
Factorization of Device Driver Code between Kernel and User

Spaces

Arini Balakrishnan and Swetha Krishnan
Computer Sciences Department

University of Wisconsin, Madison
arinib,swetha@cs.wisc.edu

Abstract

Device drivers, which are normally implemented as
kernel code, pose stability problems since bugs in the
drivers cause kernel crashes. Running device drivers
as unprivileged user-level code has often been pro-
posed as a solution to increase the robustness of the
system. However, moving the entire driver to user
space brings down the performance of the system.
An alternative approach would be to retain the per-
formance critical code in the kernel and move the
less performance sensitive code to the user space. In
this project, we propose a scheme for factorization of
driver code based on performance. In our split driver,
work that needs to be done fast such as device I/O
and interrupt handling is retained in the kernel space.
Work that is less common and can afford to be done
slower such as configuration or statictics collection is
moved to the user space. We implemented this scheme
on PCnet32 network driver and measured the per-
formance overhead incurred by moving some of the
driver functions to user space. We found the perfor-
mance overhead to be less than a factor of 2. Also,
the performance of the critical operations retained in
the kernel was not affected by this factorization.

1 Introduction

Traditionally, linux device drivers are implemented
as a part of the kernel source. They run in the ker-
nel address space with kernel privileges and with full
access to all system resources. This simplifies imple-

mentation and minimizes overhead. However, with
the increasing number of devices, keeping all their
drivers in kernel is leading to a rapid growth of the
kernel code. More than 50% of the kernel code is
made up of device drivers [9].

Managing in-kernel device drivers is also difficult.
The in-kernel drivers have to adhere to the interfaces
and conventions used by the kernel code. Drivers that
run in the kernel have to updated regularly to match
the in-kernel interface changes. As a result, drivers
for uncommon devices tend to lag behind. Studies
[3] show that in the 2.6.0-test10 kernel, there are 80
drivers known to be broken because they have not
been updated to match the current APIs, and a num-
ber more than that are still using APIs that have been
deprecated.

A recent study by Chou et.al [2] has shown that
the defect density of device drivers is three to seven
times that of other parts of the kernel. This is due
to the inherent complexity of driver code and the fact
that much of it is written by people not necessarily
very familiar with the internal operating system struc-
ture. A crashing in-kernel driver often takes the rest
of the system down with it. Also when drivers are
implemented in the kernel, the driver faults can cause
malfunctions in other unrelated kernel components.
This makes fault isolation extremely difficult.

The microkernel approach to building kernels [6]
proposes building drivers outside the kernel as un-
privileged code. Ease of development is one argu-
ment for supporting user space device drivers. If a
driver is a normal user process it can be debugged

1

and profiled like any other user program. Fault source
identification is also greatly simplified by removing
the faulty drivers from the kernel and moving it to
the user space. It also improves the system stability.
When a user space driver crashes, the system is not
rendered unstable since it can be killed and restarted
like any other user process. But having entire de-
vice drivers in user space leads to a significant per-
formance degradation even for the operations that are
time critical.

Factorization brings the best of both these worlds
by implementing a part of the device driver in the ker-
nel and a part of it in the user space. We factorize
the code based on performance, retaining in the ker-
nel the performance sensitive code that is executed
often. We move that part of the driver that is not per-
formance sensitive to the user space. Thus our frame-
work aims at making the common case fast.

The rest of the paper is structured as follows. Sec-
tion 2 justifies the factorizing of device drivers by ex-
amining its advantages. Section 3 discusses the re-
lated work and section 4 discusses the design of the
system. We discuss the implementation details of our
split driver in section 5. We present our evaluation
and results in section 6. We also discuss some ways
to identify candidate functions i.e. those that can be
moved to user space in section 7 and conclude in sec-
tion 8.

2 Motivation

Factorizing the device driver code provides the ad-
vantages of the user-space device drivers and the per-
formance benefits of the in-kernel device drivers.

