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Abstract—The IP Multimedia System (IMS) is an important
reference service delivery platform for next generation networks
and is considered as a de-facto standard for IP-based multimedia
communication services. In its current design, the IMS faces
important challenges in terms of scalability and elasticity, and
lacks the ability to adaptively manage the network resources and
dynamically dimension the network nodes based on load and
demand. Network function virtualization and cloud computing
are two important concepts that can be leveraged to address
those challenges in IMS environments. In this work, we propose
two adaptive SLA-based elasticity management algorithms for
virtualized IMS environments. Our proposed algorithms use
two SLA attributes (the call setup delay and user priority) to
dynamically control the CPU resources allocated/de-allocated to
virtualized IMS nodes. The aims of our proposed algorithms
are: 1) to ensure efficient usage and sharing of CPU resources
by various IMS components; 2) to reduce the overall power
consumption in virtualized IMS platforms; and 3) to enhance
the user experience when using IMS networks. We have tested
the proposed algorithms by setting up a virtualized IMS envi-
ronment using OpenIMS Core and Xen as the hypervisor. The
results obtained show that our proposed algorithms meet the
SLA constraints, even when subjected to dynamic load, thereby
enhancing the overall QoS. We have also compared the proposed
algorithms with Xen Server’s existing CPU resource scaling
governors and the results indicate that our algorithms work better
when compared to the existing governors.

Keywords—IP Multimedia Subsystem; Elasticity management;
Network Function Virtualization; Cloud Computing; Xen.

I. INTRODUCTION
Next Generation Networks (NGNs) are IP-based networks

that aim at offering their users ubiquitous access to a multitude
of feature-rich, QoS-enabled, broadband multimedia services
[1]. The IP Multimedia Subsystem (IMS) is the key component
in the NGN architecture, which enables the realization of
this vision [2].The IMS consists of a horizontal control and
service layer that is deployed on top of IP-based networks.
This layer encompasses a set of common functions and service
logics needed for the seamless provision of IP multimedia
services to users. Among the key IMS nodes, we mention: The
CSCFs (Call/Session Control Functions) responsible of session
control and signaling operations; The HSS (Home Subscriber
Server) acting as a central database containing users related
information; and the ASs (Application Servers) hosting and
executing value-added services offered to users.

Cloud computing is a promising paradigm that promotes
a computing-as-a-service model, in which a dynamic pool
of virtualized computational resources can be leased and
released on demand [3]. Some of the key benefits of the cloud

computing model include: resource efficiency through shar-
ing; high scalability and elasticity through dynamic resource
management and pooling; and ease of introduction of new
applications and services through substrates reuse.

Leveraging cloud technologies (e.g. hardware virtualiza-
tion, virtual switches, smart NICs, poll-mode Ethernet drivers,
orchestration and management mechanisms) as key enabler,
an emerging concept called Network Function Virtualization
(NFV) is being contemplated in the telecom domain. The main
goal behind the NFV concept, which is specified by the Euro-
pean Telecommunications Standard Institute (ETSI) [4], is to
enable the consolidation and sharing of various software-based,
virtualized, telecom networking resources, running on cloud
infrastructures [5]. This network virtualization and telecom
infrastructure cloudification and sharing is expected to play
an important role in reducing the deployment and operation
costs of future telecom infrastructures, while opening the door
for innovation and performance enhancements in the current
telecom networking architecture.

Despite its merits, the IMS still faces important challenges
in terms of scalability and elasticity. In fact, due to its reliance
on text-based, bandwidth-hungry, and delay-inducing protocols
(such as SIP), and with the constant increase in users number
and demands, IMS nodes can become quickly overloaded,
as shown in [6]. Such overload impacts the QoS offered
to users and results in the lack of ability to meet SLA
requirements. In addition, the current IMS design lacks the
ability of dynamically dimensioning network nodes based on
load and demand, and does not implement adaptive resource
management mechanisms.

