Granular Computing and Network Intensive
Applications: Friends or Foes?

Arjun Singhvi* Sujata Banerjee Yotam Harchol*
University of Wisconsin-Madison VMware UC Berkeley
asinghvi@cs.wisc.edu sujata@banerjee.net yotamhc @berkeley.edu
Aditya Akella Mark Peek Pontus Rydin
University of Wisconsin-Madison VMware VMware

akella@cs.wisc.edu

ABSTRACT

Computing/infrastructure as a service continues to evolve
with bare metal, virtual machines, containers and now server-
less granular computing service offerings. Granular comput-
ing enables developers to decompose their applications into
smaller logical units or functions, and run them on small, low
cost and short lived computation containers without having
to worry about setting up servers - hence the term serverless
computing. While serverless environments can be used very
cost effectively for large scale parallel processing data ana-
lytics applications, it is less clear if network intensive packet
processing applications can also benefit from these new com-
puting services as they do not share the same characteristics.
This paper examines the architectural constraints as well as
current serverless implementations to develop a position on
this topic and influence the next generation of computing
services. We support our position through measurement and
experimentation on Amazon’s AWS Lambda service with a
few popular network functions.

1 INTRODUCTION

Computing requirements in virtually every sector of industry
and society continue to grow rapidly. To meet this demand,
both public and private cloud computing services are evolv-
ing with the goal to providing cheap, performant and flexible
computing resources that can be dynamically scaled up and
down with workload changes. There are a large variety of
computing services today that enable users to rent bare-metal
servers, virtual machines (VMs), or containers, at a dizzying

*Work done while at VMware Research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets-XVI, November 30—December 1, 2017, Palo Alto, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.

ACM ISBN 978-1-4503-5569-8/17/11...$15.00
https://doi.org/10.1145/3152434.3152450

markpeek @ vmware.com

157

prydin@vmware.com

number of sizes and pricing structures, and with varying lev-
els of resource management burdens on the end users. The
latest exciting evolution in computing is a serverless com-
puting model also known as functions-as-a-service (FaaS),
which provides computing in short-lived, stateless, bite sized
chunks with highly flexible scaling and a pay-for-what-you-
use price structure. Users no longer have to provision/manage
servers or VMs - instead they build their applications as a set
of functions with the cloud provider taking on the resource
provisioning tasks and scaling.

Serverless computing today is particularly well suited for
microservices that are part of a class of embarrassingly paral-
lelizable applications. Obviously, not every application can be
written in a "serverless" manner. However, given that cloud
computing providers can now provide these services prof-
itably and pass on a significant cost benefit and flexibility
to the users and developers, it is our expectation that many
traditional applications will evolve to make use of this new
paradigm in some way or another. In this position paper, we
take one such class of applications, which on the face of it,
seem completely unsuitable for serverless environments and
propose a workable framework with a view to generating
discussion in the community. With this activity, our goal is
to help serverless architectures to evolve in a direction that
retains many of the current benefits while enabling a larger
class of applications to use this emerging framework.

The class of applications considered here are network func-
tions (NFs) involving packet processing functions used in
both enterprise and telecommunications service provider en-
vironments. These are particularly challenging for serverless
environments, as network functions may be stateful, long
lived, require high packet throughput, have additional require-
ments such as chaining of functions, which are all at odds with
what serverless environments provide today. At the same time,
the long term deployment vision for network functions is a
dynamic auto-scaling micro-service based architecture with a
significant capital and operational cost reduction over what
is possible today. This vision has alignment with the goals
of serverless platforms. Thus matching the requirements of
this class of applications to the features of serverless environ-
ments and identifying gaps that exist today helps to develop a

https://doi.org/10.1145/3152434.3152450

position on making serverless architectures more generally
applicable. Towards this end, we take the following steps:

e We benchmark Amazon’s popular AWS Lambda ser-
vice focusing on the requirements of network functions
and identify the challenges more concretely.

e We develop strawman architectures and the associated
cost implications for adapting existing serverless envi-
ronments to be friendly to network functions.

e We present results with a few popular Click-based [17]
network functions to support our hypothesis.