Device drivers are written by people who are not
kernel experts and so are prone to bugs. Though the
drivers are written as kernel modules, the in-kernel
driver code has access to the entire kernel address
space, and runs with privileges that provides access
to all the instructions. So bugs in device drivers can
easily cause kernel panics and lockups. The only way
to recover from such kernel panics is to reboot the
system. Studies [2] show that 85% of bugs in the
operating system are driver bugs. Factorizing device
drivers helps in isolating the driver bugs from the ker-
nel. It however does not isolate the bugs resulting

from the part of the driver code retained in the ker-
nel. The performance sensitive common path of the
driver code that we decide to retain in the kernel is
often well tested and is less buggy when compared to
the less commonly executed code that we move to the
user space. So, factorizing the driver would mean that
there are less chances of a bug in the driver leading to
a system crash.

Factorizing device drivers makes debugging eas-
ier. The portion of the device driver maintained in
the user space can be easily debugged and profiled
like any other user program. Also the user space por-
tion of the device driver can make use of C libraries.
For instance, we can use STL libraries to implement
a queue or list in the driver. This is not possible in an
in-kernel device driver.

Kernel memory is non-swappable, unlike user
memory. So having drivers as in-kernel modules re-
sults in using up a lot of memory even for the in-
frequently used drivers. Factorization alleviates this
problem by moving parts of the driver to the user
space. Consequently, the infrequently used part of
the device driver does not occupy memory when not
in use.

With an in-kernel device driver, the kernel is kept
busy even doing non critical operations of the device,
such as getting statistics. This can be avoided with
a factorized driver. Thus, the kernel can spend more
time in doing useful work. While user space device
drivers also relieve the kernel of these tasks, they ad-
ditionally slow down even the critical driver opera-
tions.

One other benefit of factorizing driver code is the
reduction in the amount of kernel code. This results
in a very small kernel foot print. Factorizing thus pro-
vides a way to reduce the amount of in-kernel code
without compromising on performance.

3 Related Work

The last two decades have seen substantial amount
of research in addressing the problems posed by in-
kernel device drivers. Most of the solutions involve
moving the entire driver to the user space. Other
solutions like Nooks [14] propose executing device
drivers in light-weight protection domains within the

2

kernel address space, that are isolated from the ker-
nel. Our approach differs significantly from both
these approaches. Firstly, we do not move all the
driver code to the user space. Secondly, we also do
not keep the complete driver code in the kernel ad-
dress space.

Peter Chubb et. al [3] exploit the existing sup-
port in the Linux kernel and build on to it. The ba-
sic approach is to introduce new system calls that in
turn invoke kernel routines. They implement a new
file system using the PCI namespace and introduce a
new system call that returns a file descriptor identify-
ing a PCI device. This enables acquiring and releas-
ing of a device by a single driver from user space.
To enable DMA translations, a new system call is
added that invokes the kernel functions to translate
virtual addresses of buffers specified by user-level
applications to I/O bus addresses. This call also in-
vokes the in-kernel bookkeeping routines that ensure
pinning of I/O buffers in memory. To deliver inter-
rupts from devices to user-level drivers, interrupts are
mapped to file descriptors and a new file(interrupt
handler) is added to each possible interrupts direc-
tory in /proc/irq. When an interrupt occurs, the in-
kernel handler disables the interrupt and increments
a semaphore to wake up a user-level interrupt thread
sleeping on the read() of the appropriate handler file.
Finally, to pass work descriptors to the user-level
driver from the kernel, and to offload work from the
driver to the kernel, a shared memory region between
the user and kernel address spaces is used, with lock-
free queues to handle concurrency issues.

FUSD (Linux Framework for User space Devices)
is a framework for proxying device file call backs into
user-space and allows implementing device drivers as
daemons instead of kernel code. It is a combination
of kernel module and a user space library. The kernel
module implements a character device which is used
to control the channel between the two. The FUSD
user space library provides functions for device reg-
istration. FUSD again attempts to move the entire
device driver to the user space.

The user space approaches causes a slowdown of
performance-critical events like acquiring and releas-
ing of devices, handling interrupts, reads/writes and
DMA translations. This is due to the overhead intro-

duced by system calls and additional memory copies.
On the contrary, our approach lets the kernel handle
these operations to keep them fast.

