
Statistical Debugging Using
Compound Boolean Predicates ∗

Piramanayagam Arumuga Nainar Ting Chen Jake Rosin Ben Liblit
Computer Sciences Department
University of Wisconsin–Madison

{arumuga,tchen,rosin,liblit}@cs.wisc.edu

ABSTRACT
Statistical debugging uses dynamic instrumentation and machine
learning to identify predicates on program state that are strongly
predictive of program failure. Prior approaches have only consid-
ered simple, atomic predicates such as the directions of branches
or the return values of function calls. We enrich the predicate vo-
cabulary by adding complex Boolean formulae derived from these
simple predicates. We draw upon three-valued logic, static pro-
gram structure, and statistical estimation techniques to efficiently
sift through large numbers of candidate Boolean predicate formu-
lae. We present qualitative and quantitative evidence that complex
predicates are practical, precise, and informative. Furthermore, we
demonstrate that our approach is robust in the face of incomplete
data provided by the sparse random sampling that typifies post-
deployment statistical debugging.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
statistical methods; D.2.5 [Software Engineering]: Testing and
Debugging—debugging aids, distributed debugging, monitors,
tracing; I.5.2 [Pattern Recognition]: Design Methodology—fea-
ture evaluation and selection

General Terms
Experimentation, Reliability

Keywords
statistical bug isolation, three-valued logic, debugging effort met-
rics, dynamic feedback analysis

1. INTRODUCTION
Statistical debugging improves software quality by identifying

program (mis)behaviors that are highly predictive of subsequent
program failure. As embodied in the Cooperative Bug Isolation

∗This research was supported in part by AFOSR Grant FA9550-
07-1-0210 and NSF Grant CCF-0621487.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07,July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

Project (CBI) [14], these techniques find bugs in programs by ana-
lyzing reports collected from software executing in the hands of end
users. First the CBI instrumenting compiler injects extra code that
evaluates simple Boolean expressions (calledpredicates) at vari-
ous program points. Predicates are designed to capture potentially
interesting program behaviors such as results of function calls, di-
rections of branches, or values of variables. Upon termination of an
instrumented program, a feedback report is generated that records
how often each predicate was observed, and how often each was
both observed and found to be true. Given many such feedback
reports, e.g., from a large user community, statistical debugging is
used to find predicates that are predictive of failure [13, 19]. These
predicates are then ranked and presented to the developer.

CBI gathers execution reports by using valuable CPU cycles at
end user machines. It is essential to make those cycles worthwhile
by extracting every bit of useful information from them. Instead
of considering predicates in isolation from one another as in previ-
ous work [13, 16, 19], this paper explores useful relations between
predicates. Predicates are expressions involving program variables
at different program points and hence may be related by control and
data dependences. We propose to capture these relations by build-
ingcomplex predicatesfrom the set of currently-instrumented pred-
icates (which we refer to assimple predicates). Since predicates
are Boolean expressions, they are combined using logical opera-
tors (such as conjunction and disjunction). We construct complex
predicates and include them in the input to the statistical analysis
algorithms.

There are two approaches to combine predicates using logical
operators:

1. Change the instrumenting compiler to explicitly monitor each
complex predicate at run time.

2. Estimate the value of each complex predicate from the values
of its components.

The first approach will yield a precise value but needs signifi-
cant modifications to existing infrastructure. The second approach
will be less precise (as described later) but requires only few mod-
ifications to existing infrastructure (and none to the instrumenting
compiler). In the present work, we implement the second approach,
which serves as a proof of concept for using complex predicates, as
well as a justification for incorporating them into the instrumenting
compiler in the future.

The remainder of this paper is organized as follows. Section 2 re-
views statistical debugging and motivates the present effort to find
complex failure predictors. Section 3 gives a precise definition of
complex predicates and discusses how complex predictors can be
computed efficiently. Section 4 defines two metrics to evaluate the

mailto:arumuga@cs.wisc.edu
mailto:tchen@cs.wisc.edu
mailto:rosin@cs.wisc.edu
mailto:liblit@cs.wisc.edu

usefulness of a complex predicate. Section 5 discusses two case
studies that demonstrate the usefulness of complex predicates.

Section 6 presents the results of experiments conducted on a
large suite of buggy test programs, including an assessment of the
effect of sparse random sampling on complex predicates. Sparse
random sampling is a technique used by CBI to reduce the run-
time overhead of instrumentation. Section 7 discusses related work
and Section 8 concludes and offers directions for future work.

2. BACKGROUND
CBI uses lightweight instrumentation to collect feedback reports

that contain truth values of predicates in an execution as well as the
outcome (e.g., crash or non-crash) of the execution. Large numbers
of reports are collected, then analyzed using statistical debugging
techniques. These techniques identifybug predictors: predicates
that, when true, herald failure due to a specific bug. Bug predictors
highlight areas of the code that are related to program failure and so
provide information that is useful when correcting program faults.
Feedback reports can be collected from deployed software in the
hands of end users, who may encounter bugs not identified in pro-
gram testing. CBI can therefore be used to monitor software after
its release and help direct program patches by identifying bugs as
they manifest in the field.

2.1 Finding Bug Predictors
The feedback report for a particular program execution is formed

as a bit-vector, with two bits for each predicate (observedandtrue),
and one final bit representing success or failure. If generated in ex-
perimental or testing conditions these feedback reports are likely to
be complete; when instrumented code is distributed to end users
predicates are usually sampled infrequently to reduce computa-
tional overhead. Previous experiments [12] have determined that
sampling rates of1/100 to 1/1,000are most realistic for deployed use.

Using these reports, CBI assigns a score to all available predi-
cates and identifies the single best predictor among them (see Sec-
tion 2.2). It is assumed that this predictor corresponds to one im-
portant bug, though other bugs may remain. This top predictor
is recorded, and then all feedback reports where it was true are
removed from consideration under the assumption that fixing the
corresponding bug will change the behavior of runs in which the
predictor originally appeared. The next best predictor among the
remaining reports is then identified, recorded, and removed in the
same manner. This iterative process terminates either when no un-
diagnosed failed runs remain, or when no more failure-predictive
predicates can be found.

This process of iterative elimination maps each predictor to a set
of program runs. Ideally each such set corresponds to the expres-
sion of a distinct bug; unfortunately this is not always the case.
Due to the statistical nature of the analysis, along with incomplete
feedback reports resulting from sparse sampling rates, a single bug
could be predicted by several top-ranked predicates, and predictors
for less prevalent bugs may not be found at all.

The output of the analysis is a list of predicates that had the high-
est score during each iteration of the elimination algorithm, as well
as a complete list of predicates and their scores before any elimi-
nation is performed. These lists may be used by a programmer to
identify areas of the program related to faulty behavior. Liblit et
al. employed this method to discover previously unknown bugs in
several widely-used applications [12, 13].

CBI output can also be used as input to an automated analysis
tool, such as BTRACE [11]. BTRACE finds the shortest control-
and dataflow-feasible path in the program that visits a given set
of bug predictors. This analysis allows a programmer to examine

the fault-predicting behavior even if the connection to a bug is not
easily identifiable, or if the predictors are numerous or complex
enough to overwhelm a programmer examining them directly.

