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ABSTRACT
Statistical debugging uses lightweight instrumentation and statistical
models to identify program behaviors that are strongly predictive of
failure. However, most software is mostly correct; nearly all moni-
tored behaviors are poor predictors of failure. We propose an adap-
tive monitoring strategy that mitigates the overhead associated with
monitoring poor failure predictors. We begin by monitoring a small
portion of the program, then automatically refine instrumentation
over time to zero in on bugs. We formulate this approach as a search
on the control-dependence graph of the program. We present and
evaluate various heuristics that can be used for this search. We also
discuss the construction of a binary instrumentor for incorporating
the feedback loop into post-deployment monitoring. Performance
measurements show that adaptive bug isolation yields an average
performance overhead of 1% for a class of large applications, as
opposed to 87% for realistic sampling-based instrumentation and
300% for complete binary instrumentation.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
statistical methods; D.2.5 [Software Engineering]: Testing and
Debugging—debugging aids; distributed debugging; monitors; trac-
ing; I.2.8 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—graph and tree search strategies; heuristic meth-
ods; plan execution, formation, and generation

General Terms
Experimentation, Measurement, Performance, Reliability
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1. INTRODUCTION
In an imperfect world with imperfect software, debugging does

not end the day software is released. Statistical debugging tech-
niques monitor run-time behavior to identify causes of crashes
in end-user executions. Lightweight instrumentation [26] allows
non-intrusive post-deployment monitoring, while statistical models
[1, 17, 18, 26–28, 45] identify profiled events that strongly predict
crashes or other failures. Yet most programs mostly work: nearly
all code in any given application is not relevant for any given bug.
Broad-spectrum instrumentation of many program behaviors, while
seemingly necessary to catch a wide variety of bugs, guarantees that
almost all data collected is uninteresting. In one study, fewer than 1
in 25,000 instrumented behaviors were reported as failure-predictive
[26]. Over 99.996% of each execution profile was discarded, but
only after consuming resources (CPU time, network bandwidth, stor-
age space, etc.) that could have been better-used for other purposes.

The problem with current monitoring systems is that they begin
with the worst-case assumption that nearly anything could be a clue
for a bug, and then continue monitoring events even after statistical
analyses show that most are not predictive of failure. Contrast
this with the focused debugging activity of an expert programmer.
Using feedback from a prior execution, or even just an initial hunch,
the programmer uses breakpoints and other probes near points of
failure to get more feedback about program behavior. Suspect
code is examined more closely, while irrelevant code is quickly
identified and ignored. Each iteration enriches the programmer’s
understanding until the reasons for failure are revealed.

We propose to mimic and automate this process on a large scale.
Instead of a single run, we can collect feedback from thousands or
millions of executions of the program by its users. Our technique
starts by monitoring a small set of program behaviors. Based on
analysis of feedback obtained during this stage, our technique au-
tomatically chooses other behaviors that could be causing failures
and monitors them during the next stage. Throughout this process,
statistical-analysis results are available to the programmer, who
can fix failures if enough data is available or choose to wait for
more data if the picture is unclear. Effectively, we replace sampled
measurement of all predicates with non-sampled measurement of
adaptively-selected predicates. Non-sampled instrumentation al-
lows faster adaptation by quickly gathering sufficient data where
it is most needed. Adaptive instrumentation improves upon exist-
ing approaches by prioritizing the monitoring of potentially useful
behaviors over those that are less useful, thereby conserving compu-
tational resources and bandwidth for both users and developers.



Application sizes and bandwidth limits preclude releasing new
software each time the adaptive bug-hunting system identifies new
instrumentation targets. Therefore, we use binary instrumentation
as the chief mechanism for adaptivity. Adaptation decisions are
distributed as a list of predicates that need to be enabled or dis-
abled and a binary instrumentor at the user’s machine re-instruments
the software using this list. Binary instrumentation in itself has
several advantages over source-level instrumentation. We can in-
strument any program, not just those written in languages supported
by a source-level instrumentor. We can instrument and monitor a
program even when its source code is unavailable. We can also
instrument system and third-party libraries used by the application.
Truly fixing bugs without source code is difficult, but remedia-
tion may still be possible once the causes of failure are identified
[22, 23, 32, 35, 36, 42].

Furthermore, binary instrumentation adds only a constant over-
head to the size of distributed software: the size of one generic binary
instrumentor, usable for all monitored software in a machine. This
improves on static sampling schemes whose fast- and slow- path
code variants roughly double the size of executables [26], thereby
increasing costs for packaging or network distribution.

The remainder of this paper is organized as follows. Section 2 re-
views the static (non-adaptive) instrumentation model used in prior
work as well as related work in the HOLMES project. Section 3
describes our binary instrumentor and several optimizations devel-
oped to reduce the overhead of monitoring. Section 4 describes our
Adaptive Bug Isolation technique and Section 5 presents the results
of experimental evaluations of this technique. Section 6 discusses
related work and Section 7 concludes.

2. BACKGROUND
Before presenting our adaptive approach, we review basic con-

cepts and terminology used in previous work on statistical debug-
ging, including the recent HOLMES [7] project that uses coarse-
grained adaptivity. We use a behavioral model based on that of the
Cooperative Bug Isolation Project (CBI) of Liblit [24, 25].

2.1 Terminology
The decision of what to monitor is critical, as later analysis can

only find bug clues among the data it is given. We follow the sites-
and-predicates approach commonly used in prior work [1, 17, 26–28,
45]. An instrumentation site is a single program location at which
the state of the running program will be inspected. Instrumentation
sites are selected automatically based on syntactic features of the
code. For example, one might associate one instrumentation site
with each function call, or each assignment, or each conditional
branch. Instrumentation sites may be both incomplete and mutually
redundant with respect to possible program behavior; they are not a
perfect execution trace, but rather are a wide net intended to catch
useful clues for a broad variety of bugs.

