the log-ptr is initialized to the beginning of the log. When

’A’ is updated within the transaction, the address of ’A’ and the old value at ’A’ are written to the log and the

log-ptr is updated. Also, the value of ’A’ is updated in place in memory. When the control reachesabort ,

the values in the log are replayed and the memory writes are undone. The log-ptr is also updated accordingly

to point to the beginning of the log. On the contrary, if acommit is seen the log-ptr is re-initialized to point

to the beginning of the log and the memory writes are retained.

Figure 3: Example of a nested transaction.The state of the system after the statement A = 2.

3.1 Nested Transactions

Nesting of transactions is necessary for several reasons.

• In the presence of libraries that use transactions, nesting may be required to call procedures in these

libraries from another transaction.

• Nested transactions are helpful in minimizing the amount of work undone during a large transaction.

Each new portion of the transaction can be written as a nested transaction. This nesting allows us

to attempt each portion of the task and undo it when necessary, without having to abort the entire

transaction.

• Nested transactions also help in isolating errors in certain operations.

The begin-pointer stack is used to store pointers to the beginnning of each transaction. During eachbegin,

the log-ptr is pushed into the begin-pointer stack. During acommit or abort, the log-ptr is popped from the

5



stack. Table 1 discusses the exact semantics of these operations.

BEGIN 1) Push the current value at the log-pointer into the stack
2) Checkpoint the register file

STORE 1) Compute EA
2) write EA and old value at EA to the log
3) increment the log-pointer and store

COMMIT Pop an address from the stack
ABORT 1) Pop an address from the stack

2) undo writes until the popped address
3) reset the log-pointer to the popped address
4) restore the register file to the last checkpoint

Table 1: Transaction operations

4 Implementation

4.1 Code Snippets

We have written 6 assembly language snippets that will be inserted in the executable. They can be classified

into three categories.

1. Initialization Snippet: This snippet initializes the values of the tops for the Begin-pointer Stack (BS)

and Register Checkpoint Stack (RCS). It is implemented as a routine and is called once at the beginning

of the program.

2. Store snippets: There are 2 formats of store instructions in SPARC:st rd, [rs1+rs2] andst rd, [rs1+

imm]. They differ in the way in which the effective address is calculated. There are 2 snippets, one for

each format of store instruction.

3. Transaction primitives: There are 3 snippets, one each forbegin, commit and abort. They perform the

operations enumerated in Table 1.

In EEL, it is possible to wrap a snippet as a routine and insert calls to this routine at required program

points. We use this approach only for the initialization snippet. The advantage of this approach is that it a full

window of 32 registers is available for the snippet. However, it also involves the overhead of a function call

every time the snippet is executed. Furthermore, if the snippet uses local information (likers1, rs2, rd, imm

etc in case of store snippets), they must be passed to the routine as parameters. This leads to unnecessary
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Figure 4: Store snippets

saving and restoring of theout registers if they are live at that point. The flipside of not wrapping snippets

into routines is that only two registers%g6,%g7 are available without any save-restore overhead.

The two Store snippets are given in Figure 4. Other snippets are given in the Appendix A. EEL provides

tagged snippets, which extend ordinary snippets with names to reference individual instructions in a snippet.

Both the snippets have 5 tagged instructions. While creating a snippet for the instructionsst rd, [rs1 + rs2]

andst rd, [rs1 + imm],

1. 0x1 in instruction 1 is patched with %hi(logptr)

2. 0x1 in instructions 2, 3 is patched with %lo(logptr)

3. %g0 in instruction 4 is patched withrs1

4. %g0 in instruction 5 is patched withrs2 for reg-reg addressing

5. 0x1 in instruction 5 is patched withimm for reg-imm addressing

The size of the old value written to the log is a word even for instructions (stb andsth) that store bytes

and half-words. So, we align the effective address to word boundary1.

1instructionand %g6, −4, %g6 after tagged instruction number 5

7



proceduredfa()

1: worklist← Φ
2: for all basic blocks bdo
3: b.levelin = b.levelout = 0
4: b.levelbody ← no. ofbegin’s in b - no. ofcommit/abort’s in b
5: worklist.insert(b)
6: end for
7: while worklist is not emptydo
8: pop an elementb from worklist
9: b.levelin ← max

p∈pred(b)
p.levelout

10: b.levelout ← b.levelout + b.levelbody

11: if b.levelout has changedthen
12: insertb’s successors into worklist
13: end if
14: end while

Figure 5: Dataflow analysis

4.2 What stores to log?

A Store snippet is inserted before a store instruction either

1. if it appears in a routine that is called directly or indirectly from inside a transaction or

2. if there is some path from the routine entry block to this instruction such that the nesting level of the

block is greater than zero.