2 BACKGROUND AND CHALLENGES

In this section, we present a quick overview of the salient
features of both serverless computing services and network
functions. There is continuous and rapid evolution in both
technical areas, and a current snapshot is provided with a
view to aligning both efforts for significant benefits.

2.1 Serverless Computing Platforms

Serverless computing services enable users to package their
applications as stateless functions that are housed in small
short-lived compute units and dynamically scale functions
based on user provided events. Most serverless offerings are
built on top of light weight containers with the associated
dynamic scaling mechanisms triggered by events that can be
stored in a variety of other services. Typically, users register
for events (e.g. http request, or when a file gets uploaded to
the datastore) to trigger execution of their functions.

While there are a number of serverless computing plat-
forms [1, 2, 5, 6, 8, 10] out there, for the purpose of this work,
we choose Amazon’s AWS Lambda for two main reasons.
Firstly, it is the most developed and general environment
today with support for chaining functions. Secondly, it has
support for running native executables, which enables us to
run existing network functions atop AWS Lambda. Each AWS
lambda function can be provisioned with 128 MB - 1.5 GB
of memory, can live for up to 5 minutes of computation, and
can scale to a maximum of 1000 instances. The cost structure
of using the lambda infrastructure has two components: a
per-user request cost ($0.20 per Million requests) and a com-
putation cost charged on a 100 ms granularity ($0.00001667
per GB-second). The cost parameters and provisioning of
AWS Lambda and the other available services are sure to
evolve, and there are many limitations of the overall design in
how different applications can utilize the API and associated
services. However, we view these design decisions as just
a reflection of what service providers can provide today to
presumably run a profitable service.

Thus our goal is to adapt the application to the service
environment available while creating a wish list of features
that might help these applications to attain high performance
at a reasonable cost. A couple of trail-blazer research projects
have already been proposed that adapt specific applications to
use AWS Lambda with great benefits: a scalable video encod-
ing application [12] and a distributed computing framework

158

that can serve many common applications [15]. We consider
a third set of packet processing applications which present
even bigger challenges.

2.2 Network Functions

New network and application functionality has long been im-
plemented in network/application middleboxes. Traditionally,
these middleboxes have been proprietary with specialized
hardware and customized software. Increasingly in both enter-
prise and telecommunications service provider environments,
the hardware and software components of network functions
are being decoupled, virtualized and deployed over commod-
ity servers in private/public/telco clouds. The goal for this
transformation is to corral the rapidly growing capital and
operational expenditures of such environments by leveraging
the favorable cost structures of cloud computing.

Many network packet processing functions require high
throughput and low latency, creating technical challenges for
virtualized networking stacks to process packets efficiently.
Network functions can be chained together to form service
chains implementing a composed complex service. A plethora
of research papers have tackled these performance and chain-
ing issues with kernel bypass, zero-copy mechanisms, for ex-
ample in [3, 4, 14, 18]. In addition, several network functions
may be stateful, and managing state in the face of scaling, mi-
gration and failures presents challenges that have been the sub-
ject of several papers, for example in [13, 16]. Verification and
troubleshooting of stateful network paths and service chains
is another topic that has been tackled in [19, 22]. The longer
term vision for Network Function Virtualization (NFV) [9] is
to further decompose each virtualized network function into
smaller sub-functions and expose them as micro-services. In-
dividual micro-services can be re-used across multiple service
chains and independently scaled leading to further flexibility
and efficient use of the infrastructure. This micro-service ar-
chitecture for NFV and running a huge number of tiny NFs
packaged in light weight containers on a single server has
been proposed in a recent paper [23].