Each site is decomposed into a small collection of instrumen-
tation predicates which partition the state space at that site. At a
branch instrumentation site, we distinguish between executions that
continue along the true versus the false branch. Thus, a branch site
decomposes into two predicates. A function return instrumenta-
tion site resides in the caller just after the called function returns.
Each function return site decomposes the state space into three sub-
spaces, corresponding to three predicates, depending on whether
the returned value is negative, zero, or positive. This partition is
especially well-matched to C programs, as the sign of a returned
value often indicates success or failure of an operation.

For reasons of privacy, and to limit the sizes of execution pro-
files, prior work avoids reporting predicates as a linear stream of

events. Instead, predicates are counted: one counter per predicate,
incremented when that predicate is observed to be true. Because
each site’s predicates partition the space of possibilities at that site,
each observation of one instrumentation site increments exactly one
predicate counter. Thus, the sum of all predicate counters at a site
gives the overall coverage of the site.

Liblit et al. [26] argue that one should not even collect complete
predicate counts. Instead, they offer a sampling scheme based on
a static source-to-source transformation applied at compile time.
This technique, derived from that of Arnold and Ryder [2], creates
instrumentation that yields a sparse but fair random subset of the
complete counts. Sampling rates of 1/100 to 1/1,000 are typical. This
helps preserve privacy and also improves performance in some but
not all cases [24]. In exchange, static code size approximately
doubles and data analysis becomes more difficult to cope with the
fact that 99% or more of requested data is missing. Our adaptive
approach eschews sampling in favor of complete measurement of a
more selective subset of all possible instrumentation.

A feedback report in the sites-and-predicates model consists of a
vector of all predicate counts plus a single outcome label marking
this run as good (successful) or bad (failed). In the simplest case,
failure can be defined as crashing, and success as not crashing. More
refined labeling strategies are easily accommodated, as subsequent
analysis stages do not care how the success/failure distinction was
made. In particular, failure analysis does not use stack traces, and
therefore can be applied to non-crashing bugs.

2.2 Holmes
The HOLMES project by Chilimbi et al. [7] makes two orthogonal

contributions to statistical debugging. The first is a new predicate
scheme that counts the number of times each path is taken in an
acyclic region. The second is a form of adaptive predicate selection
at the granularity of functions. Based on partial feedback data,
weak predictors are selected, and functions close to them in the
program-dependence graph are chosen. Predicates in these functions
are instrumented during the next iteration. Here, we propose and
evaluate a heuristic search at a much finer granularity. HOLMES
also strengthens weak predictors by selecting path predicates in
functions containing weak branch predicates. This strengthening is
orthogonal to the heuristic searches proposed here or in HOLMES.
We present a more detailed comparison with HOLMES in Section 5.

3. BINARY INSTRUMENTATION
Here we discuss the construction of a binary instrumentor that

allows incorporating a feedback loop into post-deployment monitor-
ing. We use the Dyninst [5] instrumentation framework, that allows
many optimizations that are difficult, and in some cases impossible,
to achieve in other tools. This section discusses those optimizations
in detail. Unfortunately, even with these optimizations, overheads
are too large for deployment to end users (see Section 3.3). This
motivates using an adaptive approach, discussed in Section 4, to
achieve truly lightweight monitoring.

3.1 Static Removal of Instrumentation
Branch predicate counts are equivalent to the edge profiles of

an execution. We use static program structure to avoid redundant
operations using approaches similar to those of Ball and Larus [4]
or Tikir and Hollingsworth [41]. However CBI collects more than
just edge profiles. Coverage of any predicate, such as a function
return predicate, implies coverage of the basic block in which that
predicate is defined. This in turn implies coverage of the edges
leading to that block from all of its control-dependence ancestors.

Figure 1 shows an example control-flow graph (CFG) and the
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(b) Control-dependence graph

Figure 1: Example graphs for static removal of branch pred-
icates. True and false edges of branches are labeled T and F
respectively.

corresponding control-dependence graph (CDG). The additional Ri
nodes in the CDG are region nodes that group nodes with identical
control conditions. For example, nodes b2 and b3 execute if and
only if the condition at b1 is true.

Ordinarily, a branch instrumentation site at b1 would place one
predicate counter along the edge from b1 to b2 and another along
the edge from b1 to b4. If there is already any instrumentation site
s at b2 or b3, then the branch predicate count along the b1 → b2
must equal the sum of the counts of the predicates at s. Thus,
the b1 → b2 edge need not be instrumented and its missing edge
profile can be computed offline. In general, we define a branch
predicate as redundant if its count can be inferred offline by a
post-mortem analysis of the execution profile. Consider a potential
branch predicate p along the edge from some block u to a successor
block v. Predicate p is redundant if u dominates v and at least
one instrumentation site s is defined in v or any other basic block
which is control-equivalent to v. The first condition ensures that
the entire control-dependence region [10] corresponding to v is
executed if and only if the edge from u to v is traversed. The second
condition ensures that every execution of the control-dependence
region containing v will be reflected in one of the predicates from
site s. Under these conditions, instrumentation for branch predicate
p can be omitted. The count for p can be derived offline by summing
all predicates at site s.

3.2 Binarization and Dynamic Removal
While some statistical debugging models use exact values of

predicate counts [1, 17, 28, 45], others require only binarized data:
they consider only whether a predicate was true at least once, but
make no further distinctions among nonzero counts [18, 27]. If a
binarized model is to be used, then predicate “counters” are merely
flags. Instrumentation code can just store a 1, which takes one
memory operation, instead of incrementing a counter, which takes
one arithmetic and two memory operations.

Furthermore, when using binarized data, there is no benefit from
additional observations of a predicate that has already been observed
true once. Therefore, a predicate’s instrumentation code may be
removed from the target once it has triggered [6, 31, 41]. Dynamic
instrumentation removal is especially well suited for branch instru-
mentation, as each branch predicate adds code on a distinct edge
and therefore each branch predicate can be removed independently.

3.3 Performance Impact
Instrumentation must have extremely low overhead if we are to

collect feedback data from members of the general public. Exper-

iments with a small, CPU-intensive benchmark show that naïve
binary instrumentation does not achieve this goal.