Stores that satisfy condition 1 are identified using call-graph analysis and is discussed in section 4.3.

Identifying the nesting level of stores in a basic block is simple once we compute the nesting level of the first

instruction of the basic block. We use dataflow analysis [aho, ullman, sethi] to determine the nesting level of a

basic block. A worklist algorithm is used to perform this analysis. In this algorithm, we make an assumption

that a transaction started within a loop iteration will commit or abort before the end of the iteration. i.e, it is

not possible to create a transaction in one iteration of the loop and end it in another iteration of the loop or

outside the loop. Without this assumption, the algorithm will not terminate. The algorithmdfa to perform

dataflow analysis is given in Figure 5.

4.3 Function calls within Transactions

If procedures can be called from a transaction, store instructions within the called procedure must be logged.

For e.g., consider the call graph of a program, given in Figure 6. Since functionsf1 andf2 can be called

from a transaction, stores inf1 andf2 must be logged. Functionf3 is never called from inside a transaction.
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Figure 6: A simple call-graph Stores in functions f1 and f2 get logged and stores in f3 are not logged

So, stores inf3 need not be logged. The algorithm to find whether a function can be called from inside a

transaction is similar to dataflow analysis.

5 Evaluation

This section discusses the evaluation of our system. Section 5.1 discusses how we verified the correct imple-

mentation of the semantics ofabort andcommit. Section 5.2 discusses performance overhead as a result of

logging.

5.1 Correctness

We choose two encryption algorithms, Message Digest (MD5) and Secure Hashing Algorithm (SHA) to

verify the correctness of our implementation. These algorithms do bitwise operations (likexor, and etc) on

their input. Thus, they are very sensitive to changes even in a single bit of their inputs. Consequently, even a

minor error in their input will produce a completely different output.

• Verifying Abort: The simplest way to verifyabort is to call the encryption function from inside a

transaction and aborting the transaction. In this case, no encryption happens and the program state is

9



restored to the initial checkpoint. We also verify this behavior by aborting at different locations within

the encryption procedure as well as after the completion of encryption.

• Verifying Commit: The simplest way to verifycommit is to call the encryption function from inside a

transaction and committing the transaction. In this case, the output is the same as a call to the encryption

function without a transaction. Also, we abort the transaction randomly at different locations and restart

the transaction. In this scenario too, we get the correct output of encryption.

• Verifying Nested Transactions: Nested transactions are verified using a matrix multiplication pro-

gram. The multiplication of two 10x10 matrices is performed within a transaction. In addition, the

multiplication of a row with a column is done inside an inner transaction. The inner transactions are

aborted randomly and the outer transaction is committed. In the output matrix, elements correspond-

ing to the inner transactions that aborted had a zero (which was the value before the transaction) and

elements corresponding to committed transactions had the correct output.

Figure 7: Overhead for different applications
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Figure 8: Overhead for different number of storesThe second number along the x-axis shows the number of store
entries created during the matrix multiplication.

5.2 Performance

Transactions are aimed at simplifying error recovery (and parallel programming). However, it also incurs an

overhead because of logging. The use of transactions involves a trade-off between performance and ease of

programming. It is very difficult to quantify the gain obtained by simplifying program development. So, we

measure the overhead incurred and justify that it is reasonable. We measure the performance overhead on

four programs: MD5, SHA, quicksort and matrix-multiply.

Figure 7 shows the number of cycles taken to create and abort a log entry. On an average, creating a log

entry takes 50 cycles and undoing an entry takes 11 cycles. The reason behind the larger number of cycles to

create a log could be that the log-ptr is read, incremented and stored during each creation. On the other hand,

access to the log-ptr takes place only once during a transaction abort and is amortized over a large number

of undo operations. Figure 8 shows the variation of store and abort overhead for various sizes of the logs.

The size of the logs is varied by varying the dimensions of the matrices multiplied. The per-log creation and

abort overheads stay constant for increasing log sizes. This shows that our implementation scales well with

large log sizes. Figure 9 shows the overhead due to transactions in terms of the overall execution time. The
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Figure 9: Slowdown for different applicationsThe y-axis in the graph is the ratio of overhead of logging to the original
execution time.

y-axis in the graph is the ratio of overhead of logging to the original execution time. For e.g., a value of 1

in the y-axis means that overhead of logging is the same as the original exection time. i.e. the new program

executes at half the original speed. MD5 and SHA incur considerably higher overhead because they perform

very few computations and spend most of their execution time in store operations. On the other hand, matrix

multiply and sort perform other computations and hence spend a smaller portion of their execution time in

store operations.