2.2 Scoring Predicates
This section provides a brief overview of the numeric scores used

to identify the best predictor from a set of predicates. For a detailed
discussion on this topic, the reader should refer to Liblit et al. [13].
A good predictor should be bothsensitive(accounts for many failed
runs) andspecific(does not mis-predict failure in successful runs).
Assigning scores based on sensitivity will result insuper-bug pre-
dictors, which include failures from more than one bug. Super-bug
predictors are highly non-deterministic, since they are not specific
to any single cause of failure, and rarely provide useful debugging
information. Scoring predicates based on specificity instead results
in sub-bug predictors. A sub-bug predictor accounts for a portion
of the failures caused by a bug, but not all. Unlike super-bug pre-
dictors, sub-bug predictors that account for a significant sub-set of
failures can be useful in debugging, although perfect predictors are
of course preferred. Sensitivity and specificity are balanced using
a numericImportancescore computed as follows.

The truth values of a predicatep from all the runs can be aggre-
gated into four values:

1. S(p obs) andF(p obs), respectively the number of success-
ful and failed runs in which the value ofp was evaluated.

2. S(p) and F(p), respectively the number of successful and
failed runs in which the value ofp was evaluated and was
found to be true.

Using these values, two scores of bug relevance are calculated:

Sensitivity: log(F(p))/ log(NumF) whereNumFis the total num-
ber of failing runs. A good predictor must predict a large
number of failing runs.

Specificity: Increase(p). The amount by whichp being true in-
creases the probability of failure over simply reaching the
line wherep is defined. It is computed as follows:

Increase(p)≡ F(p)
S(p)+F(p)

− F(p obs)
S(p obs)+F(p obs)

(1)

Taking the harmonic mean combines these two scores, identify-
ing predicates that are both highly sensitive and highly specific:

Importance(p)≡ 2
1

Increase(p) + 1
log(F(p))/log(NumF)

(2)

The Importancescore is calculated for each predicate, and the
top result selected. After all runs in which the top predicate is true
are eliminated scores are recalculated for all remaining predicates
in the remaining sets of runs. This process of eliminating runs con-
tinues, as described above, until there are no remaining failed runs
or no remaining predicates.

2.3 Expected Benefits of Complex Predicates
A single predicate can be thought of as partitioning the space of

all runs into two subspaces: those satisfying the predicate and those
not. The more closely these partitions match the subspaces where
the bug is and is not expressed, the better the predicate is as a bug
predictor. If a bug has a cause which corresponds well to a simple
predicate then a simple analysis is sufficient, but analysis of more
complex bugs will produce only super- and sub-bug predictors.

A richer family of predicates can describe more complex shapes
within the space of runs. This allows good predictors for bugs with
more complicated causes. Some bugs may have causes connected
to simple predicates, but that no single predicate can accurately
predict. Complex predicates formed from these simpler ones would
be more accurate predictors than any component predicate.Partial
predictorsare predicates that predict some aspect of a bug that is
necessary, but not sufficient, for program failure. Partial predictors
and sub-bug predictors are two classes of simple predicates which
can be combined into more accurate predictors.

A partial predictor will correctly partition all (or most) expres-
sions of the bug, but would also predict the bug in a large num-
ber of runs where it did not occur. Because partial predictors are
highly non-deterministic with respect to the bug, they are likely to
be outscored by a sub- or super-bug predictor. Partial predictors
can be improved by eliminating false positives. This can be ac-
complished by taking a conjunction with a predicate that captures
another aspect of the bug. The case study presented in Section 5.1
describes a bug that is predicted best by a conjunction involving a
partial predictor.

Sub-bug predictors correctly partition some expressions of a bug,
but not all. They are useful in identifying a bug because, though
they do not predict the bug in a general sense, they are extremely
good predictors of some special case where the bug is expressed.
Combining two such predictors with a disjunction will reduce false
negatives and result in a predicate that correctly partitions more
manifestations of the bug. Combine enough special cases in this
manner and the resulting predicate will predict the bug in the gen-
eral case. It is important to note that the analysis may find a disjunc-
tion of predictors of individual bugs as a predictor for the whole set
of failures. This it is not as problematic as it seems: for such a
disjunction to be high-ranked each component predicate must be a
good predictor for a specific bug, providing useful information on
all bugs involved.

The bug predictors that result from combining simple predicates
can be conjoined or disjoined again, eliminating more false posi-
tives and false negatives to approach a perfect predictor. This pro-
cess can continue, eventually finding a good predictor for any bug
that can be expressed in terms of the simple predicates measured
during the construction of the feedback reports. Even if some as-
pect of the bug is uncovered by the simple predicates, it’s likely
that a sub-bug predictor may still be constructed. The introduction
of complex predicates to CBI analysis greatly increases the num-
ber of shapes that can be described within the set of runs, thereby
increasing the chances of finding an accurate predictor for a bug.

3. COMPLEX PREDICATES
A complex predicateC is defined asC = φ(p1, p2, . . . pk) where

p1, p2, . . . pk are simple predicates andφ is a function in conjunc-
tive normal form (CNF). EvaluatingC requires combining predi-
cates using∧ (“and”) and∨ (“or”). A negation operator is not re-
quired because, by design, the negation of every CBI predicatep is
also a predicate. ForN predicates there are 22N

such Boolean func-
tions [18]. There may be hundreds of simple predicates involved in
the analysis, and so this a prohibitively large number.

To reduce complexity we consider only functions of two pred-
icates. Out of the 16 (22

2
) such functions, we consider only con-

junction and disjunction since they are likely to be most easily un-
derstood by programmers. Our revised definition isC = φ(p1, p2)
whereφ ∈ {∨,∧}. Conjunction and disjunction are commutative,
and the reflexive cases (p1∧ p1 andp1∨ p1) are uninteresting. This

reduces the number of complex predicates to just
(N

2

)
= N(N−1)

2

binary conjunctions and an equal number of binary disjunctions.
These may be evaluated for a set ofR runs inO(|R|N2) time. The
revised definition for a complex predicate is used throughout; re-
lated definitions may be trivially extended to the general case.

3.1 Measuring Complex Predicates
For a predicatep and a runr, r(p) is true if and only ifp was

observed to be true at least once during runr. Similarly we could
definer(C) as follows:

Definition 1. For a complex predicateC = φ(p1, p2), r(C) is
true iff at some point during the execution of the program,C was
observed to be true.

The difficulty with this notion of complex predicates is thatC
must be explicitly monitored during the program execution. For
example,r(p1) = true andr(p2) = true does not imply thatp1∧
p2 is ever true at a single program point.p1 and p2 may be true
at different stages of execution but never true at the same time.
Furthermore, whenp1 andp2 appear at different source locations,
there may be no single point in time at which both are even well-
defined and therefore simultaneously observable. In order to be
able to estimate the value ofC from its components, we adapt a
less time-sensitive definition as follows:

Definition 2. For a complex predicateC = φ(p1, p2), r(C) is
true iff φ(r(p1), r(p2)) is true.