Swift et. al [14] in Nooks achieve two goals
namely fault-isolation and recovery from malfunc-
tioning of device drivers. The approach taken here is
to have the driver reside in kernel space, but within a
separate protection domain. Nooks combines various
approaches for fault isolation such as kernel wrap-
ping of system calls, virtual memory protection and
lowering of privilege levels and software fault isola-
tion. By having the driver being kernel resident, they
avoid overheads (such as copying of data between ad-
dress spaces and translation of addresses) that affect
performance in user-level drivers. The provision of
various approaches provides adaptability to different
environments and different device types. In our ap-
proach to factorizing device driver code, the part of
the device driver in the kernel still runs in the ker-
nel’s memory address space. The user space part of
the driver is completely isolated from the kernel’s ad-
dress space. We provide isolation based on perfor-
mance. The part of the driver that is performance
sensitive is often well tested and not prone to bugs.
So, we find that we can achieve the isolation benefits
by just moving the less commonly executed code to
the user space.

4 Design

This section discusses the design of the system. The
device driver is factorized into adaemon that runs in
the user space and akernel driver that runs in the
kernel space. The system uses a simplerequest −
reply model for communicating between the kernel
and the user space daemon. Incoming requests in the
kernel for functions that have been moved to the user
space are batched up and delegated to the user space
daemon. Thedaemon registers itself with the ker-
nel to accept requests for the driver functions that are
implemented in user space. After this registration,
the user daemon thread waits in the kernel as a ker-
nel thread. This is similar in semantics to LRPC [1].
When the waiting thread wakes up on being given
a request by the kernel, the control returns to the
user space. Thedaemon processes the request i.e.

3

executes the requested function, returns the reply to
the kernel and then processes the next request in the
batch. If there are no more requests, it continues to
wait in the kernel for future requests.

Figure 1: Design - User Daemon Request.The user dae-
mon registers with the kernel driver.

Figure 2: Design - Kernel Reply.Kernel replies when the
request arrives for a user space function

Figure 3: Design - User Reply.The user daemon replies
with the result to the kernel and waits in the kernel

Thekernel driver contains all the functions that
are implemented in the kernel. Typically it has the
functions that control I/O, device open, close and
probe, the interrupt handler and the initialization and

cleanup modules. Thekernel driver also contains
a function that accepts a registration request from the
daemon. When a request for a user space function is
triggered, thekerneldriver takes care of enqueueing
the request and notifies the daemon of the request.
The reply from thekernel driver to the daemon

consists of the name of the function requested and
the necessary arguments to execute the function.

Figures 1, 2, 3 gives the details of the design. They
also provides a clear over view of what happens in
each stage of the design.

5 Implementation

We implemented the factorization scheme discussed
on the AMD PCnet32 network driver. This is the
driver that the VMware Virtual Machine [8] supports,
and we chose it so that we could move our implemen-
tation to VMware. On VMware, we could make ker-
nel code modifications remotely, with an easy restart
and recovery of the VM to a clean state following ker-
nel panics. We used an emulation of the driver on a
guest operating system running Linux 2.6.12.6 kernel
on an Intel i386 architecture within VMware Work-
station 5.5.1. The virtual machine had a 256 MB
RAM , an 8 GB hard disk and one NAT-configured
ethernet card. We chose Linux due to its support
for drivers as loadable kernel modules, and due to its
considerable existing support for user-mode drivers.

5.1 Existing Support

For moving functions to user space, we leveraged ex-
isting support in Linux in the following ways:

1. System calls : We needed the user daemon to
call into the kernel to indicate it was ready to
handle requests and also to pass back replies
to the kernel after executing a requested func-
tion. This communication was achieved using
the ioctl() system call. Theioctl() function per-
forms a variety of device-specific control func-
tions on device special files such as sockets. We
defined our own control functions(commands)
to be handled by pcnet32’sioctl() and performed
ioctls from the user-space daemon with those
commands. There were three such commands

4

namely COPY, to copy commonly needed ker-
nel data structures, REQUEST, to wait in the
kernel for a request, and REPLY, to pass back
replies after handling a requested function.

To move functions doing reads and writes to the
low-level I/O ports, we used theioperm() and
iopl() system calls.ioperm()gives a user pro-
cess access to the first 1024 I/O ports, while
iopl() changes the I/O privilege level of the pro-
cess and can enable access(with level set to 3)
from user space to all 65536 I/O ports. We used
these calls in the user daemon along withinb(),
outb(), inw() andoutw() as required, to imple-
ment the I/O port read/write functions in the user
daemon.