In this work, we show how the concepts of Network
Function Virtualization and cloud computing could be used
to improve the scalability and elasticity of IMS deployments.
More specifically, we propose two adaptive elasticity manage-
ment algorithms for the dynamic allocation of CPU resources,
in virtualized IMS nodes, based on load and SLA parameters.
In this work, we use the Call Setup Delay (CSD) and User
Priority as SLA parameters. Furthermore, two existing CPU
scaling algorithms [7] implemented in the Xen Server (the
Performance and the On-demand governors) are compared to
our proposed algorithms, for benchmarking and performance
evaluation.

The next section presents related work in the area of dy-
namic resource management in virtualized IMS environments.
The proposed dynamic elasticity management algorithms are
presented in Section III. Section IV presents the test bed and
an analysis of the performance evaluation results. We end the
paper with our conclusions, and a highlight of future work.
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II. RELATED WORK
In [8], the authors implement a virtualized IMS architecture

with the aim of supporting dynamic resource allocation. They
proposed a monitoring system to monitor the current CPU
utilization and memory. In the case of overload, defined by
CPU utilization threshold, the physical machine scheduler
will allocate one or more virtual CPU to the VM. It worth
mentioning that, the CPU utilization threshold in this work is
statically preconfigured in a file, and not dynamically extracted
as an SLA parameter. In [9], virtualized IMS components
are installed on a set of host operator physical equipment
to minimize user latencies while all capacity constraints are
satisfied. The focus of the paper is on the P-CSCF, which is the
first contact point with the IMS user terminal. By optimizing
the location of these VMs into the suitable physical servers,
the latency would be minimized. In [10] [11], authors use
virtualization of IMS to dynamic reconfigure their network. In
these papers, methods for migrating a session from one CSCF
to another are developed. In case of failure or disaster, it is
desirable to ensure reliability by continuing the operation of
the CSCF on other servers. Thus, call session state migration
in IMS is used to achieve the needed flexibility.

The concept of self-organizing IMS is used in [12] and
[13]. Those works propose a centralized self-organizing node,
which is a master node that maintains a database of the state in-
formation and capabilities for all nodes under its control. They
also propose load balancing mechanisms for IMS networks.

III. PROPOSED ELASTICITY MANAGEMENT
ALGORITHMS

In this section, we present two end-to-end adaptive SLA-
based elasticity management mechanisms for delay sensitive
applications hosted on the cloud. The main goal of these
algorithms is to ensure the efficient usage of CPU resources
while meeting the SLA requirements. In the proposed system,
each physical CPU supports a number of working frequen-
cies, which are termed as available CPU frequencies. The
algorithms guarantee efficient usage of CPU resources by
increasing/decreasing the CPU frequency to the nearest avail-
able CPU frequency and also allocating/de-allocating CPU
cores based on the SLA attributes. The proposed algorithms
have been tested on a distributed Virtualized IMS (VIMS)
platform. The two SLA attributes taken into consideration
in our proposed algorithms are: the Call Setup Delay (CSD)
and the User Priority. The call setup delay, which consists of
the time taken by the VIMS platform to successfully process
a call initiation request, acts an indicator of the amount of
load on the various VIMS components. The user priority
allows preferential allocation of CPU resources to the various
VIMS components when they claim the same resource, thereby
enabling service differentiation based on users categories (e.g.
regular user, business user, emergency user etc).

In our proposed solution, a monitoring system calculates
the average CSD (Current-CSD) of the VIMS network period-
ically and an actuator system adjusts the CPU resources of the
various VIMS components accordingly. The monitoring and
the actuator system do not add any additional complexity to
the VIMS network as they run independently. The monitoring
system reports the Current-CSD periodically to the actuator
system which compares it with maximum CSD mentioned

in the SLA (SLA-CSD). The CPU frequency will be set to
nearest available CPU frequency which is twice the current
CPU frequency, whenever the Current-CSD exceeds the SLA-
CSD. Also, a new core will be added to the VIMS component
on which the algorithm is run, if the CPU frequency of current
CPU is the maximum available CPU frequency. In contrast,
the CPU frequency is decremented by one step whenever
the Current-CSD is less than SLA-CSD. The actuator system
also releases one CPU core if the CPU frequency is less
than the minimum available CPU frequency. Increasing CPU
resources should be fast, in order to prevent violation of
the SLA and should be equal to the actual required CPU
resources. In contrast, decreasing CPU resources should be
gradual to prevent oscillations in the system [14]. This strategy
of increasing/decreasing the CPU frequency is similar to the
TCP window flow controller, which is an effective mechanism
in use.

