
SNF: Serverless Network Functions
Arjun Singhvi

University of Wisconsin-Madison
asinghvi@cs.wisc.edu

Junaid Khalid∗
Google

junaidkhalid@google.com

Aditya Akella
University of Wisconsin-Madison

akella@cs.wisc.edu

Sujata Banerjee
VMware Research
sujata@banerjee.net

ABSTRACT
Our work addresses how a cloud provider can o�er Net-
work Functions (NF) as a Service, or NFaaS, using the emerg-
ing serverless computing paradigm. Serverless computing
has the right NFaaS building blocks - usage-based billing,
event-driven programming model and elastic scaling. But we
identify two core limitations of existing serverless platforms
that undermine support for NFaaS - coupling of the billing
and work assignment granularities, and state sharing via an
external store. Our framework, SNF, overcomes these limita-
tions via two ideas. SNF allocates work at the granularity of
�owlets observed in network tra�c, whereas billing and pro-
gramming occur at a �ner level. SNF embellishes serverless
platforms with ephemeral local state that lasts for the �owlet
duration and supports high performance state operations.
We demonstrate that our SNF prototype matches utilization
closely with demand and reduces tail packet processing la-
tency substantially compared to alternatives.

CCS CONCEPTS
• Networks!Middle boxes / network appliances.

KEYWORDS
Serverless Computing, Network Functions, Flowlets

ACM Reference Format:
Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee.
2020. SNF: Serverless Network Functions. In ACM Symposium on

∗Work done while at University of Wisconsin-Madison

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00
https://doi.org/10.1145/3419111.3421295

Cloud Computing (SoCC ’20), October 19–21, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3419111.3421295

1 INTRODUCTION
Recent advancements in serverless computing have made
great strides in reducing the burden of managing, provision-
ing, and scaling the server/VM infrastructure underlying
distributed applications. Users simply have to focus on appli-
cation logic. They write and upload programs called “func-
tions” that the platform dynamically scales based on user
speci�ed event triggers. The functions run in stateless and
short-lived computing instances/containers, and the user is
billed for exactly the compute cycles used for a function.
While this paves the way for cost-e�ective application and
service deployments [23], serverless computing today is nar-
rowly focused on stateless, short-lived, batch mode, and/or
embarrassingly parallelizable workloads. It leaves behind
stateful streaming workloads, which form our focus.
We consider the speci�c example of network functions

(NFs) that perform stateful operations on packet streams in
enterprises and telecommunication infrastructures. These
workloads are central to the Network Functions Virtualiza-
tion (NFV) transformation in telco service provider networks
and still face signi�cant challenges in simultaneously achiev-
ing low cost (to both the user and the infrastructure provider),
and scalable performance, while supporting programming
ease. In many ways, serverless computing provides a key set
of building blocks to address these issues impacting NFV, but
important gaps remain (§2).
We address the challenges of supporting NF workloads

atop serverless computing by adding in the missing abstrac-
tions and mechanisms to support stateful computation e�ec-
tively, while preserving the unique bene�ts of the serverless
paradigm, such as simpli�ed management, event-driven com-
pute triggering, usage-based pricing, and autoscaling.
NFs are a resource intensive workload with �ne grained

latency and throughput performance needs. We examine
limitations imposed by two naive realizations of support for
such workloads over today’s serverless platforms—invoking
a function per packet, or invoking a function per �ow. We

296

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

make two observations, and argue, correspondingly, for two
design improvements. First, we observe that, in today’s plat-
forms, “events” (e.g., each incoming request) are used for
determining both the granularity of work allocation as well
as the granularity against which functions are programmed
and billing is performed. This coupling imposes a hard trade-
o� between resource use e�ciency, performance, and billing
granularity for stateful applications. We argue for breaking
this coupling, and allowing work allocation to happen at a
di�erent granularity than that at which a function and billing
operates. Second, we observe that given state externaliza-
tion in today’s platforms (externalization is key to keeping
functions stateless, enabling rapid scale out) the only way
state can be shared across events and functions is by using
a remote storage service. State sharing is crucial to stateful
applications and, for NFs, state externalization substantially
worsens packet processing latency. Thus, we advocate for
ephemeral statefulness, where state is logically decoupled from
computation and physically bound to function instances in
an ephemeral fashion just for the duration of the computation
corresponding to a single unit of work allocation.
We leverage these two ideas in designing SNF, a new