The overhead incurred is reasonable and can be tolerated for two reasons. Firstly, the entire program will

not be inside a transaction and hence the overhead will not be severe. Secondly, the 90-10 rule in software

engineering says that programs spend 90% of their execution time in only 10% of the instructions. So, it is

reasonable to sacrifice performance in the remaining 90% code for ease of programming and correctness.
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6 Future Work

6.1 Minimizing Store Overhead

• Minimizing the number of stores: In the current implementation of the system, a function is assumed

to be inside the transaction if it is called from within a transaction in atleast one of its callers. In the

call graph given in Figure 6 the stores in functionf1 andf2 will be logged irrespective of whether

it is called from functionfoo or bar. An alternative would be to use two versions of a function: one

that is implemented as a transaction and another version that is not. This eliminates logging stores

unnecessarily when it is not called from inside a transaction. Such duplication can also be done at the

level of a basic block.

• Minimizing the overhead per store: The overhead per store can be minimized by decreasing the

number of times the log-ptr is updated. Our implementation updates the log-ptr after every store. This

means the log-ptr is loaded from memory, incremented and stored back to memory after every store.

Instead, we can group the stores within a basic block and update the log-ptr once for all the successive

stores. This would minimize the overhead incurred per store.

mov 0, %r1
begin
. . .
ld [a],%r1
abort
div %r2,%r1,%r3

Figure 10:Example of a transaction in the presence of compiler optimizationThe use of transactions in the presence
of compiler optimizations might lead to incorrect execution.

6.2 Implementing log-based transactions in Compilers

Implementing log-based transactions in compilers helps improve performance. Our implementation has some

issues working with optimized programs. Consider the simple example given in Figure 10 where the live

range of register %r1 crosses a transaction boundary. The presence of transactions in such scenarios might

lead to incorrect execution. Implementing the semantics of log-based transactions in compilers provide the

following advantages
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• The code snippets for store, commit, begin and abort can take advantage of compiler optimizations like

register allocation. This would decrease the per store overhead.

• Correct execution can be ensured in scenarios like the one shown in Figure 10.
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7 Conclusion

Concurrent programming is witnessing a paradigm shift due to the evolution of Transactional memories.

In this project, we develop a log-based transaction system for single threaded applications that is based

on LogTM. We measure the performance overhead incurred in our system. We conclude that the ease of

programming achieved overshadows the overhead incurred.
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A Appendix

A.1 Store Snippets

!!
!! store_reg create an entry in the log for a store register instruction
!!

.seg "text"

.global store_reg

store_reg:

1* sethi 0x1, %g6 ! upper bits of &counter
2* ld [%lo(0x1) + %g6], %g7 ! load counter

add %g7, 8, %g7
3* st %g7, [%lo(0x1) + %g6]

4* mov %g0, %g6
5* add %g6, %g0, %g6
and %g6, -4, %g6

st %g6, [-8 + %g7]
ld [%g6], %g6
st %g6, [-4 + %g7]

!!
!! store_imm create an entry in the log for a store for a store immediate instruction
!!

.seg "text"

.global store_imm

store_imm:

1* sethi 0x1, %g6 ! upper bits of &counter
2* ld [%lo(0x1) + %g6], %g7 ! load counter

add %g7, 8, %g7
3* st %g7, [%lo(0x1) + %g6]

4* mov %g0, %g6
5* add %g6, 0x1, %g6
and %g6, -4, %g6

st %g6, [-8 + %g7]
ld [%g6], %g6
st %g6, [-4 + %g7]
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A.2 Initialization Snippet

!! Modifies: (no visible changes)

.seg "text"

.global init

init:

save %sp, -96, %sp
mov %g1, %l3 ! No visible changes

mov 0x0, %g7
1* sethi 0x1, %g7
2* or %g7, 0x1, %g7
st %g7, [%g7 - 4]

mov 0x0, %g7
3* sethi 0x1, %g7
4* or %g7, 0x1, %g7
st %g7, [%g7 - 4]

mov 0x0, %g7
5* sethi 0x1, %g7
6* or %g7, 0x1, %g7
st %g7, [%g7 - 4]

mov %l3, %g1 ! No visible changes
ret
restore

A.3 Commit Snippet

!! Modifies: (no visible changes)

.seg "text"

.global commit

commit:

1* sethi 0x1, %g6 ! upper bits of &stack_top
2* ld [%lo(0x1) + %g6], %g7 ! load stack_top

add %g7, -4, %g7
3* st %g7, [%lo(0x1) + %g6]

4* add %g6, 0x1, %g6
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add %g7, -4, %g7

cmp %g6, %g7
bne L15
nop

mov 0x0, %g7
5* sethi 0x1, %g7
6* or %g7, 0x1, %g7
st %g7, [%g7 - 4]