In other words, we treatr as distributive overφ , effectively re-
moving the requirement that allpi be observed simultaneously.
This can lead to false positives, becauser(C) may be computed
as true whenC is actually false at all moments in time. False nega-
tives, however, cannot arise. The impact of this assumption on the
score ofC may be either positive or negative depending on whether
r failed or succeeded.

3.2 Three-Valued Logic
This section explains how conjunctions and disjunctions are ac-

tually computed. Three-valued logic is required because the value
of a predicate in a run may not be certain. This can arise in two
situations:

1. The predicate was not observed in a run because the run did
not reach the line where it was defined.

2. The program reached the line where the predicate was de-
fined but was not observed because of sampling.

In such cases, the value of a predicatep is considered unknown.
For the analysis introduced in Section 2, it is enough to consider
whetherr(p) was true or¬true (either false or unknown). When
constructing compound predicates, however, considering the sub-
cases of¬true separately allows additional run information to be
derived. Constructing a compound predicate requires generating
two bits for each program run: whetherC was observed at least
once during runr and whetherC was observed true at least once
during runr. The case where a compound predicate is observed
but not true can only be generated by considering whether the same
was true for its components.

Consider a complex predicateC = p1∧ p2. If either r(p1) or
r(p2) was false in a runr, thenr(C) = false, since one false value
disproves a conjunction. If bothr(p1) andr(p2) were true, thenC
was observed to be true. Otherwise, the value ofr(C) is unknown.
This is shown using a three-valued truth table in Table 1a.

Similarly one true value proves a disjunction, and so a disjunc-
tion is false only if both of its components were observed false. The
truth table for the predicateD = p1∨ p2 is shown in Table 1b.

Table 1: Three-valued truth tables for complex predicates

(a) Conjunction:p1∧p2

p1�p2 T F ?
T T F ?
F F F F
? ? F ?

(b) Disjunction:p1∨ p2

p1�p2 T F ?
T T T T
F T F ?
? T ? ?

3.3 Interesting Complex Predicates
Even using the revised definition forC, the number of complex

predicates is quadratic in the number of simple predicates. A large
number of complex predicates formed by this procedure are likely
to be useless in the analysis of the program. Certainly a complex
predicate that has a lower score than one of its components is use-
less: the component (simple) predicate with a higher score is a bet-
ter predictor of failure, and so the complex predicate adds nothing
to the analysis.

Definition 3. A complex predicateC = φ(p1, p2) is “interest-
ing” iff Importance(C) > max(Importance(p1), Importance(p2))

In the case where the complex predicate has the same score as a
component predictor, the simpler one is preferable. Keeping only
interesting combinations of predicates reduces the memory burden
of storing them, and helps ensure the utility of a complex predicate
that is presented to the user.

3.4 Pruning
Constructing complex predicates from simple ones requires gen-

erating two bits of information (according to the three-valued logic
discussed in Section 3.2) for each program run. As CBI is meant
to analyze deployed software, program runs potentially number
in the hundreds of thousands, if not millions. The measure of a
predicate’s relevance to a bug is itsImportancescore (see Sec-
tion 2.2), which for complex predicates can be computed only after
the three-valued bits are generated for all the runs. Even for small
test datasets with around a thousand runs, this computation takes
around ten minutes. However, it turns out that most of these com-
plex predicates are not interesting (i.e., they have lowImportance
scores) and are not presented to the programmer. In such cases,
the effort to compute scores has been wasted. This suggests that
one should prune combinations before run information is generated
based on an estimate of their resulting scores. If this estimate falls
below the threshold required for the predicate to be presented to
the programmer, the exact score is not computed. This reduces the
complexity of constructing run information for the common case
from O(|R|) to O(1).

The thresholdImportancevalue, which complex predicates must
potentially exceed to be constructed, can be calculated in two ways:

1. Only interesting complex predicates are retained; for a com-
plex predicateφ(p1, p2) the threshold forImportance(C) is
thereforemax(Importance(p1), Importance(p2)).

2. During redundancy elimination, only the predicate with the
highest score is retained at each iteration. The threshold for
Importance(C) is therefore the highest score yet seen (in-
cluding those of simple predicates).

To simplify the formulae derived in this section, we introduce
some new terms and notations. IfR∈ {F,S} is the set of program
runs under consideration, thenR(p obs) denotes the number of runs
in which p was observed at least once.R(p) is the number of runs

in which p was observed true at least once.R(p̄) is the number
of runs in which predicatep was observed at least once but never
observed true. It is equal toR(p obs)−R(p). For some unknown
quantityx, let ↑ x and↓ x denote estimated upper and lower bounds
on the exact value ofx, respectively.

Using an upper bound as the estimate ofImportanceguarantees
that no predicate is pruned erroneously. This upper bound can be
computed by maximizingIncrease(p) and log(F(p))/log(NumF)
under constraints based on the Boolean operation.Importance(p)
(Equation 2), being a harmonic mean of these two terms, will like-
wise be maximized. From Equation 1, an increase inF(p) or
S(p obs) or a decrease inS(p) or F(p obs) will increase the value
of Increase(p). So an upper bound onIncrease(p) is

↑ Increase(p)≡ ↑ F(p)
↓ S(p)+ ↑ F(p)

− ↓ F(p obs)
↑ S(p obs)+ ↓ F(p obs)

(3)

The second component ofImportanceis log(F(p))/log(NumF).
NumFis a constant, so maximizingF(p) yields an upper bound of
this quotient. Note that↑ F(p) is also required for the upper bound
of the first term,Increase(p).

Consider a conjunctionC = p1∧ p2 and a set of runsR. From
Table 1a,C is observed true if bothp1 andp2 were observed true.
Equivalently, the set of runs in whichC was observed true is the
intersection, and thus cannot exceed the sizes, of the sets of runs in
which p1 was observed true andp2 was observed true.

↑ R(C) = min(R(p1),R(p2))

Likewise, R(C) is minimized when there is minimum overlap
between the set of runs in whichp1 was observed true andp2 was
observed true. The minimum overlap is 0 as long asR(p1)+R(p2)
does not exceed|R|, the total number of runs. Otherwise, bothp1
and p2 must be observed together in at leastR(p1)+ R(p2)− |R|
runs. Thus,

↓ R(C) = max(0,R(p1)+R(p2)−|R|)

Next considerR(C obs). C is observed when (1) bothp1 andp2
are observed true, or (2) eitherp1 or p2 is observed false. To max-
imize R(C obs), instances of both of these cases should be maxi-
mized. There aremin(R(p1),R(p2)) applications of Rule 1 when
the set of runs in whichp1 and p2 are observed true completely
overlap. There areR(p̄1)+R(p̄2) applications of Rule 2 when the
sets of runs in whichp1 andp2 are observed and never true are non-
overlapping. However, there has to be an overlap between these
cases if their sum exceeds|R|, the total number of runs. Thus,

↑ R(C obs) = min(|R|,R(p̄1)+R(p̄2)+min(R(p1),R(p2)))

Finally, to minimizeR(C obs), applications of the two rules men-
tioned above are minimized. This can happen when

1. the false observations ofp1 andp2 completely overlap, con-
tributingmax(R(p̄1),R(p̄2))) to R(C obs), and

2. the true observations ofp1 andp2 do not overlap. However,
the outcomes ofmin(R(p̄1),R(p̄2)) runs have been fixed in
the previous rule, effectively reducing the number of runs to
|R′|= |R|−min(R(p̄1),R(p̄2)). Among these runs,R(p1)+
R(p2) runs must be selected without overlap, failing which
there would be anR(p1)+R(p2)−|R′| overlap between the
two sets.