serverless platform that allows cloud providers to o�er NFs-
as-a-service (NFaaS) wherein users can outsource NFs to
enjoy the bene�ts of the cloud [30, 36]. Users of SNF (e.g.,
NFV operators) can program di�erent NFs as functions. For
a given NF, SNF transparently distributes the packet process-
ing work in an incoming tra�c stream across an elastically
scalable set of compute units; each unit has a function cor-
responding to the given NF deployed in it. SNF maintains
high utilization of compute units, and ensures that minimal
number of units are used, which are attractive to the cloud
provider. SNF also ensures that a given NF instance’s packet
processing throughput is high, tail latency is low, and that
billing only captures the work done in processing tra�c, all
of which are appealing to users (NFV operators).
To achieve these goals, SNF relies on the following ideas:

• We note from prior work [40] that the packet process-
ing workloads in a �ow can be naturally granularized
into �owlets. In SNF, we use �owlets as the units of our
workload assignment, whereas NF programs that run in
function instances operate on a packet at a time, preserv-
ing the current NF programming abstraction and ensuring
that billing is only for work done.

• We store NF-internal state in the local memory of a com-
pute unit where a given �owlet is being processed. We
develop protocols that use inter-�owlet gaps to proac-
tively replicate such ephemeral state to a new compute
unit where the processing of a subsequent �owlet in the
same �ow is to occur, while avoiding inconsistent updates.

• Our work assignment algorithm keeps all active com-
pute units at the maximum possible utilization using a

weighted greedy bin-packing algorithm that maximally
packs �owlets into few compute units, while ensuring per-
formance targets are met, and while preferring instances
to which state has been proactively replicated.
We implement and evaluate a standalone prototype of

SNF on CloudLab [16] using 10Gbps and 100Gbps workloads.
We use real tra�c traces and �ve stateful NFs. We �nd that
SNF simultaneously achieves e�ciency, performance, and
fault tolerance for NF processing. SNF uses compute capac-
ity closely matching demand. It reduces 75%-ile processing
latency by 2.9K-19.6Kx over alternatives that operate at
�ow granularity. Our proactive state management improves
the 99%-ile tail latency of NF processing by 12-15x over
state-of-the-art state management solutions. Additionally,
our simple fault tolerance protocol supports fast recovery
(22.8x-183.6x reduction in comparison to alternatives).

2 MOTIVATION
NFs and NFaaS: NFs examine and modify packets to ensure
security, improve performance, and provide other diverse
functionalities: examples include network address translators
(NAT), intrusion detection systems (IDS), �rewalls, load bal-
ancers, etc. Many NFs are stateful in nature; e.g., NAT main-
tains address mappings, and IDS maintains string matches.
Over the last few years, researchers have advocated out-

sourcing NFs to the cloud [30, 36] to realize NFaaS to enable
NF users to enjoy cloud bene�ts such as leveraging the scale,
elasticity, and availability of the cloud, pay-as-you-go billing,
and the built-in management and operational expertise avail-
able at cloud providers.
However, as of today, no cloud provider o�ers NFaaS.

There exists limited support where an end user can use spe-
ci�c out-of-the-box NFs provided by the cloud provider, such
as a load balancer, or a �rewall [6, 7]. However, the user does
not have the �exibility of running custom NFs. Our work
addresses how a cloud provider can o�er NFaaS and realize
the goal of outsourcing NFs.
Ideally, an NFaaS platform should provide an intuitive

programming model to write custom NF logic and deliver
low packet processing latency while automatically scaling
up/down to meet the demand, and charging users only for
the work performed, i.e., usage-based billing.

2.1 Drawbacks of “Server-full” NFaaS
Realizations

It is possible for a provider to use “server-full” compute
platforms that use VMs or containers as compute units to
realize NFaaS. However, a key issue is that today’s native VM-
or container-based compute platforms’ interface does not
allow users to simply supply high-level functions; users are
responsible for managing the lifecycle of compute units (e.g.,

297

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

launch the compute unit, install appropriate NF logic and
other software dependencies, etc) which imposes signi�cant
management burden.