Algorithm 1 Unary SLA adaptive [USA] Elasticity Manage-
ment
1: procedure USA
2: CoresVM ← Available cores for VM
3: i← Index of last added core to CoresVM
4: F← Available CPU(i) frequencies
5: Current-CSD← Average CSD of last 2s
6: if (Current-CSD > SLA-CSD) then
7: CurrentFreq(i) ← 2 ∗ CurrentFreq(i)
8: if (CurrentFreq(i) > Max(F)) then
9: CurrentFreq(i) ←Max(F )

10: CoresVM ← Add new core
11: end if
12: else
13: CurrentFreq(i) ← lower available frequency
14: if (CurrentFreq(i) < Min(F)) then
15: CurrentFreq(i) ←Min(F )
16: Release CPU(i) from CoresVM
17: end if
18: end if
19: end procedure

A. The Unary SLA Adaptive (USA) Elasticity Algorithm

The USA elasticity algorithm depicted in Algorithm 1,
adjusts the CPU resources of the various VIMS components
based on one SLA attribute (namely, the Call Setup Delay).
This algorithm can be implemented on a single or multiple
VIMS components (e.g., P-CSCF, S-CSCF).

In the proposed algorithm, CoresVM contains the list of
cores allocated to the VIMS component (line 2). Based on
Current-CSD, the actuator increases (line 7) /decreases (line
13) the CPU frequency of the last added core.

If twice the CurrentFreq of the last added core is more than
the maximum available frequency, then the CurrentFreq of the
last added core is set to the maximum available frequency and
a new core is added to CoreVM (line 8 to 11). In contrast,
if the lowered CurrentFreq of the last added core is less than
the minimum available frequency, then the CurrentFreq of this
core is set to the lowest available frequency and the core is
released (line 14 to 17).

B. The Binary SLA Adaptive (BSA) Elasticity Algorithm

The BSA elasticity algorithm adjusts the CPU resources
of the various VIMS components based on two SLA attributes
(the Call Setup Delay and the User Priority), thus introducing
another dimension to the USA elasticity algorithm.
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Algorithm 2 Binary SLA adaptive [BSA] Elasticity Manage-
ment
1: procedure BSA
2: S← Index of free available cores
3: for j=Index of VIMSs base on priority do
4: i← Index of last added core to VM(j)

5: F← Available CPU(i) frequencies
6: CurrentCSD(j) ← Average CSD of last 2s
7: if (CurrentCSD(j) > SLA-CSD(j)) then
8: CurrentFreq(i) ← 2 ∗ CurrentFreq(i)
9: if (CurrentFreq(i) > Max(F)) then

10: CurrentFreq(i) ←Max(F )
11: CoreVM(j) ← Select core from S
12: end if
13: else
14: CurrentFreq(i) ← lower available frequency
15: if (CurrentFreq(i) < Min(F)) then
16: CurrentFreq(i) ←Min(F )
17: S ← Release CPU(i) from CoresVM(j)

18: end if
19: end if
20: end for
21: end procedure

In Algorithm 2, the actuator system will decide to allocate
CPU resources from its shared CPU pool (line 2) based
on the priority of the various VIMS components (line 3).
The allocation/de-allocation strategy followed by the BSA
algorithm is similar to the USA algorithm (line 4 to 19),
but the order in which the adjustment of CPU resources
occurs amongst the various VIMS components depends on the
priority.

IV. PREFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed algorithms and compare them with the existing Xen
Server’s CPU scaling mechanisms namely: The Ondemand
governor that increases the CPU frequency for active threads
while other threads run at the lowest frequency; and the
Performance governor that keeps the CPU frequency at the
highest level. The test bed setup is first described, and then
the performance measurements are analyzed.

A. Test Bed Setup

To setup the test environment of the proposed algorithms,
a number of open source software were used. The IMS core
was emulated using the OpenIMS Core [15]- an open source
implementation of the IMS’ core components developed by
FOKUS. A modular approach was followed in which the
IMS virtualized core components were installed on separate
VMs. All VMs were running the Ubuntu 12.04 LTS operating
system. The hardware and software specifications of the test-
bed are described in Table I below.