Thus,

↓ R(C obs) = max(R(p̄1),R(p̄2))+

max(0,R(p1)+R(p2)−|R′|)

Table 2: Bounds required in Equation 3 for a conjunction

Quantity Bounds forC = p1∧ p2

↑ F(C) min(F(p1),F(p2))
↓ S(C) max(0,S(p1)+S(p2)−|S|)
↑ S(C obs) min(|S|,S(p̄1)+S(p̄2)+min(S(p1),S(p2)))
↓ F(C obs) max(F(p̄1),F(p̄2))+

max(0,F(p1)+F(p2)−|F ′|)
where|F ′|= |F |−min(F(p̄1),F(p̄2))

Table 3: Bounds required in Equation 3 for a disjunction

Quantity Bounds forD = p1∨ p2

↑ F(D) min(|F |,F(p1)+F(p2))
↓ S(D) max(S(p1),S(p2))
↑ S(D obs) min(|S|,S(p1)+S(p2)+min(S(p̄1),S(p̄2)))
↓ F(D obs) max(F(p1),F(p2))+

max(0,F(p̄1)+F(p̄2)−|F ′|)
where|F ′|= |F |−min(F(p1),F(p2))

For simplicity and generality, the preceding discussion derives
the bounds for a general set of runsR. Table 2 lists the specific
bounds required in Equation 3 for conjunctions by substituting the
set of successful runsSor the set of failed runsF in place ofR. The
approach for disjunctions is similar. In interest of space, we omit
the derivation and just list the bounds for a disjunctionD = p1∨ p2
in Table 3.

As a concrete example, considerC = p1 ∧ p2. Assume that
there are 1,000 successful runs, 1,000 failed runs, and thatp1 and
p2 are observed in all runs. Furthermore, assumeF(p1) = 500,
F(p2) = 1000,S(p1) = 250 andS(p2) = 500. SubstitutingR(p̄) =
1000−R(p) and computing the bounds listed in Table 2 we get↑
F(C) = 500,↓S(C) = 0,↓F(C obs) = 1000 and↑S(C obs) = 1000.
Therefore the upper bound ofIncrease(C) is 500

500−
1000
2000 = 0.5 and

the upper bound ofImportance(C) is

2
1

0.5 + 1
log1000/ log1000

= 0.666. . . .

If the complex predicateC is generated during the iterative elimi-
nation step (see Section 2.1) and we already know a predicateC′

which scored better than 0.666, we can pruneC before computing
its exact score. The estimate ofImportance(C) computed above is
an upper-bound on the actual score ofC, making it mathematically
impossible for it to beatC′ even if fully evaluated.

All upper- and lower-bound estimates are conservative. Pruning
complex predicates using the above calculations and the appropri-
ate threshold value reduces the computational intensity of the anal-
ysis without affecting the results. The effectiveness of pruning in
practice is examined in Section 6.2.

4. USABILITY METRICS
In our experiments, we often observe hundreds of complex pred-

icates with similar or even identical high scores. The redundancy
elimination algorithm will select the top predicate randomly from
all those tied for the top score; a human programmer finding a
predicate to use in debugging is likely to make a similar choice.
Importancemeasures predictive power, so all high-scoring predi-
cates should be good bug predictors. However, even a perfect pre-
dictor may be difficult for a programmer to use when finding and
fixing a bug.

Debugging using a simple predicate is aided by understanding
the connection between the predicate and the bug it predicts. For a
complex predicate, the programmer must also understand the con-
nection between its components. Given a set of complex predicates
with similar high scores, those that can be easily understood by a
human are preferable. However, the notion of usability is hard to
quantify or measure. In this section we propose two metrics for se-
lecting understandable predicates from a large set of high-scoring
predictors. Only predicates selected by the metrics are presented to
the user. (If the data is analyzed by an automated tool it may not be
advantageous to employ these metrics.) Both metrics use criteria
unrelated to a predicate’sImportancescore, making them orthog-
onal to pruning as discussed in Section 3.4. As mentioned ear-
lier, the objective function approximated by these metrics is hard to
measure experimentally. However, we find that these metrics work
well in practice.

4.1 Effort
The first metric models the debugging effort required from the

programmer to find a direct connection between component predi-
cates. We adapt the distance metric of Cleve and Zeller [1] for this
purpose. In this metric, the score of a predicate is the fraction of
code that can be ignored while searching for the bug. We use a
similar metric calledeffort for a complex predicate.

Definition 4. The effort required by a programmer while using a
complex predicateφ(p1, p2) is inversely proportional to the smaller
fraction of code ignored in a breadth-first bidirectional search for
p1 from p2 and vice-versa.

The idea behind this metric is that the larger the distance be-
tween the two predicates, the greater the effort required to under-
stand their relationship. Also, if a large number of other branches
are seen during the search, the programmer should keep track of
these dependencies too. Per Cleve and Zeller [1], we use the pro-
gram dependence graph (PDG) to model the program rather than
the source code. We perform a breadth-first search starting fromp1
until p2 is reached and count the total number of vertices visited
during the search. The fraction of code covered is the ratio of the
number of visited vertices to the total number of PDG vertices.

4.2 Correlation
The second metric considers the correlation between the two

predicates. Two predicates may be easily reached from one an-
other without having an apparent connection; a complex predicate
formed from them would provide little help to the programmer. On
the other hand, two predicates which are both affected by some
shared area of code may have a connection which a programmer
can easily discern. The correlation between two predicates is de-
fined based on the program dependency graph. Given a single pred-
icatep, we define thepredecessor setof p as the set of vertices in
the PDG that can influencep.

Definition 5. The correlation between two predicates of a com-
plex predicate is defined as the number of vertices in the intersec-
tion of the two predecessor sets.

The idea behind this metric is that a larger intersection between
the predecessor sets means it is possible that they are closely re-
lated. We expect correlation to mitigate the issue of disjunctive
predicates raised in Section 2, namely that the disjunction of pre-
dictors for two separate bugs will be scored very highly. The pre-
dictors of two unrelated program faults are likely to reside in dif-
ferent areas of the program, and therefore the intersection of their
predecessor sets would be smaller than two related predictors for
the same bug, which are likely to be in closer proximity.

4.3 Proactive and Reactive Pruning
The above two metrics can be applied bothproactivelyandre-

actively. Proactive use of the metrics removes complex predicates
whose metric values fall below a certain threshold of usefulness.
This avoids computing their scores and hence improves perfor-
mance. Reactive use of the metrics retains all the predicates but
breaks ties by giving higher ranks to those with better values for
the metrics. This is desirable if neither computing time nor space
is a concern.