A more fundamental impediment arises in such platforms
due to their physical coupling of compute and state. By de�ni-
tion, a VM or a container couples a certain amount of local
memory with compute, thereby providing the abstraction
of a machine/server. As the compute unit executes the pro-
cessing logic (e.g., NF logic) on the incoming workload (i.e.,
stream of packets), local memory is read from or written to -
in order to access or mutate state (i.e., NF state).

Given this physical compute-state coupling, solutions that
adopt these platforms have to resort to coarse grained rules
for allocating incoming workload (�ow-level allocation in
our case) to compute units. Doing so results in a long-term
commitment between a �ow and a compute unit, which can
lead to overload, a�ecting performance, or under utiliza-
tion, a�ecting e�ciency, depending on the assigned �ow’s
rate (§9). However, the advantage of coupling is that perfor-
mance, especially at the tail, can be excellent, if no overload
occurs (rare in practice), as the state required for processing
is available in local memory. Thus, there exists a fundamen-
tal trade-o� between e�ciency and performance in such
platforms that physically couple compute and state.

2.2 Serverless Computing
Serverless computing, or function-as-a-service, is a new
cloud computing model that o�ers an event-driven program-
mingmodel, usage based billing, and automatic compute elas-
ticity. Additionally, serverless computing with �ne-grained
functions is also bene�cial to the cloud provider as it can
facilitate higher resource utilization. Thus, on the face of it,
serverless computing seems to have the right building blocks
to meet the requirements of NFaaS, which a cloud provider
could leverage.
However, existing platforms’ key design choices leave

a substantial gap in leveraging the promise of serverless
computing to supporting NFaaS. Before delving into these,
we provide a quick primer on serverless computing.
Serverless Background. In FaaS or serverless computing,
the user writes a function, uploads it to the serverless plat-
form and registers for an event (e.g., object uploads, incoming
HTTP request) to trigger function execution. The event is
the granularity at which the platform does work assignment,
and it is also the granularity for programming functions and
for billing. When an event arrives, the platform routes the
event to a compute unit that runs the function to process the
event. An event may cause setting up of a compute unit from
scratch which involves launching the unit and downloading
the relevant runtime and the function code from a data store;
alternatively, an event may be sent to an already launched

and “warmed up” compute unit. Additionally, the platform
elastically scales computation up/down based on incoming
event rate. The user is charged for the duration that it takes
a compute unit to process the event.
Gaps in serverless platforms. Serverless platforms today
lie at the other end of the spectrum from “serverfull sys-
tems” in that they physically decouple compute and state by
completely externalizing state and relegating it to a data
store (e.g., S3 [3]). Functions are stateless - all state needed
to process an event is read from an external store, and any
generated state is written back to the store.

The physical decoupling o�ers the advantage that process-
ing logic can be run wherever there is capacity - leading to
simple elasticity logic and enabling arbitrary scale elastic
processing and high utilization. However, its interplay with
another key design aspect of serverless today – the event
granularity couples work assignment, programming, and
billing – imposes fundamental trade-o�s for NFaaS.
One granularity for running NFs is per-packet. Here, the

platform would assign work, and NF function execution
would be triggered, per packet. This e�ciently utilizes com-
pute units, which helps the cloud provider, and also ensures
that users are billed exactly for just the compute cycles used.
But it causes reordering, with packets sprayed across the
compute units. Also, due to the physical decoupling of com-
pute and state, state required for processing must be accessed
via an external store for each packet leading to high latencies.

The per-�ow granularity, where the platform receives an
event when a new �ow arrives, triggering NF function exe-
cution, does not su�er from any packet reordering and state
access overheads induced by physical decoupling. However,
it places a strict constraint that all packets belonging to a
�ow must be processed by a single function and defaults to
“serverfull”-like physical compute-state coupling. Moreover,
the user is charged for periods even when no packets are
being processed by the function as it busy-waits for packets
pertaining to the still active “event” (�ow) to arrive.

Thus, naively running NFs atop serverless platforms leads
to a trade-o� between performance, e�ciency, and billing
bene�ts. These trade-o�s are fundamental to the two at-
tributes of today’s platforms: (a) the tight coupling between
workload assignment, programming, and billing granulari-
ties, and (b) the physical decoupling of compute and state.