2.3 Technical Challenges

In many ways, the FaaS or serverless architectures are well
aligned with the micro-service vision for NFs. However, there
are several challenges in enabling packet processing network
functions and service chains to leverage serverless computing.
Here we list some of the mis-matches in goals that need to be
overcome. As mentioned before, we use AWS Lambda as a
concrete example, as it is one of the front-runners with the
most advanced features at the time of our experiments.

o NF workloads may be compute intensive, long lived
and stateful, while serverless functions are short-lived,
stateless and run on lightweight containers with lim-
ited computing power. No persistent state can be main-
tained inside the lambda infrastructure and other cloud
services may have to be utilized.

o Packaging packet processing workloads in event driven
serverless APIs such as http requests may incur a high
overhead and decrease performance.

e Most serverless frameworks do not yet have guaranteed
quality of service (QoS), isolation and high levels of
security. Yet, many NFs require these features when
deployed in production.

o Users are not granted root access in most serverless en-
vironments, which is required to run some existing NFs,
for example, to run raw sockets. In addition, in AWS
Lambda, network connections to end points outside the
lambda infrastructure can only be initiated from the
lambda instances.

e There is limited support for chaining functions. Exist-
ing methods such as AWS Lambda’s "step" function
have high overheads.

In spite of the above challenges, we take the somewhat
audacious position that packet processing applications can
also benefit from serverless computing. In the next section,
we develop strawman solutions to adapt packet processing
applications to serverless environments.

3 SERVERLESS PACKET PROCESSING

To mitigate the above challenges with mis-matched require-
ments, we propose two strawman architectures. Our goal is to
not flesh out each architecture in great detail but explore two
designs to guide future directions. The first design choice is to
decide the granularity of each request made to the serverless
infrastructure. The second design choice is to decompose the
NF processing, memory, and bandwidth requirements to fit
each compute instance, as discussed next.

3.1 Granularizing NF processing

Given that serverless computing is aimed at parallel process-
ing workloads, we first "granularize" the service function
chains in two ways. Each network function to the extent possi-
ble is decomposed into its sub-functions with the expectation
that each sub-function has different resource requirements
and can scale independently. Additionally, the application
flow-space is partitioned into sub-flows such that each sub-
flow can traverse its own service chain and not exceed the
bandwidth capacity of a compute instance. With this granu-
larization, each compute instance is expected to run a whole
network function or a sub-function of an NF. These granular-
izing decisions also need to be made according to the latency
and throughput requirements of the service function chain,
as overloading the serverless compute instances can reduce
performance.

3.2 State Management

Since serverless computing instances are typically stateless,
no persistent state can be maintained inside the serverless
infrastructure. However, there are many stateful NFs that may
need to maintain per-packet, per-flow or cross-flow state. Any
state information that needs to be maintained for a packet

159

5. Processes Packet
ééi

2. Encapsulate
packet

1. Packet arrives@ 3. Request /. A

8. Packet departs emmmmm 6. Response ' \
7. De-encapsulate Q

4. Lambda
Jaunched

/6. Response

packet
Figure 1: Per-Packet Architecture

or flow can be stored in one of the helper services of the
serverless compute infrastructure (e.g., Redis key value store
in AWS). Needless to say, state retrieval or updates need to
incur low latency. State management is dependent on the
serverless packet processing architecture and we deal with
this in the following sections.

3.3 Strawman Architectures

There are two extremes in the architectural design space of
serverless frameworks to process granular NF packet process-
ing workloads. One extreme is to use packets as the basic unit
of request to the serverless compute service, while the second
uses flows as the unit of the request. Neither framework is
perfect and we discuss the pros and cons of each. Needless to
say, there may be other request granularities in between, but
we do not explore those here.

3.3.1 Packet-based Architecture. This architecture (Fig-
ure 1) is the most straightforward approach to directly lever-
age the serverless infrastructure with minimal additional com-
ponents. Different NFs or microservices are uploaded to the
serverless infrastructure. Each incoming packet (encapsulated
into a http or any other request API) triggers the launching of
compute instance. Essentially, packets are "sprayed" across
the compute instances and each packet in a flow could be
processed by different instances. The advantage is that we
can natively leverage infrastructure features like chaining and
dynamic auto-scaling up and down.