5. CASE STUDIES
This section discusses two cases where complex predicates prove

to be useful. The first study concerns a memory access bug inexif
0.6.9, an open source image manipulation program. A complex
predicate is useful in increasing the score of an extremely useful
bug predictor. The second study uses an input validation bug in
ccrypt 1.2 to explain how complex predicates can be used to
identify partial predictors automatically.

Both studies present predicates found during automated analy-
sis. It should be noted that in most cases the predicates discussed
were not top-ranked, and in fact many were removed by the re-
dundancy elimination algorithm. These predicates were manually
identified from the full list of predictors. This demonstrates the
need for techniques to effectively filter through large numbers of
complex predicates, as discussed in Section 4.

5.1 exif
exif 0.6.9 crashes while manipulating a thumbnail in a Canon

image. The bug is in functionexif_mnote_data_canon_-
load in the module handling Canon images. The following is a
snippet from said function:

for (i = 0; i < c; i++) {
...
n->count = i + 1;
...
if (o + s > buf_size) return; // (a)
...
n->entries[i].data = malloc(s); // (b)
...

}

If the conditiono + s > buf_size is true on line (a), then
the allocation of memory to the pointern->entries[i].data
on line (b) is skipped. The program crashes when other code reads
from n->entries[i].data without checking if the pointer is
valid. This is an example of a non-deterministic bug as the pro-
gram succeeds as long as the uninitialized pointer is not accessed
somewhere else.

We generated 1,000 runs of the program using input images ran-
domly selected from a set of Canon and non-Canon images. As
the bug being studied rarely manifests, this set of images was de-
signed to trigger sufficient failed executions. Each run was exe-
cuted with randomly-generated command line arguments, omitting
arguments which would have triggered two unrelated bugs. There
are 934 successful executions and 66 crashes. Applying the redun-
dancy elimination algorithm with only simple predicates produces
two predicates that account for all failed runs as shown in Table 4.
Studying the source code of the program does not show any ob-
vious relation between the two predictors and the cause of failure.
Although the second predictor is present in the crashing function, it
is a comparison between two unrelated variables: the loop iterator
i and the size of the data stored in the traversed arrays . Also it is
true in only 31 of the 66 failures.

The analysis assigns a very low score of 0.0191528 to the predi-
catep1: o + s > buf_size despite the fact that it captures the
exact source of the uninitialized pointer. Because the bug is non-
deterministic,p1 is also true in 335 runs that succeeded, making
p1 a partial predictor. Including complex predicates in the analysis
produces one complex predicate shown in Table 5. (The second
row is the second component of a complex predicate, which is a
conjunction as indicated by the keywordand at the start.) Con-
junction of p1 with the second predicatep2: offset < len
eliminates all false positives and thereby earns a very high score.
This is an example of how a conjunction can improve the score of a
partial predictor.p2 is in functionexif_data_load_data that
callsexif_mnote_data_canon_load indirectly. It is possi-
ble thatp2 is another partial predictor, capturing another condition
that drives the bug to cause a crash. If it does, it has to be a deep
relationship as we could not find such a relation even after spending
a couple of hours trying to understand the source code. However
this does not reduce the importance of this result as the conjunction
has a very high score compared top1 andp2 individually.

At the point where the uninitialized pointer is actually used, a hy-
pothetical predicatep3: n->entries[i].data == 0 ought
to be a perfect bug predictor. However, the CBI instrumenting com-
piler does not actually instrument this condition or any direct equiv-
alent. Furthermore, this assumes thatn->entries[i].data is
zero-initialized even whenexif_mnote_data_canon_load
returns early without filling in this field. Predicatep1 provides crit-
ical additional information, as it identifies the initial trigger (skip-
ping themalloc) that sets the stage for eventual failure (use of
an uninitialized pointer). Thus one role for complex predicates is
to capture those program behaviors, likep1, that are necessary but
not sufficient preconditions for failure.

5.2 ccrypt
ccrypt 1.2 contains a known bug that causes a crash whenEOF

is received at a confirmation prompt before overwriting an existing
file. EOFin other contexts does not cause failure, however, and an
examination of the source code quickly reveals why:

/ * read a yes/no response from the user * /
int prompt(void) {

...
line = xreadline(fin, cmd.name); // (a)
return (!strcmp(line, "y") ||

!strcmp(line, "yes"));
}

char * xreadline(FILE * fin, char * myname) {
...
res = fgets(buf, INITSIZE, fin);
if (res==NULL) { // (b)

free(buf);
return NULL;

}
...
return buf;

}

Calls toxreadline , the function used to get user input, can
returnNULL under some circumstances. In most cases the value
is checked before being dereferenced. Inprompt , however, it is
used immediately after the call on line (a).xreadline return-
ing NULL in prompt should thus be a perfect predictor of failure,
occurring in no successful runs and in every failure related to this
bug. The branch taken on line (b) inxreadline is important
as well, serving as the moment failure inprompt becomes in-
evitable. This branch is only taken when the user entersEOFon

Table 4: Results forexif with only simple predicates

Score Predicate Function File:Line

0.704974 new value of len== old value of len jpeg_data_load_data jpeg-data.c:224
0.395001 i== s exif_mnote_data_canon_save exif-mnote-data-canon.c:176

Table 5: Results forexif with complex predicates

Score Predicate Function File:Line

0.941385 o+s> buf_size is TRUE exif_mnote_data_canon_load exif-mnote-data-canon.c:237
andoffset< len exif_data_load_data exif-data.c:644

the command line. In mapping the cause of failure, a programmer
without a clear understanding of the code is likely to spend time
tracking the user-enteredEOFthroughxreadline to theNULL
dereference inprompt , requiring either a visual inspection of the
source or use of an interactive debugger. Knowledge of the con-
nection between program events such as these is necessary to make
good debugging decisions, e.g., adding aNULLcheck toprompt
versus ensuringxreadline always returns a valid pointer. Auto-
mated bug analysis should ideally reveal as much of this chain of
causation to the programmer as possible.

We generated 1,000 runs ofccrypt , again using randomly-
selected command line arguments. Input files include images and
text archived from the online documentation of a remote desk-
top display system. There are 658 successful executions and 342
crashes. All failing runs crash due to theNULL dereference de-
scribed above. No other bugs were visible to our test suite.

An initial analysis of only simple predicates (Table 6) findsp1:
xreadline == 0 as the top predictor of failure. It is true in all
342 failed runs and no successful runs, verifying our assumptions.
The related predicatep2: res == (char *)0 scores substan-
tially lower, appearing in all failures but a large number of suc-
cesses.p2’s reported score is low enough that without knowledge
of the nature of the bug a programmer would be likely to overlook
its significance. Additionally, because of its relationship top1, it
is removed by the redundancy elimination algorithm. More impor-
tantly, traditional CBI analysis reveals no connection between the
two predictors to the programmer, despite the fact thatp2, a neces-
sary but not sufficient condition for failure, is subordinate top1 in
predicting a crash.