3 SNF IDEAS AND ARCHITECTURE
OVERVIEW

In SNF, we match serverless computing with NFaaS using
two key ideas.
Idea 1: Decouple work assignment and programming
granularities: In SNF packet arrivals are treated as events.
This naturally aligns with the way developers implement NFs

298

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

- take a packet as input and execute the processing function
(process_pkt()).

Work assignment happens at per-�owlet granularity. A
�owlet [40] is a burst of packets that is separated from other
bursts of packets from the same �ow by a su�cient gap called
the �owlet timeout. Acting at this granularity provides more
opportunities to assign/allocate work. While operating at
a �ow granularity, multiple �ows are assigned to the same
compute unit which can lead to under utilization/overload
and head of line blocking (HOL): packets from an earlier
elephant �ow can cause those from mice �ows later to wait
in bu�ers at the unit, degrading latency (see §9.1). On the
other hand, while operating at the �owlet granularity, large
�ows are “broken up” into many �owlets that can now be
assigned at many units. This mitigates HOL blocking and
over-utilization. Also, the smaller size of �owlets than �ows
enables better packing of work to compute units, and hence
is better at avoiding under utilization.

Given the above decoupling and elevation of both packets
and �owlets as �rst class system-level entities, billing can
become very �ne grained. A provider can charge for usage,
by accounting for packet processing. Further, by tracking
�owlets, the provider can also taking into account control
plane actions taken on behalf of a user (e.g., work alloca-
tion). In practice, NFaaS providers can pick a combination of
the two. In our tech report [39], we evaluate the trade-o�s
of various possibilities and show that SNF enables billing
structures that are competitive compared to using alternative
compute substrates (e.g., VMs).
Idea 2: Choose a middleground for compute and state
(de)coupling.While e�orts have been made to reduce state
access overheads by using low latency networking [24, 25]
to make physical decoupling viable, they still experience a
hold up of packets in queues when a �ow is reallocated to
a new compute unit (waiting for state to be made available
before processing). This worsens tail latency by 15x (§9.2).
Instead, we argue for a middle ground - logical decou-

pling of compute and state, with ephemeral physical coupling.
Compute and state are logically decoupled from each other:
meaning that processing can be launched at any compute
unit untethered to state. Given the �owlet granularity of
work assignment, we ephemerally maintain physically local
state just for the duration of the �owlet’s processing (as all
packets in a �owlet are going to be processed at the same
compute unit). Further, in case subsequent �owlets of the
same �ow are assigned to di�erent compute units, we ensure
physical ephemeral coupling by leveraging the �owlet inac-
tivity period to opportunistically transfer ephemeral state
from the current compute unit to the estimated location,
helping us curtail delays and bring down tail latencies due to
state unavailability. If the estimation is incorrect, we make

state available in a fast, low overhead fashion for processing
to resume.

This brings the best of both worlds: good compute utiliza-
tion bene�ts of physical decoupling, while coming close to
the ideal-case latency performance of physical coupling.

3.1 SNF Overview
The SNF serverless NFaaS platform has two main compo-
nents – controller and NF runtime – that jointly realize the
above two ideas. We outline their main functions.
Controller. The controller consists of three main compo-
nents: (a) workload granularizer (WG), (b) work assigner
(WA) and (c) state manager (SM). When registered events
(packets) arrive at the platform, the controller’s WG groups
them into �owlets. Speci�cally, given a packet it determines
which �owlet it belongs to. If it belongs to an existing �owlet,
then it is routed to the appropriate compute unit where the
function (NF logic) executes and the event is processed. If
not, the WA determines the compute unit to which this new
�owlet should be assigned, so as to ensure performance and
e�ciency. The SM encodes a small amount of metadata to
each packet - which compute units to push/pull state to/from
in support of ephemeral coupling, and a logical clock to pre-
vent stale state updates.
NF Runtime. This is responsible for state management
at each compute unit, and it implements ephemeral physi-
cal compute-state coupling by transparently handling state
transfers among compute units. State ephemerality and trans-
fers are not visible to the NF developers.
ProgrammingModel.Given that packet arrivals are events
in SNF, NF developers operate in a familiar model wherein
process_packet() takes a packet as input. Also, the NF run-
time exposes simple put(key, value) and get(key) APIs which
the developers use to access state.