However, such an architecture would never be deployed
due to the following reasons. Firstly, since most public server-
less computing services have a per request cost, this approach
would incur a per packet charge which would be prohibitively
expensive. At AWS Lambda price structures, a million pack-
ets incur a cost of $0.20. To support a flow rate of 1 million
packets per second and a flow duration of 1 minute would
cost $12 per minute in addition to the actual computing costs.
There are clearly other cost effective strategies. Secondly,
this approach makes state management complex as each in-
stance would need access to all pertinent state for all flows.
For acceptable performance, one would want to cache state
locally. However, this is not possible in the aforementioned
approach. Lastly, this approach also experiences packet re-
ordering due to the variable processing overheads of each
request traversing the serverless infrastructure.

3.3.2 Flow-based Architecture. In the flow-based ar-
chitecture (Figure 2), serverless computing instances also run
NFs/sub-functions as in the per-packet approach. However,
the big difference here is that each sub-flow is assigned to
a specific computing instance with all packets of the sub-
flow being processed by the same computing instance. This

Processes Packets

PN s Request i
Coordlnator e
2. Nouﬂca!lon ‘

1.Packets arnvesl D !
6.Packets depart
—

Gateway

4.Lambda
__launched ¥

5.Packets flow

Figure 2: Per-Flow Architecture
removes the per-packet request overhead and hence the per
packet cost, but this solution requires additional infrastructure
to coordinate the flow-to-compute instance mapping as well
as additional bootstrapping. Chaining also gets more complex
as available mechanisms such as "step" functions cannot be
used easily.

A core component of our architecture is a serverless com-
puting instance coordinator/scheduler (similar to approaches
in [12, 15]) which runs alongside the serverless infrastruc-
ture and does the above assignment process of service func-
tions/modules and sub-flows to computing instances. As new
sub-flows arrive and present their service function require-
ments, the coordinator (much like an SDN controller in spirit)
creates requests to spawn new compute instances running the
required network function. The requests generated have con-
figuration information for the network function (e.g., firewall
rules to process the sub-flow), service chain information (e.g.,
service chain IDs) as well as bootstrapping information for
the compute instance to communicate with the sub-flow end-
point. Packets from the sub-flow can now directly traverse
the service chain to receive the appropriate packet processing,
without involving the coordinator.

The coordinator also keeps track of instance usage and
makes resource decisions during the flow processing. For
example, if a sub-flow duration is longer than the compute
instance life time, the coordinator proactively spawns another
instance that the sub-flow can be handed off to as needed. Fur-
ther, the coordinator may keep track of flow state information
and assist in the hand-off. Cross-flow state maintenance can
also be aided by the central coordinator. The gateways (as
shown in Figure 2, act as relays between the serverless infras-
tructure and the incoming traffic as each lambda initiates a
connection with a gateway.

The main advantage of this approach is its potential rel-
atively low cost. Using the same example above, 1 million
packets per second belonging to only a small number of flows
(say 50-100), would thus trigger just those many requests.
One minute of computation also incurs negligible cost and
so a back of the envelope calculation yields a total cost close
to 1/1000-th of a dollar, without considering the cost of a
coordinator, which would need to be hosted in a long lived
VM/server cluster but amortized over many flows.

The main disadvantage of this approach is the additional
complexity of the coordinator function and the inability to di-
rectly use the native auto-scaling and chaining mechanisms of
serverless platforms. Auto-scaling triggers for network flows
and chaining which is not tied to request/response functions
are missing today. Finally, as mentioned above, since some

160

flows will outlive the computing instance that it was assigned
to, flow and state migration will also need to be handled.

4 EXPERIMENTAL VALIDATION

In order to validate our architectural hypotheses, we built a
measurement framework and a basic prototype of the two
strawman architectures on Amazon AWS Lambda. The ba-
sic prototype implementation is built for the sole purpose of
conducting baseline experiments and does not have full func-
tionality yet. We conducted experiments to micro-benchmark
performance with three popular Click-based NFs [17], and
included service chaining. Ideally, we would have liked to use
production NFs or other widely used open-source NFs such
as Snort [21] or Bro [20]. However, recall that we do not have
root access and thus many of these NFs cannot be made to
work on lambda instances and require source code changes.
This rules out production closed source NFs. In addition, one
of our goals is to decompose NFs and create efficient NF
chains similar to OpenBox [11]. The Click framework allows
for this and hence was chosen.