We use the SPEC 099.go benchmark, compiled with gcc 4.1.2,
instrumented using a beta version of the Dyninst 6.0 release and
run on an otherwise idle dual-core 3.2 GHz Pentium CPU. We
use one small (2stone9) and two large (5stone21 and 9stone21)
benchmark workloads. All measurements reported are averages
across five repeated trials. Execution time excludes instrumentor
start-up costs and reflects only time spent running the instrumented
code. Start-up costs can be amortized over several runs using the new
binary rewriting feature in Dyninst. We instrument all branches and
function returns in the main executable but not in shared libraries.

The unmodified go executable completes the small workload in
0.4 seconds, and the two large workloads in 21.7 and 21.6 seconds
respectively. Naïve Dyninst instrumentation slows execution by a
factor of 5.8 times for the small workload and 5.5 times for the large
workloads. Adding static branch instrumentation removal, binarized
counts, and dynamic branch instrumentation removal increases this
relative slowdown to 8.9 for the small workload, but shrinks it to 1.8
for the large workloads: the benchmark’s small code footprint means
that dynamic branch instrumentation removal is more beneficial for
longer-running tasks. While 1.8 is better than 5.5, this is still too
slow. Users will not accept a 1.8× slowdown in daily use.

We also consider three non-Dyninst-based approaches: Pin, Val-
grind and sampler-cc. Pin and Valgrind are dynamic binary instru-
mentors that use just-in-time (JIT) disassembly and recompilation,
as contrasted with Dyninst’s code-patching approach. Our custom
Pin instrumentor built using Pin version 2.6 has slowdowns between
4.3 and 5.0. Our custom Valgrind instrumentor built using Valgrind
version 3.2.1 performs similarly to lightly-optimized Dyninst, with
slowdowns between 7.0 and 10.2. However, many of the more
aggressive optimization strategies would not be practical to apply
under a JIT execution model. Moreover, JIT code patching imposes
a baseline overhead to load and execute instructions even when no
instrumentation is performed. This limit cannot be improved with
any static or dynamic optimization. For Pin, this overhead comes
to about 1.9, which is higher than highly optimized Dyninst instru-
mentation. For this reason, we evaluate our adaptive techniques in
the next section using Dyninst. sampler-cc is the CBI instrumenting
compiler developed by Liblit et al. [26]. sampler-cc instrumentation
is highly optimized but is completely fixed at compile time. We ran
the instrumented benchmark using the sparsest possible sampling
rate, which should give the best performance, and found relative
slowdowns of 1.4 across all workloads.

While sampler-cc’s static approach is the fastest considered here,
we are not willing to give up the benefits of dynamic instrumenta-
tion while simultaneously imposing a 40% slowdown on end users.
The adaptive techniques described in the next section dramatically
reduce instrumentation overheads while simultaneously avoiding
the drawbacks of static instrumentation.

4. ADAPTIVE INSTRUMENTATION
A bug predictor is any instrumented predicate which is predictive

of failure. Numerous statistical debugging techniques have been
proposed to find the tiny fraction of predicates that are good bug
predictors [1, 17, 18, 26–28, 43, 45]. All assume that instrumenta-
tion sites are selected once remain fixed thereafter. The adaptive
approach detailed in this section eliminates fixed monitoring plans.
Instead, sites are speculatively added to the instrumentation plan if it
appears that they may be good bug predictors and are removed from
the monitoring plan once their bug-predictive ability (or inability)
has been assessed. Our algorithm exploits the principle of locality:
if a predicate is highly predictive of failure, then predicates in its



Procedure 1 Pseudo code for Adaptive Analysis

1: monitored = /0
2: explored = /0
3: plan = GetInitialSet()
4: while debugging do
5: Instrument and monitor sites in plan
6: WaitForSufficientData()
7: monitored = monitored∪plan
8: best = branch predicate with highest score in

monitored\ explored
9: explored = explored∪{best}

10: plan = Vicinity(best)\monitored
11: end while

vicinity are potentially good bug predictors as well. The essence
of our technique is to adaptively adjust the instrumentation plan by
locating a predicate that is highly predictive of failure and extending
the plan to include nearby sites.

Procedure 1 defines this iterative algorithm. It is parameterized
by four sub-procedures: GetInitialSet, WaitForSufficientData, score
and Vicinity — that are described more fully later. monitored is the
set of sites for which feedback information is available from previous
iterations. explored is the set of branch predicates that have received
the highest score in the previous iteration; these are predicates whose
nearby vicinity has already been explored. plan is the set of sites that
are being monitored during the current iteration. best is the branch
predicate which receives the highest score in the current iteration.
At startup, the analysis chooses the set of sites to be monitored by
calling GetInitialSet. The set of sites is monitored until the function
WaitForSufficientData returns, indicating that enough feedback has
been collected for meaningful analysis to be applied. Using this
feedback, and feedback from earlier phases (if any), the best branch
predicate which was not already explored is identified. The plan
for the next iteration is to monitor previously unmonitored sites in
the vicinity of this best predicate as defined by the function Vicinity.
The sets monitored and explored are updated during each phase.

Our choice of algorithms for the sub-procedures GetInitialSet
and Vicinity determines whether the analysis in Procedure 1 is a
forward (Section 4.1) or backward (Section 4.2) analysis. The score
function assigns numeric values to every predicate; a higher value is
assigned to a predicate that is a better bug-predictor. We describe the
scoring functions that we explored in this paper in Section 4.3 and
experimentally evaluate them in Section 5. Some scoring heuristics
developed for non-adaptive instrumentation are designed to compute
the inherent bug-predictivity of a predicate and prevent the buggi-
ness of nearby predicates from skewing the measure for this score.
Such metrics are less suitable for our adaptive algorithm, as they sub-
vert the locality principle on which it relies. WaitForSufficientData
assesses whether sufficient data has been collected. While not the
main focus of this work, we briefly discuss this issue in Section 4.4.
Section 4.5 mentions some alternative design choices.