2. Kernel API : We needed to pass data back
and forth between the kernel and user spaces,
for sending function arguments to the user-
space functions and for getting the results back
into the kernel. This was achieved using the
copy to user() and copy from user() functions
provided in the Linux kernel API.

We used semaphores to synchronize between
the user thread making the ioctls into the ker-
nel space and the kernel thread getting invoked
upon incoming requests for a function either
from another in-kernel function or from an ex-
ternal process. The linux semaphore API with
semainit(), up() anddown interruptible() func-
tions were used for this purpose.

Moving a function that uses a spinlock for mutu-
ally exclusive access to the device required fur-
ther modifications. Such functions use thespin-
lock irq save() and spinlockirq restore() for
disabling and re-enabling interrupts when the
spinlock is acquired and relinquished respec-
tively. This is done to prevent interrupt han-
dlers from spinning forever if a device issues
an interrupt while a function in the driver is
executing with the spinlock held. However, if
we simply moved what this function does to
user space, leaving the spinlock in the kernel, it
would result in the aforesaid race condition be-
tween the interrupt handler and the driver func-
tion since interrupts get re-enabled on switching

to user space. To handle this, we replacedspin-
lock irq save() and spinlockirq restore() with
the disableirq() and enableirq() functions of
the API, and achieved the mutual exclusion
using a mutex instead of the spinlock.dis-
able irq() and enableirq() disable and enable
the interrupt line of only our specific device,
while keeping other interrupts enabled, so we
can safely move the function’s code to user
space after grabbing the mutex, since in this
case the specified interrupt line would not get
re-enabled in user space.

5.2 User-Space Interface

We needed certain kernel data structures and con-
stants of the driver to be visible in user space since
they were accessed by the driver functions moved to
user space. For this, we created a pcnet32.h header
containing those structures in/usr/include/linux. This
file also contained a generic ’userfn args’ structure
that contained a function identifer and arguments of
various data types that were required by various func-
tions. The appropriate fields of this structure were
filled in before passing it to the user space function
through acopy to user()call.

There were also certain commonly needed helper
functions(such aspcnet32wio read bcr(),
pcnet32wio write csr()) doing reads and writes to
I/O ports at specific addresses. These functions were
being called both by the driver functions retained
in kernel space and by the functions moved to user
space. So we replicated these helper functions in our
user-space daemon, so that they could be used by the
user-space functions.

5.3 Handling Mutiple Requests

Consider the case when a request for a certain driver
function that has been moved to user space is be-
ing processed. At this time, there would be no user
thread waiting in the kernel since it is busy executing
the function in user space. Now if there is a request
for the same or another driver function that is in user
space, then there would be no waiting thread in the
kernel to receive it and so this request would be lost.
To handle mutiple incoming requests while another

5

is being processed, we created a FIFO request queue
and enqueued every incoming request in it. When-
ever the waiting thread was woken up, it would de-
queue the request at the head of the queue and then
switch back to user space to process it. This way, ev-
ery request gets saved in the queue instead of being
lost.

5.4 Sequence of Events

Figure 4 shows the code skeleton that is responsible
for the control flow between the factorized parts of
the driver. The chain of events can be summarized as
follows:

1. First, the user space daemon issues anioctl()
with COPY as the command. This results in
copying commonly needed structures, such as
the device’s private data structure, to user space.

2. Next, the daemon issues anioctl() with the RE-
QUEST command. This causes the user thread
to wait on the semaphore in the kernel till any
request comes in.

3. When a request is received, the kernel function
meant to handle it just enqueues the request and
then wakes up the waiting thread. It then itself
goes to sleep on the second semaphore , waiting
for the reply from the corresponding user space
function.

4. The user daemon thread that was woken up de-
queues the first request at the head of the queue
and after copying the userfn args structure with
the needed arguments to user space, it causes the
REQUESTioctl() to return to user space.

5. The user daemon invokes the function corre-
sponding to the passed function identifier. Af-
ter executing this function, it issues anioctl()
with REPLY as the command, passing the return
value of the function asioctl() arguments.

6. The kernel handles the REPLYioctl() by copy-
ing the results to a kernel buffer and then wak-
ing up the thread that was sleeping on the sec-
ond semaphore inside the kernel function. This
thread then returns the results to the original
caller.