4.1 Experimental Framework

In our experimental framework, a set of VMs act as the
sources and sinks of the packet streams. Requests for lambda
services are launched from these VMs into the lambda infras-
tructure, which we treat as a blackbox. The traffic sources
generate TCP traffic streams at various rates and maximum
packet sizes. UDP traffic suffers significant loss as AWS
Lambda currently only supports TCP/IP sockets for connec-
tions, and hence not used in our experiments. We compile
three Click-based NFs - packet counter (PC), firewall (FW)
and an intrusion detection system (IDS) to run as binary ex-
ecutables on the lambda instances, linked from the Python
functions. Given that we do not have root/sudo permissions on
lambda instances, we cannot use raw sockets. Instead we use
the send/receive modules on Click with TCP sockets. In the
per-packet approach, we use lambda "step" functions to chain
various NFs. In the per-flow approach, one of the VMs is used
to host the coordinator function. The chaining functionality in
the coordinator is not implemented yet. The results presented
below are obtained from running the experiments within the
"us-east-2" AWS region. Similar trends were observed across
the various AWS regions.

4.2 Experimental Results

First, we present micro-benchmark performance numbers on
the AWS Lambda system, including "step" functions, fol-
lowed by the lambda execution times of three NFs.

4.2.1 AWS Lambda Benchmarks. Prior papers [12,
15] have benchmarked the performance of AWS Lambda as
well. We validated these numbers in our setup on AWS, and
summarize them here. The lambda API gateway is a source
of high latency with high variability, as reported in the AWS
mailing lists as well. Using the lambda SDK to invoke lambda

instances yielded better results. Cold lambda startup times
(includes the function loading overhead) are of the order of
seconds and the median lambda request-response latencies
are about 25 msec.

Given the nature of our application, we are interested in
benchmarking network bandwidth in/out of the lambda infras-
tructure. Figure 3 shows one micro-benchmark of simultane-
ous bi-directional iperf [7] measurements in/out of a lambda
instance at different memory sizes. The main take-aways are
that on average 500 Mbps of bandwidth is available in both
directions, with the inbound rate slightly lower than the out-
bound and with relatively little variation with memory sizes.
We also conducted unidirectional bandwidth tests and found
slightly higher throughput of about 580 Mbps.

From our measurements, we notice an interesting rate lim-
iting behavior imposed by AWS. Typically, lambda functions
are behind a NAT and undergo address translation to access
VMs. Multiple lambdas may be behind the same "external" IP
address but a different port number. The number of lambdas
sharing the same IP address seems to vary but the rate limit-
ing is done at the IP level leading to this behavior. Figure 4a
shows that the scaling is not linear. However, we believe that
this is an artificial limit imposed and is not fundamental to
achieving higher throughputs. After all, [15] has reported over
40GB/sec throughputs to/from the S3 service.

Next we benchmark the performance of step functions
since it helps with chaining NFs in the per-packet approach.
Step functions are a special construct which enables one
to build a complex distributed application deploying a state
machine representation of an application easily. While step
functions can be used for the purpose of service chaining of
lambda functions, they have significant coordination over-
heads. Figure 4b depicts the latency overhead of step func-
tions as the chain length is increased. In this experiment, we
chain together N functions, each of which sleeps for 100 msec
mimicking a computation of 100 msec. Even for a chain
length of 1, where we package a lambda function in a single
step function, the latency overhead is close to 46 msec (we
do not include the time spent in the lambda function itself).
Step functions are not ready to be used for NF chaining at
this point given the high overheads. We also verified the in-
dependent scaling of individual functions in a chain. Three
functions with sleep times of 10 ms, 100 ms and 400 ms
respectively when chained together in a step function, instan-
tiate 2, 3 and 5 lambda instances respectively. The number
of lambda instances invoked for each function depends on its
processing load, which is exactly how chained micro-service
scaling should operate.