4.1 Forward Analysis of the Program
The general pattern in forward-adaptive bug isolation is to start at

the beginning of the program and iteratively work forward toward
the root causes of bugs. Consider the control-flow graph in Figure 1a.
Suppose the branch predicate associated with the true result of the
condition at b1 is found as the best predicate according to the score
function. This means that whenever the edge b1→ b2 is traversed,
the program is likely to fail. This indicates that there might be some
bug in the basic blocks b2, b3, b5 and b6 and predicates in these
blocks may be even better at predicting the bug. However, we do not

have enough evidence to believe that b5 and b6 have good failure
predictors. It could be the case that the bug is in b5 and hence none
of the predictors in b6 predict failure. It is also possible that the bug
is in b6 and the predicates in b5 are not relevant. Which of the two
cases is true will be known when we have information about the
branch site at b2. We can defer monitoring sites in b5 and b6 until
we have that information.

On the other hand, we have enough reason to believe that good
predictors will be found in b2 and b3 because the collected data
shows that these blocks are executed in many failed runs. In general,
the choice of b2 and b3 translates to choosing the children in the
control-dependence graph. Thus, if the best predicate is associated
with the branch at basic block b being true (respectively, false), then
we are interested in the basic blocks that are control dependent on
b with the true (respectively, false) control condition. Therefore
Vicinity(best) returns the sites in these basic blocks. Function calls
are handled automatically by using an interprocedural CDG. To
fit with the notion of searching forward in the CDG, GetInitialSet
returns the sites in basic blocks control dependent on the entry node
of the CDG.

4.2 Backward Analysis of the Program
If a program fails by crashing, then a stack trace of the program

when it crashed may be available. Based on the folk wisdom that the
bug is likely to be somewhere near the point of the crash, exploring
the predicates near the crash point may find good bug predictors
faster than a forward analysis. To illustrate backward analysis, once
again consider the CFG in Figure 1a. Suppose the program crashes
in block b3. Now consider the branch site at b1, which is b3’s control
ancestor. This site is the last point where execution of b3 could have
been skipped and hence the crash averted. So, b1 is a good candidate
bug predictor and we monitor it and measure its score.

Suppose the programmer looks at the new feedback and has no
idea why a predicate at b1 could be causing the crash. There are two
possible reasons:

case I: The bug may actually be in basic block b2, b5, or b6. The
predicate at b1 may have a high score simply because it
governs execution of these blocks.

case II: The branch predicate at b1 may have a high score because
the problem happens before the program reaches b1. Thus,
the program will fail irrespective of the outcome of this
branch.

In case I, predicates in b2, b5 and b6 are potential bug predictors.
Using the same reasoning used during forward analysis, we only
monitor b2 and delay monitoring of b5 and b6 until there is informa-
tion about the branch predicates in b2. In case II, we could explore
further backwards in the CDG by considering b1’s control ancestor
(assuming that Figure 1a shows just a fragment of a larger program).
Since there is no way to decide whether the root cause is before
the execution of b1 or after it, we take a conservative approach and
include sites suggested by both cases I and II in the monitoring plan
for the next iteration.

To summarize, for backward analysis, GetInitialSet returns the
branch site in the control ancestor of each basic block in which a
crash occurs. Vicinity(best) returns sites in the control ancestors and
control descendants having the appropriate control condition of the
basic block in which the predicate best is defined.

4.3 Scoring Heuristics
In this section, we consider possible definitions for score as used

in Procedure 1. All possibilities considered are heuristics in that



one could contrive situations in which they perform badly. Our goal
is to identify scoring heuristics that perform well on a variety of
programs in realistic situations.

The data collection model of Liblit et al. [27] aggregates the
data collected for a predicate p into four values: S(p) and F(p)
are respectively the number of successful and failed runs in which
p was observed to be true at least once. S(p obs) and F(p obs)
are respectively the number of successful and failed runs in which
p was observed at least once regardless of whether it was true or
not. The later two values correspond to the coverage of the site
containing p and can be computed offline by examining the counts
of all predicates (including p) at that site. Besides these four values,
there is another global value: NumF, the total number of runs that
were labeled as failures. All heuristics described in this section are
computed using these values.

Failure Counts The first heuristic scores a predicate p accord-
ing to the number of failing runs in which p was observed to be true:
FailCount(p)≡ F(p). Any region of code that is executed during
many failed runs is potentially buggy. FailCount(p) may not be a
good measure of bug predictability because it does not distinguish
between two predicates which are true in different numbers of suc-
cesses but same number of failures. However, a predicate seen in
many successful and failing runs may capture some property of the
program other than its outcome, such as differing usage scenarios
[45].

Importance Liblit et al. [27] argue that a good bug predictor
should be true in few successful runs and should also have a sig-
nificant effect on the outcome on the program. This is captured by
the Increase metric that measures how much more likely failure is
specifically when p is true versus simply reaching the site containing
p at all. Formally,

Increase(p)≡ F(p)
S(p)+F(p)

− F(p obs)
S(p obs)+F(p obs)

The failure count at p is not completely discarded. In information
retrieval terms, FailCount(p) measures sensitivity or recall, while
Increase(p) measures specificity or precision. Liblit et al. [27]
balance the two by scoring candidate predicates by the harmonic
mean of normalized F(p) and Increase(p) as follows:

Importance(p)≡ 2
1

Increase(p) + 1
log(F(p))/ log(NumF)

Liblit et al. found Importance(p) as a good measure of failure
predictivity. Here, we consider it as a candidate adaptive-scoring
heuristic.

Maximum Importance During initial experiments, we found
that Importance as a scoring heuristic often leads to sub-optimal
adaptation decisions. For example, consider a branch condition
that is always true and the associated branch predicate p. Since
the branch is always taken, F(p obs) = F(p) and S(p obs) = S(p).
Thus Increase(p) and consequently Importance(p) are both 0. Even
if F(p) is very large, a branch predicate p′ with marginally positive
values for Increase(p′) but very low F(p′) will be given preference
over p. This is not a problem with the Importance heuristic because,
as mentioned earlier, there can be situations where the heuristics
make choices that go against the principle of locality. If the itera-
tive ranking and elimination algorithm of Liblit et al. [27] is used,
where the goal is to find predicates with high Importance scores,
we can construct a heuristic that maximizes the Importance score
of predicates in Vicinity(p) rather than the Importance of p itself.