Figure 4: Code Skeleton. This is the main body of the
framework that shows how the factorization is achieved.

6 Evaluation

The PCnet32 driver has 54 functions (including the
init and cleanup modules), out of which we moved
8 functions to user space. 16 helper functions were
replicated in user space for being used by other func-
tions. Section 6.1 outlines the rationale behind the
functions moved. Section 6.2 details our test for cor-
rectness and section 6.3 discusses the performance of
the driver both with and without moving these func-
tions.

6.1 Functions moved to user space

We analyzed the driver code call patterns using
cflow1 to find out which functions were being ref-
erenced extensively and which weren’t. This led us
to identify 8 functions, which can be categorized as
follows:

1. ’get’ and ’set’ methods: pc-
net32get drvinfo(), pcnet32get ringparam
, pcnet32get msglevel, pcnet32setmsglevel
andpcnet32self test count. These were meth-
ods that were being called by theethtool 2

interface to acquire or change device settings
such as rx/tx ring parameters, message level
etc. We do not expect the ethtool commands
to be run too frequently as compared to re-
ception/transmission to and from the network
device. So we felt these functions were good

1GNU cflow analyzes a collection of C source files and prints a
graph, charting control flow within the program.

2Ethtool is a Linux net driver diagnostic and tuning tool for the
Linux 2.4.x (or later) series of kernels. It obtains,for an ethernet
device, information and diagnostics related to media, link status,
driver version, PCI (or other) bus location, and more.

6

candidates to be moved to user space. These
ethtool functions are commonly implemented
by all drivers, so moving them to user space
could be generalized to other drivers as well.

2. Functions using spinlocks: pc-
net32get regs(). This is also an ethtool
function to retrieve a register dump for the
specified ethernet device. This function uses
read csr() mutiple times to read the contents
of the control and status registers, the bus
configuration registers and the mii physical
registers. All this time-consuming work could
be moved to user space since reading the I/O
ports throughread csr() was duplicated in the
user space too. Being a non-time-critical ethtool
operation, this function too was suitable to be
moved to user space, with the spinlock replaced
by a mutex anddisableirq()/enableirq().

3. Functions doing reads and writes to var-
ious I/O port addresses: mdio read() and
mdio write(). These functions read and/or write
a specific number of bytes to I/O ports at specific
offsets usingread bcr() andwrite bcr(). Again,
these functions were being used only by the mii-
tool 3 and would not be invoked frequently.

As can be seen from Table 1, the total number of lines
of code consisting of these functions moved from ker-
nel to user space is about 100. This is not much, con-
sidering the size of the PCnet32 driver(2000 lines).
However, there were certain functions that we could
have moved but decided not to since mii support
was not enabled in PCnet32 and these functions per-
formed useful work only on mii being enabled. Also,
most of the other functions were critical ones, doing
device open/close, receive/transmit, handling inter-
rupts and so on.

6.2 Correctness

To test our framework for correctness, we executed
the ethtool commands. We executed these commands

3mii-tool is a utility that checks or sets the status of a network
interface’s Media Independent Interface (MII) unit. It is used for
determining if you are connected to the Ethernet, and if so, at what
link speed and duplex status.

with our scheme i.e. with the user-daemon running
and compared the results with those obtained without
factorization i.e. with the ethtool functions retained
in the kernel. The same results were obtained in both
cases. Thus, running a piece of code in kernel and
the other piece in user space does not affect the driver
functionality.

6.3 Performance overhead

We measured the performance of the functions re-
tained in the kernel and those moved to the user
space. For the latter functions, we also measured the
amount of time spent exclusively in user space oper-
ations. These measurements were done on the VM
within VMware and hence would also include com-
mon virtual machine overheads. Deploying the fac-
torized driver on actual hardware would give more
precise measurements.

Table 2 gives the time taken to execute some of the
ethtool commands with the in-kernel driver and with
our factorized driver. As expected, there is a signifi-
cant increase in time when the functions are executed
in user space. When executing in user space, a pro-
cess has normal privileges and can’t do certain things.
When executing in kernel space, a process has every
privilege, and can do anything. Consequently, any-
thing executed in user space would need to interact
with the kernel and hence would be slower than if ex-
ecuted fully in the kernel domain. However, since the
functions we moved are not the frequently used ones,
the overhead does not affect the common-case perfor-
mance of the driver. Moreover, the figures show that
the increase in time is less than a factor of two.