4.2.2 NF Benchmarking. One of the important consid-
erations is to ensure that the NFs "fit" in each lambda instance
so as to have acceptable per packet processing times. We pack-
aged each NF in a lambda function and under a low packet
load, measured the packet processing time (does not include
the lambda infrastructure overheads) for two different packet
sizes. Table 1 has these results. Each packet is encapsulated

161

560
540 3 -
520
S 5001
£ 480}
Z 460
=
& 440}
420
400

= @ Outbound

A—4 |nbound

512M 1GB 1.5G
Lambda Memory Size

128M 256M

Figure 3: Bi-directional bandwidth in/out of a lambda

2500 @ 600
_ / 500 | ¥
2000 | A P

/ £ 400} o §

1500 | / R

3 .
$ 300} .
£

S 200
@]

Bandwidth (Mbps

o
o
o
~
L
N

/ 100},
I T L 0 L L

1 2 3 4 5 6 7 8 1 2 3 4
Simultaneous Request Count Lambda Chain Length

Figure 4: (a) Bandwidth scaling with multiple lambdas;
(b) Step Function Overhead

Table 1: Mean Execution Time of NFs

(o)
o
o

Packet Size 64 Bytes | 1500 Bytes
Packet Counter | 0.34 ms | 0.40 ms
Firewall 0.84ms | 0.73 ms
IDS 091 ms | 092 ms

in a http request like it would be in the per-packet approach,
which has additional overhead. We have not yet attempted to
optimize the NF processing times but we believe this can be
further reduced. As expected, the packet counter has lower
processing overheads than the firewall. The difference in pro-
cessing time with the increase in packet sizes is minimal and
we believe that in both cases the cost involved to start the NF
and transfer the packet from the lambda runtime to the click
environment dwarfs the actual packet processing time.

These NFs are stateless and we assume that all associ-
ated state is available to the lambda instance running the
NF. As mentioned earlier, state management may be done
via a combination of external services associated with the
serverless compute service and local caching. For example,
prior work [15] has reported access latencies to the Redis
in-memory key value store less than 1 msec for upto 1000
workers. As discussed in [16], the goal is to get about 100 usec
- 500 psec, which we believe will be available as emerging
technologies and services get rolled out.

4.2.3 Evaluation of NF processing architectures. Based
on the benchmarking results above, we evaluated the per-
packet and per-flow approaches from both performance -
throughput and latency, and cost perspectives and present
our preliminary findings. Serverless infrastructures and fea-
tures are yet emerging and are under constant churn. While
our evaluation is done with current offerings and price struc-
tures, we strongly believe that these will all evolve and impact
our findings. Our hope is that studies like ours will affect this
evolution.

Table 2: Per-Flow : Throughput and Latency

Network Function Mean Std-Dev Mean Std-Dev
(Mbps) (Mbps) (msec) (msec)
Packet Counter 367.14 18.34 2.89 1.14
Firewall 35590 18.72 3.39 1.41
IDS 339.03 21.85 3.40 1.79

In the per-packet architecture, we chained together the
PC and FW NFs with a "step" function. Given that the NFs
have different setup and processing times, the two lambda
functions scaled independently to 70 and 113 instances re-
spectively at a low load of 100 packets per sec for 10 seconds.

In Table 2, we provide micro-benchmarks for the per-flow
approach. We report the mean throughput and round-trip
latency from a source to a sink through a given NF. Each
lambda is provisioned with 128 MB of memory. We report
approximately 350 Mbps of throughput and under 4 msec of
round-trip latency for a single flow (consisting of 1500 Bytes
packets) and a single NF hosted in a lambda instance. While
these are modest and unoptimized results, it gives us hope for
what future serverless environments may provide. A naive
and optimistic scaling to a say, 100 lambdas can provide up
to 35 Gbps of NF processing throughput, assuming that rate
limits imposed today can be lifted.