Predicates in Vicinity(p) have not already been monitored, so we
cannot predict the exact maximum score among predicates in that set.
Instead, we compute an upper bound by considering a hypothetical

predicate h that has the best possible score. Such a predicate must
be true in all the failing runs in which it is observed and false in all
the successful runs in which it is observed, i.e. F(h) = F(h obs) and
S(h) = 0. When a forward analysis is used, h will appear in a basic
block that is control dependent on the edge associated with p and
hence h will be observed only when p is true, so F(h obs) = F(p)
and S(h obs) = S(p). Thus,

Increase(h) =
F(h)

S(h)+F(h)
− F(h obs)

S(h obs)+F(h obs)

= 1− F(p)
S(p)+F(p)

We set MaxImportance(p)≡ Importance(h) to favor predicates that
have the potential to reveal new predicates with high Importance.

Student’s t-Test The next heuristic, TTest(p), uses a statistical
test called the Student’s t-test [21]. Given two samples, this test
uses the mean, standard deviation and the size of the two samples
to assign a numeric confidence in the range [0,1] to the hypothesis
that the means of the distributions underlying the two samples differ.
We can apply the t-test on the two sample sets we have about a
predicate p: the observations of p in successful and failing runs.
Let c be the confidence assigned by the t-test for the hypothesis
that the truth value of a predicate p differs significantly between
successful and failing runs. During a forward analysis, if p is seen
in a larger percentage of failures than successes, then the predicates
in Vicinity(p) are also observed in a larger percentage of failures
than successes and the heuristic should give preference to p. On
the other hand, if p is seen in a larger percentage of successes
than failures, then the predicates in Vicinity(p) should have lower
preference. TTest(p) computes the t-test confidence metric c and
assigns a score of c to p in the former case and a score of −c to p
in the latter case. Since the information about p does not impose
any useful restrictions on the coverage of the ancestor of the node
associated with p in the CDG, both MaxImportance and TTest do
not have a sensible interpretation for backward analysis.

Student’s t-test is a parametric test and assumes that the samples
are normally distributed. We also evaluated a non-parametric test,
the Mann–Whitney U-test [29], which is less powerful but does not
assume normal distribution. The U-test always performed worse or
only as good as the t-test indicating that the normality assumption is
acceptable. Therefore, we give the U-test no further consideration.

Other Heuristics To evaluate the usefulness of our techniques,
we also define three other heuristics. To assess whether search
heuristics are useful at all, we consider BFS, a naïve breadth-first
search on the CDG. Random is a strawman heuristic that selects
a “best” predicate at random on each iteration. Lastly, an Oracle
heuristic helps to measure how well any search heuristic could
possibly do; we discuss Oracle further in Section 5.2.

4.4 Waiting For Sufficient Data
Most statistical analyses have the ability to associate a confidence

value with their output. A typical confidence measure would be
a probability, between 0 and 1, that an observed trend is genuine
rather than merely coincidental. Given such information, we can
wait until the analysis is able to compute its output with sufficiently
high confidence (for example, with probability greater than 0.95). In
general, this decision involves a compromise between the speed and
accuracy of debugging. Collecting more reports improves accuracy
but may take longer to produce interesting results, while collecting
fewer reports has opposite trade-offs. Moreover, user behavior
might change across iterations and more reports will be needed to
accomadate such instability. As mentioned earlier, this issue is not
the main focus of this paper. Section 5 explains a simple approach



Table 1: Programs used for experimental evaluation

Program Variants LOC Sites Test Cases

bash 1 59,846 17,996 1,061
bc 1 14,288 1,799 10,000
ccrypt 1 5,276 757 10,000
exif 1 10,588 2,631 10,000
flex 47 14,705 2,538 567
gcc 1 222,196 56,850 892
grep 17 14,659 2,666 809
gzip 9 7,266 1,406 217
Siemens 7 to 41 173 to 563 94 to 184 1,052 to 5,542
space 38 9,126 1,673 13,585

that we use for our experimental evaluation.
Note that the definitions of GetInitialSet and Vicinity, as given

in either Section 4.1 or Section 4.2, have an important complete-
ness property. With either approach, starting with GetInitialSet
and repeatedly expanding the search using Vicinity will eventually
instrument every site that is reachable from the program’s entry
point. This property is important because the principle of locality is
not a guarantee: a good predicate may appear in code where other
predicates have low scores. The completeness property ensures
that adaptive bug isolation can recover from wrong turns. In the
worst case, it will still provide the same information as exhaustive
(non-adaptive) instrumentation; it may just take longer to get there.

4.5 Design Alternatives
As proposed here, adaptive instrumentation is a heuristic search

through the control-dependence graph, and the principle of local-
ity is assumed to apply to predicates that are close in this graph.
However, the effects of bad code can also propagate through data
rather than through control flow. Thus, it may be desirable to con-
sider data-dependence relations as well. This can be done by using
the program-dependence graph (PDG) [14] instead of the control-
dependence graph. Balakrishnan et al. [3] have demonstrated PDG
construction for unannotated binaries, but the infrastructure to do
this is not yet generally available.

Instead of constructing an interprocedural CDG, one could ini-
tially treat calls as opaque and only instrument callee bodies if the
results they return are highly predictive of failure. However, this
incorrectly assumes that called functions are pure, with no effects
other than the values they return. This clearly is not true for C.
Thus, a completely modular, function-by-function search is not
appropriate in the general case.