When complex predicates are included in the analysis (Table 7),
a conjunction ofp1 and p2 is among the top predictors. This pro-
vides little help in finding the bug, which is easily identified by tra-
ditional CBI analysis, but it does reveal the nature ofp2 as a partial
predictor. The conjunctionp1∧ p2 is observed in more success-
ful runs thanp1 alone, but is true in the same number of successes
and failures. Thatp1 can be conjoined withp2 without affecting
p1’s predictive power demonstrates a connection between the two
predicates, in this case suggesting thatp1 =⇒ p2.

This implication is detectable because the experiment is run us-
ing complete data collection. Results taken using sparse sampling
rates would have made this detection impossible, given the likeli-
hood of p2 being unobserved in a run wherep1 was true. Addi-
tionally, it is detected in the absence of other bugs. Intuitively an
unrelated bug would cause faults in different program runs, allow-
ing the analysis to distinguish between unrelated sets of predictors,
but this was not tested.

This result provides evidence that complex predicate analysis
can automatically group related predicates in ways traditional CBI

analysis does not, including the discovery of partial, sub-bug, and
perfect predictor hierarchies and implications. Grouping related
predictors statistically provides insight into program structure and
execution features that can be used in debugging. This example
reiterates that complex predicates can collaborate with tools like
BTRACE that produce an execution trace from a set of predicates.
Cooperative Bug Isolation can therefore utilize techniques that pre-
viously required detailed execution information by generating a
facsimile from statistical data.

6. EXPERIMENTS
This section presents quantitative data about the ideas presented

in previous sections. This data was collected using the Siemens test
suite [7] as maintained by the Galileo Software-artifact Infrastruc-
ture Repository (SIR) [4, 17]. There are two configurable param-
eters for the experiments: the sampling rate and theeffort cutoff
(described in Section 4). Unless specified, the default sampling
rate is 1 (i.e., complete data collection) and the defaulteffort is 5%
(only predicates that are reachable from each other by exploring
less than 5% of the program are considered). Each Siemens ap-
plication is available in multiple variants with different bugs: as
few as 7 variants ofprint_tokens and as many as 41 variants
of tcas . We report aggregate results by averaging the relevant
measures across all variants of each Siemens application. We use
CodeSurfer to build program dependence graphs and to compute
effort and correlation metrics as described in Section 4.

6.1 Top-Scoring Predicates
Table 8 shows the number of buggy variants of each Siemens

application used in our experiments. For each of these 130 buggy
programs, we perform a statistical debugging analysis using the
iterative redundancy elimination algorithm discussed earlier, at a
sampling rate of 1. We then determine whether the top-scoring
bug predictor is a simple predicate, a complex conjunction, or a
complex disjunction. Table 8 reports how often each of these three
kinds of predictors appears with the highest score.

As can be seen, conjunctions dominate, with 86% of programs
tested selecting a conjunction as the top bug predictor. This con-
firms that complex predicates can diagnose failures more accurately
than simple predicates alone. Because each Siemens program vari-
ant has only a single bug, it is to be expected that disjunctions are
not needed as frequently. Thus, disjunctions play a smaller but sig-
nificant role, especially in the case ofschedule . Even in single-
bug programs, disjunctions can be helpful if no one simple predi-
cate perfectly aligns with the condition that causes failure.

Section 6.4 explains that the chance of observing a complex
predicate shrinks quadratically with the sampling rate. However,
conjunctions remain important even with sparse sampling. With

Table 6: Results forccrypt with only simple predicates

Score True Successes False Successes Predicate Function File:Line

0.431678 0 342 xreadline== 0 prompt traverse.c:122
0.385597 200 342 res== (char *)0 xreadline xalloc.c:43

Table 7: Results forccrypt with complex predicates

Score True Successes False Successes Predicate Function File:Line

0.72814 0 342 xreadline== 0 prompt traverse.c:12
and res== (char *)0 xreadline xalloc.c:43

Type of Top Predictor

Application Variants Simple Conj. Disj.

print_tokens 7 0 7 0
print_tokens2 10 0 10 0
replace 31 3 28 0
schedule 9 0 0 9
schedule2 9 1 8 0
tcas 41 1 40 0
tot_info 23 2 20 1

Overall 130 5% 86% 7%

Table 8: Number of buggy application variants in experiments, and
number (percentage) having a complex predicate as the top-scoring
predictor. Results are shown for complete data collection (sampling
rate 1).

1/100 sampling, 84% of the Siemens applications excludingtcas
still show a conjunction as the top-scoring predictor.tcas has
no looping or recursion and every function is called at most twice.
Thus, no simple predicate can be observed more than twice in a
singletcas run, and two-predicate conjunctions are infrequently
observed when sampling is sparse. Only 25% of thetcas experi-
ments have a complex predicate as the top predictor.

6.2 Effectiveness of Pruning
Even when restricted to binary conjunction and disjunction, com-

plex predicates could substantially increase the analysis workload
if naïvely implemented. Section 4 suggests heuristics for pruning
complex predicates that are unlikely to be useful or understand-
able to a programmer, while Section 3.4 describes how to com-
pute an upper bound on a predicate’s score. Figure 1 shows that
these measures are highly effective in practice. On average, 53%
of candidate complex predicates are discarded because theeffortas
defined in Definition 4 would require traversing more than 5% of
the application code. Computing the exact scores of the remain-
ing 47% of the complex predicates takes, on average, 9 minutes.
Pruning complex predicates whose upper bound of theImportance
scores, computed per Section 3.4, are lower than the scores of their
constituent simple predicates eliminates a further 25% of the com-
plex predicates. This pruning reduces the average time required per
analysis to 6 minutes. Only 22% of complex predicates remain to
have their exact scores computed, of which roughly a fourth (6%
of the initial pool) are retained as potentially interesting bug pre-
dictors. Thus we find that the techniques proposed earlier signifi-
cantly reduce the computational load required to identify a useful,
high-scoring subset of complex predicates. Pruning based on up-

per bound estimation can be applied more aggressively by applying
stricter thresholds. For example, during redundancy elimination,
we are only interested in a complex predicate with score larger than
the best simple predicate. Using this threshold eliminates, on aver-
age, 40% of the complex predicates, as opposed to the 25% pruned
by the moderate threshold described earlier. This analysis takes just
a minute, on average, to complete. Since these experiments have
been conducted on nodes of a heterogeneous Condor cluster [15],
the absolute timing measurements mentioned above are not precise.
But the relative improvement is still valid because, for each appli-
cation, the time taken for the different configurations (no pruning
to aggressive pruning) are measured on the same Condor node.

6.3 Effect of Effort
Figure 2 shows how the number of interesting conjunction and

disjunction predicates (Definition 3) varies at four differenteffort
levels. As expected, aseffort increases more predicates are evalu-
ated and so more interesting predicates are found.

6.4 Effect of Sampling Rate
Real deployments of CBI use sparse random sampling of simple

predicates to reduce performance overhead and protect user pri-
vacy. Prior work [12] has recommended sampling rates of1/100

to 1/1,000 to balance data quality against performance and privacy
concerns. However, a pair of independent features each observed
in 1/100 runs have only a1/10,000chance of being observed together,
raising doubts whether interesting complex predicates will be found
in sparsely sampled data. (Note, however, that certain complex
predicate values can be “observed” even if one simple component
is not, per the rules in Table 1.)