TABLE I: Test Bed Specification
Parameter Specification/Value

System Name Xen Hypervisor 1 Xen Hypervisor 2 Xen

CPU Intel(R) Core(TM) i7-4770
CPU@3.40 GHz

Intel(R) Core(TM) i7
CPU X980@3.33 GHz

AMD Phenom(TM) 9600B
Quad-Core Processor

Supported CPU Core Frequency (GHz)

3.401, 3.400, 3.200, 3.000,
2.800, 2.700, 2.500, 2.300,
2.100, 1.900, 1.700, 1.500,
1.400, 1.200, 1.000, 0.800

3.334, 3.333, 3.200, 3.067,
2.933, 2.800, 2.667, 2.533,
2.400, 2,267, 2.133, 2.000,
1.867, 1.733, 1.600

-

Hypervisor Xen Server 6.2 Xen Server 6.2 Xen Server 6.2
Memory (MB) 24527 24567 4079

Logical CPUs (Count) 8 12 4

Virtual Machines
(Deployed)

P-CSCF 1
P-CSCF 2

HSS
I-CSCF
S-CSCF

Manager
IMS Bench SIPp

As depicted in Fig. 1 , the test bed consists of three physical
servers connected by a switch. All the three physical servers
use Xen Server 6.2 as their operating system [16]. and are
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Fig. 1: The virtualized IMS test bed topology
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Fig. 2: Comparison of running USA algorithm, on P-CSCF,
S-CSCF and both, in terms of CSD

described as follows:
Xen Hypervisor 1: This server consists of three VMs: One
VM is configured as an HSS; another is configured as an I-
CSCF; and the last one is configured as a S-CSCF.
Xen Hypervisor 2 : This server consists of two VMs, each
of them configured as a P-CSCF.
Xen : This server consists of two VMs, each configured with
IMS Bench SIPp [17] - an open source implementation of a
test system that generates SIP traffic and is capable of handling
a large number of users. The IMS Bench SIPp consists of two
components: the logical SIPp component and the Manager.
These two components were configured on two different VMs.
Also, our monitoring and actuator system is in the same VM
which is configured with SIPp.

B. The USA Algorithm Performance Evaluation

Fig. 2 shows the CSD of using the USA algorithm on
virtual P-CSCF (USA-P), virtual S-CSCF (USA-S) and on
both virtual P-CSCF and S-CSCF (USA-PS). To study the
effect of using our algorithm on P-CSCF, in USA-P we let
S-CSCF work with 4 cores in the highest available frequency;
and also for evaluating USA-S, P-CSCF works with 4 cores
in the highest available frequency. The incoming call rate is
Poisson and SLA-CSD is 8ms. During 0s to 70s we increase
the call rate from 100 CPS to 300 CPS to warm-up the
network. Our experimental results show that after 70s, USA-
PS has almost the highest CSD and USA-P has the lowest
CSD. The reason being, S-CSCF in IMS network needs more
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Fig. 3: Comparison of running USA algorithm, Ondemand and
Performance, in terms of CSD

CPU resources and in USA-P, S-CSCF is working with 4 cores
(maximum number of available cores) in the highest CPU
frequency. On the other hand, in USA-PS, both S-CSCF and
P-CSCF work with the required CPU resources, which are
adjusted based on the load. Thus, the CSD of both P-CSCF
and S-CSCF will be more because the two components do not
work with 4 cores all the time. Also, from the graph we can
infer that the algorithm, when run in three different scenarios,
does not violate the SLA-CSD of 8ms.

We also compared the performance of the proposed algo-
rithm with Xen Server’s existing governors, namely, Onde-
mand and Performance. Both of the governors use 4 cores
all the time. In case of the Performance governor, all the
CPU cores work with the highest available frequency. The
Ondemand governor, on the other hand, increases the CPU
frequency based on demand [7]. CSD of different governors in
Xen Server, along with the USA algorithm is depicted in Fig.
3. It is easily noticeable that the CSD at its maximum when the
Ondemand governor is used. The CSD in case of Ondemand
violates the agreed upon SLA-CSD of 8ms during time interval
of 70s to 260s (Refer to Table II). Another inference that can
be drawn is that the Performance governor outperforms the
USA algorithm, when the comparison is made only in terms
of CSD. The reason being, the Performance governor always
works with 4 powered-on cores whereas the USA algorithm
acquires and releases CPU cores based on the requirements.