The−i, −g and−s options shows a very small
difference of around 0.002 seconds between the orig-
inal driver and the factorized driver. On the other
hand, the time taken for the−d option differs by
0.08 seconds. This is because the former options
get/set limited information and hence do not spend
much time in copying between kernel and user space.
However,−d requires a regsiter dump of the con-
tents of approximately 335 registers which involves
port read/writes and also need more data to be copied
back to the kernel. In case of−t, an entire ethtool
test of the device is involved (which involves call-
ing other functions likepcnet32ethtool test()andpc-

7

Source Components #Lines of Code
Driver functions moved to user space 102

Driver functions replicated in user space 74
User space interface (header file) 254

User daemon 788
Total number of lines of code 1218

Table 1:Number of non-comment lines of code added for factorization

Command Function Original driver(in s) Factorized driver(in s)
ethtool -i get drvinfo() 0.006 0.008
ethtool -g get ringparam() 0.007 0.009
ethtool -s setmsglevel() 0.005 0.007
ethtool -t self test count() 0.208 0.214
ethtool -d get regs() 0.245 0.332

Table 2:Time taken for different ethtool operations

Command Original driver(in s) Factorized driver(in s)
ping 9.568 9.245
scp 2.238 2.277
ssh 3.736 3.486

Table 3:Time taken for network operations

Command COPY(in s) REPLY(in s) PROCESSING(in s) Total time spent in user space(in s)
ethtool -i 0.000034 0.000085 0.000003 0.000122
ethtool -g 0.000025 0.000137 0.000002 0.000162
ethtool -d 0.000056 0.003862 0.271508 0.275426
ethtool -s 0.000025 0.000109 0.000081 0.000215

Table 4:Time split up in user space

8

net32loopbacktest()) and only a small portion of
the operation,pcnet32self test count(), which sim-
ply gived the test length, has been moved to user
space. Hence the time difference noticed is only
0.006 secs.

Table 3 gives the time time taken to execute some
network commands likeping, scp, andssh, that call
the functions retained in the kernel. These functions
would involve performance-critical operations such
as reception/transmission of packets. We executed
scp by copying a 4.3 KB file from the host machine
to our VM. We timedssh by logging in to the host
from the VM and exiting immediately. The figures
show that there is hardly any difference in time in
these operations when executed with the original and
factorized drivers. This is expected because we did
not move any of the time-critical functions to user
space. Thus, factorization does not slow down the
critical operations retained in the kernel.

Table 4 gives the time spent in the different phases
namely COPYioctl(), REPLYioctl() and request pro-
cessing, in user space. The−d option involves reads
and writes to the I/O ports to get the register dump.
This is the reason for the significant time (0.275426
secs) being spent in user space. On the other hand,
the other options do not have much to do and hence
spend very little time in user space.

7 Identifying Candidate Func-
tions

To come up with a standard for identifying
the functions that can be moved to the user
space, we analysed two other network drivers
e100 − IntelPro/100ethernetdriver and
e1000 − IntelPro/1000Gigabitethernetdriver

using cflow. We also plotted the call graph output
from cflow with dot4. The clustered regions in the
dot graph helped us identify the functions that were
isolated from the performance sensitive code (like
pcnet32rx(), pcnet32start xmit() etc.). Based on
this analysis we came up with the following general
rules for identifying functions in a network driver
that must be moved to the user space and those that

4dot is a tool that draws directed graphs as hierarchies.

can/might be moved to the user space.
’Must’ candidates: All the ethtool operations are

ideal candidates, since they are called only by ethtool.
PCnet32 supports only few such operations, while
e100 and e1000 implement a large number of them
and allow more scope for movement.

The mdio read() and mdio write() operations in
these drivers can also be moved, since they are called
only by the mii interface. These functions do reads
and writes to I/O ports and moving them would re-
lieve the kernel of the time spent in these non-critical
functions.

There are also a number of boolean meth-
ods that perform validations or check cer-
tain conditions. e1000 has some such meth-
ods such as e1000check64k bound() and
e1000validateoptions(). Again, these methods
are not performance critical and hence can be moved
to the user space.