Table 9 shows the average number of interesting simple and com-
plex predicates found is each Siemens application for both com-
plete data collection (1/1) and two realistic sampling rates. Fig-
ure 3 shows the same information at additional, denser rates for
print_tokens2 . Other Siemens applications behave similarly
and are omitted for brevity.

The number of interesting disjunctions is always very low (order
of tens) compared to interesting conjunctions. At sampling rates
lower than1/10, there is a sharp drop in the number of interesting
conjunctions. This is likely due to the shrinking odds of observing
both components of a conjunction within a single run. Despite the
sharp drop, the number of interesting conjunctions is still compa-
rable to the number of interesting simple predicates even at1/1,000

sampling. This shows that interesting complex predicates can still
be found at sparse but realistic sampling rates.

A puzzling trend in Figure 3 is that all three curves rise for a brief
interval before dropping off. Other Siemens applications exhibit a
similar bump. The bumps in the conjunction and disjunction curves
could be attributed to the bump in the simple predicates curve. Any

p
r
i
n
t
_

t
o
k
e
n
s

p
r
i
n
t
_

t
o
k
e
n
s
2

r
e
p
l
a
c
e

s
c
h
e
d
u
l
e

s
c
h
e
d
u
l
e
2

t
c
a
s

t
o
t
_
i
n
f
o

O
ve

ra
ll

Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fr
ac

tio
n

of
 c

om
pl

ex
 p

re
di

ca
te

s Prune: effort > 5%
Prune: score upper bound too low
Compute exact score, but too low
Compute exact score and retain

(a) Conjunctions

p
r
i
n
t
_

t
o
k
e
n
s

p
r
i
n
t
_

t
o
k
e
n
s
2

r
e
p
l
a
c
e

s
c
h
e
d
u
l
e

s
c
h
e
d
u
l
e
2

t
c
a
s

t
o
t
_
i
n
f
o

O
ve

ra
ll

Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fr
ac

tio
n

of
 c

om
pl

ex
 p

re
di

ca
te

s Prune: effort > 5%
Prune: score upper bound too low
Compute exact score, but too low
Compute exact score and retain

(b) Disjunctions

Figure 1: Avoiding computing exact scores by pruning complex predicates. “Overall” summarizes the entire Siemens suite.

Simple Conjunctions Disjunctions

Application 1/1 1/100 1/1,000 1/1 1/100 1/1,000 1/1 1/100 1/1,000

print_tokens 1,305 837 399 231,658 44,279 8,514 2,518 8 -
print_tokens2 494 480 225 31,504 13,874 1,328 167 9 -
replace 699 431 128 23,381 4,259 196 398 2 -
schedule 239 236 10 1,486 65 - 61 - -
schedule2 273 165 43 2,232 6 0 22 - -
tcas 562 9 - 9,428 1 - 75 - -
tot_info 404 429 172 24,104 29,652 3,378 177 27 0

Table 9: Sampling rate vs. number of interesting predicates, averaged across all variants of each Siemens application. “-” marks an average
count of exactly zero, i.e., no interesting predicates in any variant.

increase in the number of interesting simple predicates is likely to
produce a greater increase in the number of interesting complex
predicates, especially because the additional simple predicates are
likely to be redundant (as explained later).

The transient increase in the number simple predicates at moder-
ate sampling rates was previously undiscovered and initially seems
counterintuitive. Closer inspection of experimental results reveals
two scenarios where this can happen.

The first scenario happens due to an ad hoc but perfectly reason-
able elimination of seemingly identical predicates. As an example,
consider the predicatesp: a == b andq: a >= b . If they have
the same score, it is useful to just retainp as it is a more stringent
condition thanq. However, this does not mean thata > b was
never true. a > b may be observed during some runs but does
not affect the outcome ofa >= b if a == b also happens to be
true in those runs. However, at sampling rates lower than 1, onlya
> b may be observed in some runs and hence the number of runs
in which p andq are observed true, and consequently their scores
may be different. Thus, the ad hoc elimination heuristic performs
less effectively at lower sampling rates, leading to an increase in
the number of interesting simple predicates

To understand the second scenario, consider a predicatep for
which S(p obs) = S(p) andF(p obs) = F(p). In other words,p

is true at least once in every run in which it is observed. From
Equation 1,Increase(p) = 0. In a run in whichp was observed, it
may also be false at least once. As we reduce the sampling rates,
only the false occurrences may be recorded in some runs and hence
the two equalities may no longer hold. As a resultIncrease(p) may
be nonzero and if it becomes positive, then a predicate that was not
interesting at higher sampling rates becomes interesting at lower
sampling rates.

7. RELATED WORK
Daikon [3] detects invariants in a program by observing multiple

program runs. Invariants are predicates generated using operators
like sum, max, etc. to combine program variables and collection
(e.g., array) objects. Daikon is intended for many uses beyond bug
isolation, and so it monitors a much larger set of predicates than
CBI. This makes scalable complex predicate generation more dif-
ficult. However, Dodoo et al. [2] have successfully extended the
work to generate implications from the simpler, measured predi-
cates. Dodoo et al. alternate clustering and invariant detection to
find invariant implications over a set of program runs. The ini-
tial clustering is performed using thek-means algorithm [8], with
program runs represented as normalized vectors of scalar variable
values. Since CBI represents run information as bit-vectors this

1% 2% 5% 10%

effort

1

10

100

1,000

10,000

100,000

1,000,000

N
um

be
r

of
 in

te
re

st
in

g
pr

ed
ic

at
es

print_tokens
print_tokens2
replace
schedule
schedule2
tcas

(a) Conjunctions

1% 2% 5% 10%

effort

1

10

100

1,000

10,000

N
um

be
r

of
 in

te
re

st
in

g
pr

ed
ic

at
es

print_tokens
print_tokens2
replace
schedule
schedule2
tcas

(b) Disjunctions

Figure 2: Variation of number of interesting predicates witheffort

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

1

10

100

1,000

10,000

100,000

N
um

be
r

of
 P

re
di

ca
te

s

Conjunctions
Simple
Disjunctions

Figure 3: Sampling rate vs. number of interesting predicates, av-
eraged across all variants ofprint_tokens2 . Other Siemens
applications are similar.

technique can be applied essentially unchanged.
Daikon’s implication generation extends its vocabulary of pos-

sible invariants. CBI’s focus is detection of bug predictors, which
under sparse sampling conditions can rarely be identified as invari-
ant. Additionally, the existence of an implication is of questionable
value in this project; the implication revealed in Section 5.2 is an
interesting and potentially useful side-effect of our analysis, but
only because it involves identified bug predictors. The approach
described in this paper is better suited to the goals and analysis
techniques of CBI. There are no known attempts to use Daikon
under sparse sampling conditions.

DIDUCE [5] detects invariant bits of program values during an
initial training phase. During the checking phase, DIDUCE reports
each invariant violation as it occurs, then relaxes the invariant to ac-
cept the new value. Unlike Daikon and CBI, DIDUCE tightly cou-
ples data collection and evaluation. Because of this coupling, nei-
ther our nor Daikon’s offline style of predicate generation is readily
combined with DIDUCE’s framework.