Procedure 1 describes an automated search which can proceed
without human intervention. But the general framework is flexible
and can be manually overridden if and when needed. For exam-
ple, the programmer can override GetInitialSet to directly debug
modules that are known to be buggy from prior experience or in-
house testing. Similarly, an experienced programmer can look at
already-monitored sites and specify her own plan based on domain
knowledge, whether to test a hypothesis or simply chase down a
hunch. The set of monitored sites can be actively modified to bal-
ance aggressive exploration against user-tolerable overhead.

5. EVALUATION
Prior work [1, 7, 17, 26–28, 45] has shown qualitatively and

quantitatively that statistical debugging is effective. In this section,
we evaluate the main contribution of this paper, which is the use of
adaptive binary instrumentation to further reduce performance over-
heads. Our evaluation uses the faulty programs of the Siemens suite
[16]; the bash, flex, grep, gzip and space bug benchmarks

[40]; and gcc 2.95.3 [11]. We also evaluated bc 1.06, ccrypt 1.2
and exif 0.6.9, each of which has known fatal bugs [27]. Some
test subjects have multiple variants, each exhibiting a different bug.
Table 1 lists our test programs, the number of variants, size in lines
of code and number of instrumentation sites, and the size of the test
suite used. All test programs except Siemens programs are realistic
applications with several thousand lines of code (KLOC). bash and
gcc are the largest, with greater than 50 KLOC.

Bugs in some test subjects cause incorrect output rather than
crashes. A test case is labeled as a success or failure by comparing
the output of the buggy program to that of a bug-free reference
version. Our statistical methods are applicable irrespective of the
labeling strategy used. For the purposes of backward analysis, the
failure point is defined as the statement in the program that prints
the first incorrect byte in the output. We find this location by tracing
program output and associating each output byte with the code that
printed it [15]. Since this output tracer does not support bash, we
do not perform backward analysis for bash.

The Importance score is undefined if a variant fails in zero or one
test case. Such variants are discarded and not included in Table 1.
For the remainder, we run the adaptive analysis given in Procedure 1.
To mimic a real deployment in which no two runs are exactly alike,
we partition tests into random subsets of 500 cases each and cycle
through these for successive iterations. When using the Random
heuristic, all measures are averages across five trials.

5.1 Comparison of Heuristics
The intent of each heuristic is to guide adaptive analysis toward

high-scoring predicates. To evaluate effectiveness, Figure 2 shows
the score of the top-scoring predicate found versus the total number
of sites monitored so far. Note that Vicinity(best) in Procedure 1
may return multiple sites. When this occurs, flat horizontal segments
appear in the plots of Figure 2, reflecting a larger-than-unit jump in
the number of sites monitored. This is particularly common with
BFS, which can fan out quickly in each iteration.

In the plot for space in Figure 2a, all heuristics start by find-
ing essentially the same top score before diverging after 100 sites.
The divergence at 100 sites may look small in the plot, but it is
significant considering the large range covered by the x axis. TTest
performs best followed by Importance. FailCount lags Importance
in the early phases because it cannot distinguish predicates seen only
in failing runs from those seen always. The pathological cases for
Importance that motivated the design of MaxImportance appear to
be uncommon in space as indicated by the fairly poor performance
of MaxImportance. Wide fan-out gives BFS a stepped profile and
leads it to instrument many uninteresting sites on its way to a good
predicate. All of these outperform the Random straw man. The
heuristics behave similarly on all other applications except gzip
and flex: BFS and Random are significantly worse than the other
heuristics; TTest is the best or close to the best; the others are close
to TTest for some cases and close to BFS in the rest. For the large ap-
plications (bash and gcc), FailCount is the best heuristic but only
slightly head of TTest. We omit the curves for these applications in
interest of space. However, the plot for gzip in Figure 2b deviates
from this pattern, with BFS and other heuristics significantly outper-
forming TTest. Manual inspection shows that the top predictors are
near the top of the CDG (usually two or three levels deep). Thus,
BFS and Random are better at finding them early, while TTest gets
sidetracked by an initial wrong choice. These are ultimately heuris-
tics, and therefore can occasionally perform sub-optimally. flex
exhibits behavior similar to gzip.

Figure 3 plots the score of the top-scoring predicate found versus
the total number of sites monitored so far, for space, using the
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Figure 2: Adaptation speed for various heuristics using for-
ward analysis

Importance heuristic with backward analysis and using the TTest
heuristic with forward analysis. (Backward TTest is meaningless.)
Backward analysis begins finding good predictors much earlier
than forward analysis. After about 200 sites, exploration no longer
significantly improves scores. This affirms folk wisdom that many
bugs are close to their points of failure. The rise in the backwards
curve near 900 sites suggests that the principle of locality does not
always apply; high-scoring predicates occasionally appear in the
same locality as low-scoring predicates. Backward analysis has
the same behavior in other applications, so we omit their plots in
interest of space. For bc and exif, which have crashing bugs, the
top predictor is very close to the point of failure and is found rapidly
by backward analysis, after exploring fewer than 100 sites.

5.2 Instrumentation Selectivity
Section 1 noted that prior approaches discard over 99.996% of

instrumented predicates. To gauge our improvement against this
baseline, we measure the total instrumentation effort required for the
adaptive process to discover the same top-ranked bug predictor as a
traditional, non-adaptive method. We choose the analysis of Liblit
et al. [27] as our non-adaptive reference. For each variant, we note
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Figure 4: Mean number of sites to find top-ranked predictor.
The rightmost set of bars averages across all programs.

the top bug predictor as identified by Liblit et al., then count sites
explored before an adaptive analysis identifies this same predicate.
We compare TTest with BFS and Random to test whether a carefully-
selected heuristic can help in this task. We also consider an Oracle
heuristic that has perfect knowledge of program behavior. It always
selects the branch predicate that reaches the target predicate by
monitoring the fewest instrumentation sites.

Figure 4 plots the percentage of sites explored for each program
averaged across all variants. BFS and Random explore about 60%
of sites before finding the top predicate. TTest explores just 40%.
Oracle suggests that there is room for improvement but also estab-
lishes a lower bound of about 25% for any adaptive search that
crosses CDG edges one at a time. Adaptive analysis performs very
well in bash, bc, ccrypt, exif, and gcc, finding the top pre-
dictor while instrumenting less than 20% of sites on average.