Along the same lines, functions such as
e100setmulticast() and e100changemtu() can
be moved since the muticast list or mtu would not be
changed too often .

’Might’ candidates: NIC configuration functions
like e100configure(), e1000setphy type() are in-
voked only during device configuration which would
normally be done rarely. Depending upon whether
or not they require access to the hardware directly,
we might or might not be able to move them to user
space.

’get’ and ’set methods such ase100get defaults(),
e100get stats(), e100updatestats() and
e1000get phyinfo() can be moved depending
upon how frequently they are being invoked by
external processes. For instance, if many critical
network operations also do a read of the network
device statistics, it would not make sense to move a
get stats()function to the user space since that would
increase the overall time for the critical function.

8 Conclusions

Our implementation and evaluation of the proposed
factorization scheme on the PCnet32 driver shows
a proof of the concept that infrequently used driver
code can be moved to the user space without a mas-

9

sive performance overhead. This means the kernel is
isolated from any driver crashes that might be caused
due to the functions that are now in user space. The
performance of the sensitive code retained in the ker-
nel does not suffer any degradation with the factor-
ized driver.

The gain obtained by this approach depends to
some extent on how much scope the driver provides
for ’must-move’ candidate functions and upon the ex-
tent of work that is being delegated to user space.
The e100 and e1000 drivers are rich in such can-
didate functions as compared to PCnet32. Moving
functions likeget regs()relieves the kernel of a lot of
time-consuming tasks.

What we have shown is a manual approach to fac-
torization by investigating network driver code. Our
work can be extended to develop a tool to automati-
cally factorize drivers based on the general rules iden-
tified. Also, it would be interesting to investigate
other drivers such as char drivers or block drivers to
see how factorization can be applied to them.

References
[1] B. Bershad, T. Anderson, E. Lazowska, and H. Levy.

Lightweight remote procedure call. InSOSP ’89: Pro-
ceedings of the twelfth ACM symposium on Operating sys-
tems principles, pages 102–113, New York, NY, USA, 1989.
ACM Press.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An
empirical study of operating system errors. InSOSP, pages
73–88, 2001.

[3] P. Chubb. Get more device drivers out of the kernel! In
Ottawa Linux Symposium, July 2004.

[4] P. Chubb. Linux kernel infrastructure for user-level device
drivers. In Linux Conference,Adelaide,Australia, January
2004.

[5] J. Elson. FUSD: A linux framework for user-space devices,
August 2003.

[6] A. Forin, D. Golub, and B. Bershad. An I/O system for
mach 3.0. InUsenix Mach Symposium, 1991, pages 163–
176, November 1991.

[7] G. C. Hunt. Creating user-mode device drivers with a proxy.
In First USENIX Windows NT WS,1997, pages 55–59, 1997.

[8] J.Sugerman, G.Venkitachalam, and B.Lim. Virtualizing I/O
devices on VMware workstation’s hosted virtual machine
monitor. In USENIX Annual Technical Conference, June
2001.

[9] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gtz, C. Gray,
L. Macpherson, D. Potts, Y. R. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance.
Technical report, PA005043, National ICT Australia, July
2005.

[10] B. Leslie, N. FitzRoy-Dale, and G. Heiser. Encapsulated
user-level device drivers in the mungi operating system. In
Workshop on Object Systems and Software Architectures,
January 2004.

[11] B. Leslie and G. Heiser. Towards untrusted device drivers.
Technical report, UNSW-CSE-TR-0303,School Comp. Sci.
& Engin., University NSW, Sydney 2052, Australia, March
2003.

[12] K. V. Maren. The fluke device driver framework, 1999.

[13] A. Rubini, J. Corbet, and G. Kroah-Hartman.Linux Device
Drivers, Third Edition. O’Reilly.

[14] M. Swift, S. Martin, H. M. Leyland, and S. J. Eggers.
Nooks: an architecture for reliable device drivers. InTenth
ACM SIGOPS European Workshop,Saint Emillion, France,
September 2002, September 2002.

[15] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving
the reliability of commodity operating systems.ACM Trans.
Comput. Syst., 23(1):77–110, 2005.

10