SOBER [16] is a statistical debugging tool similar to CBI. Where
CBI considers only whether a predicate was ever observed true dur-
ing an execution, SOBER estimates the likelihood of it being true

at any given evaluation. SOBER data is a probability vector, with
each value representing the estimated chance of a simple predicate
being true when observed. The similarity in collected data means
that similar techniques for complex predicate generation are appli-
cable. The three-valued logic described in Section 3.2 could be
replaced with joint-probability when generating conjunctions; De
Morgan’s law can be applied to generate disjunctions. Our us-
ability metrics can be used on the resulting data. There are no
known experiments using SOBER under sparse sampling condi-
tions. Complex predicate generation removes a key advantage of
SOBER: predicate scores result directly from the number of actual
predicate evaluations. Complex predicates generated by this tech-
nique are never truly evaluated, so their probability values would
have little connection to actual program execution. Whether this
would affect their usefulness is unknown.

Jones and Harrold [9] discuss a fault localization technique us-
ing statement coverage as predicates and weighted failure rate as
the scoring metric. The ideas discussed in our paper, including
the pruning techniques, can be applied directly to this technique.
Jones et al. [10] also explore visualization of program-execution
data, such as failure data. Compound predicates relate behavior at
multiple program points, and therefore may be difficult to visual-
ize. Presenting compound predicates in a way that programmers
can readily understand remains an open problem.

Haran et al. [6] analyze data from deployed software to classify
executions assuccessor failure. They use tree-based classifiers and
association rules to model “failure signals.” Tree-based classifiers
can encode both conjunctions and disjunctions whereas association
rules cannot encode disjunctions when limited to a constant size.

8. CONCLUSIONS AND FUTURE WORK
We have demonstrated that compound Boolean predicates are

useful predictors of bugs. Our experiments show qualitative and
quantitative evidence that statistical debugging techniques can be
effectively applied to complex predicates, and that the resulting
analysis provides improved results. We describe two methods of
eliminating predicate combinations from consideration, making the
task of computing complex predicates more feasible. The first em-
ploys three-valued logic to estimate set sizes and thereby estimate

the upper bound of the score of a complex predicate. The second
uses distances in program dependence graphs to quantify the pro-
grammer effort involved in understanding complex predicates.

These techniques help the statistical debugging analysis scale up
to handle the large number of candidate predicates we consider.
However, using the analysis results in debugging can require sift-
ing through a large number of less useful predicates that also pass
automated inspection. Further shrinking this list while retaining
useful predictors remains an important open problem. Most identi-
fied bug predictors redundantly describe the same small set of pro-
gram failures. Thus the bi-clustering algorithm of Zheng et al. [19]
may be promising as it was designed to handle multiple predictors
for the same bug. Automated analyses which further process pre-
dictor lists, such as BTRACE [11], may also benefit from the richer
diagnostic language offered by the work presented here.

Acknowledgments
We would like to thank Anne Mulhern for her insightful comments
on an earlier draft of this paper.

9. REFERENCES
[1] H. Cleve and A. Zeller. Locating causes of program failures.

In ICSE ’05: Proceedings of the 27th International
Conference on Software Engineering, pages 342–351, 2005.

[2] N. Dodoo, A. Donovan, L. Lin, and M. D. Ernst. Selecting
predicates for implications in program analysis, March 16,
2002. Draft.http://pag.csail.mit.edu/
~mernst/pubs/invariants-implications.ps .

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolution.IEEE Transactions on Software
Engineering, 27(2):99–123, Feb. 2001. A previous version
appeared inICSE ’99, Proceedings of the 21st International
Conference on Software Engineering, pages 213–224, Los
Angeles, CA, USA, May 19–21, 1999.

[4] G. R. H. Do, S. Elbaum. Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact.Empirical Software Engineering:
An International Journal, 10(4):405–435, 2005.

[5] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InICSE ’02:
Proceedings of the 24th International Conference on
Software Engineering, pages 291–301, New York, NY, USA,
2002. ACM Press.

[6] M. Haran, A. Karr, M. Last, A. Orso, A. A. Porter, A. Sanil,
and S. Fouché. Techniques for classifying executions of
deployed software to support software engineering tasks.
IEEE Transactions on Software Engineering, 33(5):287–304,
2007.

[7] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. InICSE ’94:
Proceedings of the 16th International Conference on

Software Engineering, pages 191–200, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

[8] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review.ACM Computing Surveys, 31(3):264–323, Sept.
1999.

[9] J. A. Jones and M. J. Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. InASE ’05:
Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pages 273–282, New
York, NY, USA, 2005. ACM Press.

[10] J. A. Jones, A. Orso, and M. J. Harrold. GAMMATELLA:
visualizing program-execution data for deployed software.
Information Visualization, 3(3):173–188, 2004.

[11] A. Lal, J. Lim, M. Polishchuk, and B. Liblit. Path
optimization in programs and its application to debugging. In
P. Sestoft, editor,15th European Symposium on
Programming, pages 246–263, Vienna, Austria, Mar. 2006.
Springer.

[12] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. InPLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages
141–154, New York, NY, USA, 2003. ACM Press.

[13] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. InPLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 15–26, New
York, NY, USA, 2005. ACM Press.

[14] B. R. Liblit. Cooperative Bug Isolation. PhD thesis,
University of California, Berkeley, Dec. 2004.

[15] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of
idle workstations. InProceedings of the 8th International
Conference of Distributed Computing Systems, pages
104–111, June 1988.

[16] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. SOBER:
Statistical model-based bug localization. InESEC/FSE-13:
Proceedings of the 10th European Software Engineering
Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 286–295, New York, NY, USA, 2005.
ACM Press.

[17] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do.
Software-artifact intrastructure repository.
http://sir.unl.edu/portal/ , Sept. 2006.

[18] E. W. Weisstein. Boolean function.MathWorld–A Wolfram
Web Resource, Dec.20 2006.http://mathworld.
wolfram.com/BooleanFunction.html .

[19] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken.
Statistical debugging: simultaneous identification of multiple
bugs. InICML ’06: Proceedings of the 23rd international
conference on Machine learning, pages 1105–1112, New
York, NY, USA, 2006. ACM Press.

http://pag.csail.mit.edu/~mernst/pubs/invariants-implications.ps
http://pag.csail.mit.edu/~mernst/pubs/invariants-implications.ps
http://sir.unl.edu/portal/
http://mathworld.wolfram.com/BooleanFunction.html
http://mathworld.wolfram.com/BooleanFunction.html

	Introduction
	Background
	Finding Bug Predictors
	Scoring Predicates
	Expected Benefits of Complex Predicates

	Complex Predicates
	Measuring Complex Predicates
	Three-Valued Logic
	Interesting Complex Predicates
	Pruning

	Usability Metrics
	Effort
	Correlation
	Proactive and Reactive Pruning

	Case Studies
	exif
	ccrypt

	Experiments
	Top-Scoring Predicates
	Effectiveness of Pruning
	Effect of Effort
	Effect of Sampling Rate

	Related Work
	Conclusions and Future Work
	References