Table 2 shows the mean number of sites instrumented during
an iteration and the mean number of iterations required to find the
top bug predictor. BFS’s wide fan-out reveals the top predictor in
fewer iterations but instruments many sites. Other forward heuristics



Table 2: Mean number of sites instrumented per iteration and mean number of iterations

Mean number of iterations to find top-ranked predictor Mean number of sites instrumented per iteration

Program FailCount Importance MaxImp TTest Random BFS BwImp FailCount Importance MaxImp TTest Random BFS BwImp

bash 181.0 314.0 316.0 545.0 766.4 12.0 - 3.9 3.4 3.2 2.8 2.6 179.2 -
bc 94.0 156.0 73.0 66.0 145.2 7.0 1.0 3.6 2.9 4.3 4.8 2.8 60.9 163.0
ccrypt 11.0 79.0 9.0 29.0 16.8 5.0 59.0 3.3 2.4 5.3 2.6 3.6 24.8 4.5
exif 73.0 99.0 70.0 33.0 186.6 16.0 22.0 1.9 2.4 1.9 3.0 2.3 24.6 2.7
flex 176.3 242.5 67.6 311.4 240.8 3.1 114.7 46.7 45.4 51.7 44.1 43.8 289.6 137.5
gcc 618.0 1227.0 662.0 645.0 863.3 10.0 1500.0 3.8 3.2 3.7 4.2 3.8 517.2 12.0
grep 180.2 388.2 107.5 299.2 546.3 10.6 190.2 5.8 6.1 6.3 5.9 5.1 110.4 9.7
gzip 57.7 42.6 50.8 127.8 84.3 3.1 87.6 5.5 10.1 6.5 9.8 6.5 105.3 10.6
Siemens 19.7 25.6 20.7 18.6 30.6 7.7 21.2 3.2 3.1 3.1 3.2 2.9 9.9 3.5
space 148.9 158.6 161.6 134.9 266.5 9.8 76.2 3.3 3.6 3.1 3.9 2.6 56.1 18.3

Table 3: Relative performance overheads

Sampling Adaptive

Program 1/1 1/100 1/∞ Binary TTest BFS

bash 1.320 1.259 1.138 1.868 1.129 1.161
bc 1.174 1.149 1.130 1.306 1.006 1.050
gcc 3.689 2.438 1.655 7.290 1.001 1.037
gzip 3.587 2.017 1.570 3.464 1.023 1.110
exif 2.045 2.002 1.315 14.035 1.164 1.227
Overall 2.363 1.773 1.362 5.592 1.065 1.117

instrument roughly the same number of sites per iteration but differ
in the number of iterations required. flex has a relatively flat CDG
due to a large number of switch statements in its input scanner. This
causes significantly many sites to be instrumented per iteration. The
best predictor for bc is very close to the point of failure and hence
backward analysis completes quickly. The number of iterations
required is in the order of tens for Siemens programs and in the
order of hundreds for large applications, which is not large for wide
deployments that generate many feedback reports.

5.3 Performance Impact
Table 2 shows that very few sites are instrumented at any time.

We might then expect lower overheads. We test this hypothesis by
measuring the mean overhead for executing the monitoring plans
suggested by the TTest and BFS heuristics. Table 3 shows measured
overheads relative to 1 for non-instrumented code. We evaluate
performance for bash, bc and exif, whose non-instrumented
programs run for approximately 0.25, 4, and 0.01 seconds respec-
tively. The test suites for other programs, being functionality tests
rather than performance tests, execute for extremely short periods
(order of a few milliseconds) and their performance cannot be reli-
ably measured. For gcc and gzip, we evaluate performance using
inputs in the SPEC benchmark suite. Non-instrumented programs
take between 0.5 and 50 seconds on these inputs. We compare
our technique against complete binary instrumentation and the sam-
pling scheme of Liblit et al. [27]. We experiment with sampling
rates of 1/∞ (the best case for sampling based instrumentation), 1/100
(suggested by Liblit et al. [26] for public deployments) and 1/1.

Adaptive instrumentation is at least an order of magnitude faster
than complete binary instrumentation and significantly faster than
all sampling variants. BFS, due to its wide fan-out, has a higher
overhead than TTest. The overhead is minuscule for bc, gcc and
gzip, where long running times amortize instrumentation costs.
Overheads for bash and exif are easily affected by measurement
noise as even a 0.01 second offset could change the overhead by at
least 4%. If these short-lived programs are excluded, the average
overhead for the remaining programs is 300% for complete binary

instrumentation, 87% for sampling at a rate of 1/100 and 1% for
adaptive instrumentation. An overhead of 1% is effectively imper-
ceptible to an end-user. Selective instrumentation, if applied by a
static instrumentor, can achieve order-of-magnitude improvements
over sampling. But enacting new plans would require distributing
executable patches: an impractically resource-intensive proposition.

5.4 Multiple Bugs
Confronted with multiple bugs, adaptive analysis might focus

exclusively on the most frequent bug, or it might split its attention
between several different, equally prevalent bugs. Neither is desir-
able. Infrequent bugs are ignored in the first case, while it takes
longer to find good predictors for any of the bugs in the second case.

We explore this issue using exif, which contains three known
bugs [27]. One bug was exhibited only once in our test suite of
10,000 runs and hence is ignored. The other two caused 228 and
180 runs to fail. Our technique finds the top bug predictor for the
first bug in about 32 iterations, after instrumenting just 100 of 2,631
predicates. The best predictor for the second bug is not found until
iteration 423, after instrumenting 817 predicates. Manual inspection
shows that many sites instrumented between iterations 32 and 423
relate to the first bug. This affirms that adaptive instrumentation can
stall in the presence of multiple bugs.