An interesting thought exercise and back-of-the envelope
cost calculation is as follows. Assume that 500 Mbps of flow
throughput is possible per lambda for a firewall function with
acceptable latency. To construct a 40 Gbps firewall function
would require 80 128-MB lambdas. If each flow duration is
5 minutes, to run this 40 Gbps firewall for an hour, would
cost $0.60. Just for amusement, the cost using a per-packet
approach for the same flow requirements is over $4000. A
VM based solution where the cost is on a per hour basis, this
would cost about $8.

S DISCUSSION

Serverless computing presents a new and exciting way to con-
sume computing with a potentially attractive price structure
and lower management overhead for the users. The first gen-
eration of serverless computing is aimed at serving a subset of
applications which are stateless, event-driven, decomposable
into microservices and eminently parallelizable. Our position
is that the next generation of serverless computing should be
generalizable to other applications while retaining the original
benefits. We explore this position by considering an applica-
tion class - network packet processing, that clearly does not
fit the original design of serverless computing and propose
strawman approaches to support this application class. We
conducted basic measurements of the Amazon AWS Lambda
service to better understand the constraints and produce the
following list of requirements and future directions for the
next version of serverless computing.
e While most serverless implementations have an impres-
sive array of event sources and types, there are no native
and obvious ways to trigger network processing events,

162

for example, related to packets/flows/application mes-
sages. Efficient ways to invoke computing instances
are needed - using http to invoke lambda functions is
clearly limiting.

e Providing root access, would enable easier and wider
deployment of this class of applications.

e Guarantees on resources, particularly bandwidth and
latency for this application class is important. While
the main service offering is computing cycles today,
network and I/O provisioning needs to be explicit and
made visible to users.

e Packet processing operations occur at the micro-second
granularity, while the pricing structure is based on a
larger granularity (e.g., 100 msec for AWS Lambda).

o Existing serverless offerings separate compute and stor-
age. Designing a scalable remote storage service that
meets the demands of this class of applications is needed.

e Most of the serverless implementations have a simple
fault tolerance model - when a function fails, rerun
it. While such a model may work fine for idempotent
functions, it will not work for all classes of applications.
Also, there is no support for local state fault tolerance
on these platforms as they were designed for stateless
functions. However, providing efficient function and
state fault tolerance is a must for supporting this class
of applications.

e The scaling power of serverless environments comes
from stateless and infrastructure agnostic placement
and scheduling of compute instances. This is particu-
larly problematic for application units that have some
ordering or coordination requirements. Chaining sup-
port is noteworthy in this context, but is not widely
available or has too heavy an overhead currently. Un-
derstanding the trade-offs of some stateful placement
and providing native support for these additional re-
quirements is an important direction.

We realize that many of the "asks" above come with an in-
creased price tag and may negate the cost benefits. However,
we believe that many of the current design constraints on
serverless computing are not fundamental limitations; rather,
they can be carefully lifted to provide a cost effective as well
as flexible solution. Resource provisioning and the associated
costs of public and private clouds is different and examin-
ing serverless as a cloud native design pattern is a promising
direction. Until more flexible serverless infrastructures are
available, purpose built application-specific serverless envi-
ronments may be needed to address the requirements.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful com-
ments and suggestions. The first author is grateful for early
helpful discussions with Remzi Arpaci-Dusseau, Shruthi Racha
and Anshul Purohit. Arjun and Aditya were supported in
part by NSF grants CNS-1563011, CNS-1636563 and CNS-
1547613.

REFERENCES

[1]
[2]
[3]

[4]
[5]

[6

=

[7]
[8
[9]

[10]
(1]

[12]

[13]

[14]

2017. AWS Lambda. https://aws.amazon.com/lambda. (2017).

2017. Azure Functions. https://functions.azure.com. (2017).

2017. Berkeley Extensible Software Switch (BESS).
http://span.cs.berkeley.edu/bess.html. (2017).

2017. Data Plane Development Kit (DPDK). http://dpdk.org. (2017).
2017. Google Cloud Functions. https://cloud.google.com/functions.
(2017).