4 COMPUTE MANAGEMENT
The SNF controller is responsible for the compute manage-
ment – this primarily includes assigning incoming �owlets
to available computational units leveraging the logical de-
coupling of state. The controller also handles spinning up or
decommissioning units based on demand.

We �rst describe how the incoming workload is organized
into �owlets (§4.1) and then the algorithm for determining
where to assign �owlet processing (§4.2). The core logic is
in Pseudocode 1.

4.1 Workload Granularizer (WG)
When a packet arrives, a new �owlet is detected if one of the
two criteria is met (§4.2) - (a) the gap between the current
packet and the previous packet of the same �ow (identi�ed
by the 5-tuple) exceeds the �owlet inactivity timeout; or (b)

299

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

Pseudocode 1 SNF Compute Management - Core Logic
1: . Given a packet P, decide which compute unit to send to
2: procedure E����R������(Packet P)
3: M . Mapping between �owlet and compute unit
4: T = E������T����(P)
5: if F������D�������(T, P) then . Detects new �owlet
6: . Call W�������A������� as new �owlet is detected
7: ComputeID = W�������A�������(T, P)
8: else
9: . Use the existing assignment as P is within current �owlet
10: ComputeID =M[T]
11: end if
12: return ComputeID
13: end procedure

14: . Given a �owlet F and packet P, detect new �owlet
15: procedure F������D�������(Flowlet F, Packet P)
16: if currT ime - F.����P��T��� > t imeout then
17: . New �owlet detected as timeout criteria met
18: return T���
19: else if P.S��� + F.S��� > sizeThreshold then
20: . New �owlet detected as size criteria met
21: return T���
22: else
23: return F����
24: end if
25: end procedure

26: . Given a �owlet F, assign a compute unit
27: procedureW�������A�������(Flowlet F)
28: �!

C . Candidate compute unit IDs
29: �!

G . Sorted active compute unit IDs
30: for all � 2 G do
31: if F.D�����E��������(F) + �.L���() < �.C�������() then
32: score = �.U����������() + � * �.S����E����(F)
33: . Add the computed score to �!

C
34: �!

C .���(�, score)
35: end if
36: end for
37: . Pick the compute unit ID which has the maximum score
38: return max(�!C)
39: end procedure

the size of the existing �owlet exceeds a threshold (lines
14-25 in Pseudocode 1). Both the timeout and size thresholds
are con�gurable parameters and poor choices will impact the
overall e�ciency and performance; we perform detailed sen-
sitivity analysis in §9.6. If a new �owlet is not detected, the
controller forwards the packet to the compute unit already
associated with the packet’s �owlet.
The WG is also responsible for estimating the rate of in-

coming new �owlets, which is needed to make work assign-
ment decisions (line 31 in Pseudocode 1). For our prototype,
we estimate the demand of the �rst �owlet of a �ow to be the
average load of all �owlets (across all �ows) seen in the past.
For subsequent �owlets, we �nd that an estimator that com-
putes an exponentially weighted moving average (EWMA)

over the previous �owlet’s measured rate and the previous
estimate is su�cient for e�ective workload allocation (§9).

4.2 Work Assigner (WA)
If the WG has detected the start of a new �owlet, it sends
an assignment request to the WA along with the �owlet
load estimate. The WA assigns the �owlet to the appropriate
compute unit running NF logic. Prior to assignment, we
require compute units’ current load (line 31 in Pseudocode 1)
which we estimate in the following low-overhead manner -
given that each compute unit is handled by a single controller,
the controller measures the rate at which packets are drained
for a particular compute unit as its load estimate.

Our work assignment algorithm’s goal is to avoid overload
even in the face of highly dynamic workloads, while keep-
ing utilization high. In assigning work, we make a practical
assumption that each NF compute unit is provisioned with
adequate CPU and memory resources to support a work-
load up to BWmaxbps1 ; as long as the incoming rate to the
compute unit is less than BWmax , the NF will be able to pro-
vide the requisite performance. We greedily pack incoming
�owlets to active compute units so as to maximize their uti-
lization. This is analogous to bin packing: balls are �owlets,
and bins re�ect the network processing capacity at compute
units. The “greedy” aspect arises from the fact that in our
approach the compute units are considered in a deterministic
sorted order of their IDs; the smallest ID unit with room is
chosen, which leads to units with lower IDs being packed
�rst (lines 26-39 in Pseudocode 1). This determinism makes
the algorithm simple and easy to implement scalably.