We propose a solution similar in spirit to that of Liblit et al. [27]:
failures due to other bugs can be thrown away while pursuing a
fix for a particular bug. Multiple instances of Procedure 1, each
pursuing one bug, can be active simultaneously. Deployed programs
can be randomly split to collect feedback data for these multiple
instances. This requires grouping failing runs by cause. For crashes,
one may use crash stacks or just the crashing program counter to
label failures. We label each failing run for exif based on the
failing PC and run two separate instances of Procedure 1. The best
bug predictor for the first bug is found in 41 iterations and 120
instrumentation sites. The second bug is caught after 26 iterations
and 68 sites. Thus, while Procedure 1 by itself is not designed for
multiple bugs, it can be easily modified to handle them.

5.5 Comparison with Holmes
As noted earlier, HOLMES [7] introduced two orthogonal con-

cepts: path-based instrumentation and adaptive predicate selection.
We focus our comparison only on the later. We do not consider
path predicates in this section for two reasons. First, our binary and
source instrumentors do not yet support the selective path profiling
used to efficiently implement path predicates. Second, HOLMES’s
use of path predicates is orthogonal to adaptivity, and could be added
to our system in the same manner.

In effect, HOLMES defines Vicinity at the granularity of entire
functions. HOLMES finds weak predictors instrumented in earlier
iterations, defined as predicates with Importance scores between 0.5



and 0.75. It selects functions close to these predictors in the PDG,
and instruments all predicates in these neighboring functions in the
next iteration.

Weak predictors can be quite sparse. Because HOLMES explores
only near weak predictors, this creates a risk that it can get stuck
with no new sites available to explore. In our experiments, this was
the case in 46 of the 130 Siemens experiments and 61 of the 97 larger
experiments. In 111 of the 120 experiments in which HOLMES finds
the top predictor, the sparsity of weak predictors is side-stepped
because the top predictor is so close to the point of failure that it
is instrumented in the very first iteration. While the definition of
weak predictors seems to be the impediment here, if we remove that
restriction and define Vicinity to explore near all predictors, then
HOLMES reduces to doing a breadth-first search on the call graph,
which is a coarser version of the BFS heuristic evaluated earlier. Our
approach cannot get stuck, as noted in Section 4.4.

Exploring at the granularity of functions is even coarser than
BFS. Hence, more sites will be instrumented per iteration, imposing
more overhead, but requiring fewer iterations. Our approach is more
flexible, allowing trade-offs between overhead and the number of
iterations. We do not present a direct performance comparison be-
cause HOLMES performs only trivial (single-iteration) explorations
of all programs in Table 3.

6. RELATED WORK
Renieris and Reiss [37] present a model for debugging where the

programmer does a breadth-first search on the program-dependence
graph. This model has been used in subsequent studies [8, 17,
18, 28, 45] to quantify the effectiveness of bug predictors. In this
paper, we adopt a similar model where we use a heuristic search
instead of breadth-first search. It should be noted that in earlier
papers, the model was used as an independent metric to compare
different analyses. Here, we use it for a different goal: to reduce the
monitoring overhead. Also, whereas prior search models operate on
program-dependence graphs, we search across control-dependence
edges only. This is due to the difficulty of extracting precise data-
dependence edges from binary code, although work by Balakrishnan
et al. [3] may permit adaptive PDG exploration in the future.

In their execution classification tool, Haran et al. [12] select pro-
gram behaviors to be monitored using weighted sampling. Like CBI,
sampling is used to reduce monitoring overhead. In the presence of
a large user community, weighted sampling can be combined with
our technique for a non-uniform assignment of instrumentation sites
to users using any of our heuristics as weights.

Several other dynamic program analysis tools alter their behavior
adaptively. The dynamic leak detector of Hauswirth and Chilimbi
[13] profiles code segments at a rate inversely proportional to their
execution frequencies. Yu et al. [44] use dynamic feedback to con-
trol the granularity of locksets and threadsets in their data race
detection algorithm. Dwyer et al. [9] make adaptive, online deci-
sions to monitor just a subset of the program events in their dynamic
finite-state property verifier. The AjaxScope platform for monitoring
client side execution of web applications [20] provides mechanisms
for specifying adaptive policies; the authors describe a performance
profiling tool using this feature.

The Paradyn project [30] uses adaptive, dynamic instrumentation
for performance profiling of large parallel programs. Roth and
Miller [39] emphasize automated, on-line diagnosis of performance
bottlenecks. Unlike Paradyn and the other online adaptive analyses
[9, 13, 20, 44] our approach uses statistical bug detection with data
being aggregated across many runs and analysis being performed
offline. Paradyn’s tools and techniques for managing and visualizing
large data streams may be useful in our domain as well.

The GAMMA project represents one of the first practical systems
for run-time monitoring of deployed software. Orso et al. [33] de-
scribe a data collection infrastructure, termed software tomography,
that supports a variety of software evolution tasks and which al-
lows post-deployment changes to data collection. However, while
GAMMA automates the distribution of data-collection tasks among
a user community, selection of those tasks is assumed to be human-
directed. We propose an automatic, heuristically-guided system
for bug-hunting that changes data-collection tasks in response to
feedback. As with Paradyn, visualization techniques developed by
the GAMMA group [19, 34] may prove useful to help programmers
understand and interpret data collected using our adaptive approach.

7. CONCLUSIONS
Post-deployment bug hunting is a search for a needle in a haystack.

Monitoring strategies that cannot respond to feedback incur large
overheads and waste considerable computational resources. We use
statistical analysis, static program structure, and binary instrumen-
tation to develop an adaptive post-deployment monitoring system.
Of several search heuristics considered, one (TTest) consistently
performs well in the forward direction while another (Importance)
shows promise when working backward from known points of fail-
ure. We find that this technique achieves the same results as an
existing statistical method while monitoring, on average, just 40%
of potential instrumentation sites in the programs we considered.
Performance measurements show that our technique imposes an av-
erage performance overhead of 1% for a class of large applications
as opposed to 87% for realistic sampling-based instrumentation.
Monitoring overheads are so small as to be nearly immeasurable,
making our adaptive approach practical for wide deployment.
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