TABLE II: Average CSD for USA, Ondemand, and Perfor-
mance Algorithms
````````Algorithm

Time(s) 0-50 50-70 70-120 120-260 260-360

USA 5.348 6.455 5.186 5.925 5.464
Ondemand 6.685 7.611 8.482 8.052 6.519

Performance 3.222 4.500 3.291 5.784 3.344

Fig. 4 illustrates two important results. The first being,
that the USA algorithm uses a lower number of CPU cores
in comparison to the existing Xen Server’s governors. In case
of the USA algorithm, the free cores can be allocated to other
VMs whereas the other governors have zero free cores. The
second being that the USA algorithm is load-sensitive. As
it can be seen, when the incoming rate is 400 CPS (high-
load), the USA algorithm uses more resources and when the
incoming rate is 25 CPS (low-load), it releases the unnecessary
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CPU cores and works with a lower number of CPU cores.
Fig. 5 shows that despite the fact that the USA algorithm

uses a lower number of CPU cores as compared to Perfor-
mance governor, it uses the available cores efficiently and its
CPU utilization is the same as that of Performance governor.
Thus, we can conclude that the USA algorithm meets the SLA
constraint despite using a smaller number of CPU cores and
it ensures that the CPU power consumption is less than the
existing Xen Server’s governors.
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Fig. 6: Illustration of the role of Priority in the BSA algorithm.

C. The BSA Algorithm Performance Evaluation

Continuing with the same test-bed that was used to test the
performance of the USA algorithm, the concept of priority in
the BSA algorithm is illustrated. P-CSCF2 has higher priority
as compared to P-CSCSF1. Both the P-CSCFs share the CPU
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Fig. 8: Comparison of running BSA algorithm and Xen
Server’s existing governors, in terms of the sum of powered
on cores of the 4 P-CSCFs

resources. Fig. 6a shows the CSD of the P-CSCFs, wherein,
after 60s, the CSD exceeds the 8ms, which is the SLA-CSD.
In this situation, both the P-CSCFs are competing for the last
core, but P-CSCF2 gets it, as it has higher priority, which is
indicated in Fig. 6b. This demonstrates that the CPU resources
are allocated not only based on load but also based on priority.

The existing test-bed was modified to accommodate 2 more
P-CSCFs. As shown in Fig. 7, the average CSD of 4 P-CSCFs
in case of Ondemand violates the agreed upon SLA CSD of
8ms during 120s to 260s, but it never goes more than 8ms for
BSA and Performance. Fig. 8 shows that the BSA algorithm
allocates and de-allocates the CPU resources when the load is
high (400 cps) and when the load is low (25 cps) respectively.
It also indicates that our algorithm could reduce the power
consumption by turning off unnecessary cores.

V. CONCLUSION

In this paper, we proposed two adaptive SLA-based elastic-
ity management algorithms (the USA and the BSA algorithms)
for virtualized IMS environments. The two SLA attributes used
were the call setup delay and the user priority. By setting
up a virtual IMS environment, we tested the performance
of our proposed algorithms. Using the test-bed, we obtain
results which show that the USA and the BSA algorithms
never violate the SLA requirements. The comparisons made

with Xen Server’s existing CPU resource scaling governors
indicate that our proposed algorithms outperform them. Both
algorithms are efficient and they do not contribute to the load
of the VIMS as they can be run on an independent monitoring
system. Thus, the proposed algorithms achieve what they set
out to do: Allocate CPU resources efficiently; reduce the power
consumption by the CPU resources; allow sharing of CPU
resources among the various IMS components; and deliver an
overall enhanced end user experience.

As future work, we intend to do further analysis of the algo-
rithms performance when introducing equal and unequal link
delays to the test-bed, in order to mimic a more realistic setup.
We also plan to introduce other parameters and dimensions
to our proposed algorithms, such as the throughput and the
geographic location of the users, which can have an influence
on the virtual nodes dimensioning and their placement.
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