2017. IBM Bluemix Openwhisk.
https://www.ibm.com/cloud-computing/bluemix/openwhisk. (2017).
2017. Iperf. Documentation. http://software.es.net/iperf/. (2017).
2017. IronFunctions. https://github.com/iron-io/functions. (2017).
2017. Network Functions Virtualisation - Introductory White Paper.
https://portal.etsi.org/NFV/NFV_White_Paper.pdf. (2017).

2017. OpenLambda. https://open-lambda.org. (2017).

Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: a
software-defined framework for developing, deploying, and managing
network functions. In Proceedings of the 2016 conference on ACM
SIGCOMM 2016 Conference. ACM, 511-524.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett,

Karthikeyan Vasuki Balasubramaniam, William Zeng, Rahul Bhalerao,
Anirudh Sivaraman, George Porter, and Keith Winstein. 2017.
Encoding, Fast and Slow: Low-Latency Video Processing Using
Thousands of Tiny Threads. In /4th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 363-376. https://www.usenix.org/
conference/nsdil7/technical-sessions/presentation/fouladi

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling Innovation in Network Function Control. In
Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM
’14). ACM, New York, NY, USA, 163-174.
https://doi.org/10.1145/2619239.2626313

Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. In 71th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association,
Seattle, WA, 445-458. https://www.usenix.org/conference/nsdil4/
technical-sessions/presentation/hwang

163

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

(23]

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and
Benjamin Recht. 2017. Occupy the Cloud: Distributed Computing for
the 99%. In Proceedings of the 2017 Symposium on Cloud Computing
(SoCC ’17). ACM, New York, NY, USA, 445-451.
https://doi.org/10.1145/3127479.3128601

Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017.
Stateless Network Functions: Breaking the Tight Coupling of State and
Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA,
97-112. https://www.usenix.org/conference/nsdil7/technical-sessions/
presentation/kablan

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans
Kaashoek. 2000. The Click modular router. ACM Transactions on
Computer Systems (TOCS) 18, 3 (2000), 263-297.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia
Ratnasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of
NFV. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, GA, 203-216.
https://www.usenix.org/conference/osdil6/technical-sessions/
presentation/panda

Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott
Shenker. 2017. Verifying Reachability in Networks with Mutable
Datapaths. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA,
699-718. https://www.usenix.org/conference/nsdil7/

technical-sessions/presentation/panda- mutable-datapaths
Vern Paxson. 1999. Bro: a system for detecting network intruders in

real-time. Computer networks 31, 23, 2435-2463.

Martin Roesch et al. 1999. Snort: Lightweight intrusion detection for
networks.

Brendan Tschaen, Ying Zhang, Theo Benson, Sujata Banerjee,
Jeongkeun Lee, and Joon-Myung Kang. 2016. SFC-Checker:
Checking the correct forwarding behavior of Service Function
chaining. In Network Function Virtualization and Software Defined
Networks (NFV-SDN), IEEE Conference on. IEEE, 134-140.

Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan,
and Timothy Wood. 2016. Flurries: Countless Fine-Grained NFs for
Flexible Per-Flow Customization. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments
and Technologies (CoNEXT ’16). ACM, New York, NY, USA, 3-17.
https://doi.org/10.1145/2999572.2999602

https://aws.amazon.com/lambda
https://functions.azure.com
http://span.cs.berkeley.edu/bess.html
http://dpdk.org
https://cloud.google.com/functions
https://www.ibm.com/cloud-computing/bluemix/openwhisk
http://software.es.net/iperf/
https://github.com/iron-io/functions
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://open-lambda.org
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1145/2619239.2626313
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://doi.org/10.1145/3127479.3128601
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://doi.org/10.1145/2999572.2999602

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Serverless Computing Platforms
	2.2 Network Functions
	2.3 Technical Challenges

	3 Serverless Packet Processing
	3.1 Granularizing NF processing
	3.2 State Management
	3.3 Strawman Architectures

	4 Experimental Validation
	4.1 Experimental Framework
	4.2 Experimental Results

	5 Discussion
	References