L15:
7* sethi 0x1, %g6 ! upper bits of &checkpt_top
8* ld [%lo(0x1) + %g6], %g7 ! load checkpt_top

9* sub %g7, 0x0, %g7 ! subtract checkpt_size
10* st %g7, [%lo(0x1) + %g6]

A.4 Begin Snippet

!! Modifies: (no visible changes)

.seg "text"

.global begin

begin:

1* sethi 0x1, %g6 ! upper bits of &counter
2* ld [%lo(0x1) + %g6], %g7 ! load counter

3* sethi 0x1, %g6 ! upper bits of &stack_top
4* ld [%lo(0x1) + %g6], %g6 ! load stack_top

st %g7, [%g6]
add %g6, 4, %g6

5* sethi 0x1, %g7
6* st %g6, [%lo(0x1) + %g7]

7* sethi 0x1, %g6 ! upper bits of &checkpt_top
8* ld [%lo(0x1) + %g6], %g7 ! load checkpt_top

st %i0, [0 + %g7]
st %i1, [4 + %g7]
st %i2, [8 + %g7]
st %i3, [12 + %g7]
st %i4, [16 + %g7]
st %i5, [20 + %g7]
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st %i6, [24 + %g7]
st %i7, [28 + %g7]

st %o0, [32 + %g7]
st %o1, [36 + %g7]
st %o2, [40 + %g7]
st %o3, [44 + %g7]
st %o4, [48 + %g7]
st %o5, [52 + %g7]
st %o6, [56 + %g7]
st %o7, [60 + %g7]

st %g0, [64 + %g7]
st %g1, [68 + %g7]
st %g2, [72 + %g7]
st %g3, [76 + %g7]
st %g4, [80 + %g7]
st %g5, [84 + %g7]
st %g6, [88 + %g7]
st %g7, [92 + %g7]

st %l0, [96 + %g7]
st %l1, [100 + %g7]
st %l2, [104 + %g7]
st %l3, [108 + %g7]
st %l4, [112 + %g7]
st %l5, [116 + %g7]
st %l6, [120 + %g7]
st %l7, [124 + %g7]

9* add %g7, 0x0, %g7 ! add checkpt_size
10* st %g7, [%lo(0x1) + %g6]

A.5 Abort Snippet

!! Modifies: (no visible changes)

.seg "text"

.global abort

abort:

mov 0x0, %g7
1* sethi 0x1, %g7
2* or %g7, 0x1, %g7

ld [%g7], %g2

mov 0x0, %g6
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3* sethi 0x1, %g6 ! upper bits of &stack_top
4* or %g6, 0x1, %g6 ! load stack_top

ld [%g6], %g1
add %g1, -4, %g1
st %g1, [%g6]

ld [%g1], %g5
add %g1, -4, %g1

L0:
cmp %g2, %g5
be L1
nop

ld [%g2 - 4], %g3
ld [%g2 - 8], %g4
st %g3, [%g4]

sub %g2, 8, %g2
cmp %g0, %g0
be L0

nop

L1:
st %g5, [%g7]
cmp %g1, %g6
bne L2

mov 0x0, %g7
5* sethi 0x1, %g7
6* or %g7, 0x1, %g7
st %g7, [%g7 - 4]

L2:

7* sethi 0x1, %g6 ! upper bits of &checkpt_top
8* ld [%lo(0x1) + %g6], %g7 ! load checkpt_top
9* sub %g7, 0x0, %g7 ! subtract checkpt_size

ld [0 + %g7], %i0
ld [4 + %g7], %i1
ld [8 + %g7], %i2
ld [12 + %g7], %i3
ld [16 + %g7], %i4
ld [20 + %g7], %i5
ld [24 + %g7], %i6
ld [28 + %g7], %i7
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ld [32 + %g7], %o0
ld [36 + %g7], %o1
ld [40 + %g7], %o2
ld [44 + %g7], %o3
ld [48 + %g7], %o4
ld [52 + %g7], %o5
ld [56 + %g7], %o6
ld [60 + %g7], %o7

ld [64 + %g7], %g0
ld [68 + %g7], %g1
ld [72 + %g7], %g2
ld [76 + %g7], %g3
ld [80 + %g7], %g4
ld [84 + %g7], %g5
ld [88 + %g7], %g6
ld [92 + %g7], %g7

ld [96 + %g7], %l0
ld [100 + %g7], %l1
ld [104 + %g7], %l2
ld [108 + %g7], %l3
ld [112 + %g7], %l4
ld [116 + %g7], %l5
ld [120 + %g7], %l6
ld [124 + %g7], %l7

10* st %g7, [%lo(0x1) + %g6]
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