Crucially, this determinismmakes it easy to take ephemeral
state’s likely availability into account while making assign-
ment decisions (line 32 in Pseudocode 1 - see §5); this helps
us balance utilization against per-packet processing latency.
The controller maintains utilization by adding new com-

pute units if the existing ones are saturated, and inactivating
existing ones if they do not receive any packets for a �xed
duration. To amortize compute unit start-up times we proac-
tively start them when existing units’ load all cross 90%.
Adversarial Flowlets: A key issue in packing arises when
tra�c demand spikes suddenly on certain, or all, �ow sub-
spaces. These “adversarial” �owlets, have actual load that is
signi�cantly higher than the estimate provided by our WG;
thus, an adversarial �owlet can degrade the performance of
other �owlets assigned to the same compute unit by building
up queues. If �owlets are detected by just using the inactivity

1The per packet CPU and memory resources are speci�ed by the user and
can be used by the provider to estimate the resources needed to processed
BWmax bps.

300

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

timeout, the impact of an adversarial �owlet can last arbi-
trarily. Thus, in SNF, we bound the negative impact of adver-
sarial �owlets by forking a new �owlet from the current one
if the current �owlet’s size exceeds a threshold. By bounding
size in this manner, we ensure that adversarial �owlets are
drained quickly and their negative impact is limited. The
new �owlet forked after exceeding the size threshold un-
dergoes the process of assignment using an updated load
estimate, wherein the moving average accounts for the rate
spike observed in the previous adversarial �owlet.

5 STATE MANAGEMENT
A stateful NF’s actions on a packet depend on the current
state, and for correct and high performance operation, fast
access to correct updated state is crucial. NFs may maintain
per-�ow or cross-�ow state. We focus on per-�ow state since
it is the common case and plan to consider cross-�ow state in
the future. Also, NFs have con�guration state which is often
static (e.g., an IDS has string matching rules) and does not
vary at packet-scale timelines. In SNF, such state is stored
in an external store and is pulled during the compute unit
setup phase leading to no visible overheads. Alternatively,
con�guration state can be packaged along with NF code
while it is being uploaded to SNF.

In SNF, NF developers do not have to worry about per-
�ow state management as the NF runtime makes the state
available in an ephemerally physically coupled fashion by
transparently moving it across compute instance locations.
In what follows, we �rst describe how ephemeral state is
set up and used (§5.1). We then describe how SNF enables
ephemeral physical coupling via proactive replication (§5.2).
We end with how SNF prevents updates to stale state (§5.3).

5.1 Ephemeral Physically Coupled State
A compute unit in SNF maintains physically local state while
processing a �owlet and thus compute and state are physi-
cally coupled ephemerally. State is bound to a compute unit
from just before the �rst packet of the �owlet assigned to
the unit is processed till the time the last packet is done be-
ing processed. Once the �owlet has ended, this state is no
longer associated with its compute unit. Ephemeral physical
coupling ensures that packets within a �owlet are processed
quickly as state access is always local and fast for each arriv-
ing packet, but imposes no commitment between �ows and
compute units.
Ephemeral state is initialized when the �rst packet of a

�owlet arrives at a compute unit as follows: if the �owlet is
the �rst one of the �ow, then the state is set to null; otherwise,
if the state has already been copied over to the compute unit’s
memory (as described next), then this state value is used; else,
the unit pulls state from the remote unit where the previous

�owlet was processed. The controller sends the processing
location of the previous �owlet of the same �ow as metadata
along with the packet belonging to the new �owlet.

5.2 Enabling Ephemeral Physical Coupling
Di�erent �owlets of a �ow may be processed by di�erent
units depending on the work assignment algorithm. This
could lead to a scenario where a �owlet f1 of a �ow F arrives
at a di�erent compute unit from the one that the prior �owlet
f0 of the same �ow F was processed. Relevant state after f0’s
processing is needed at the new compute unit before packet
processing can begin. When state is not available, packets
are held up in bu�ers at the compute unit until the state is
initialized, a�ecting latency.
To minimize stalls, SNF replicates ephemeral state proac-

tively among compute units by leveraging the gaps that ex-
ist between �owlets of a �ow. This solution works well if
the amount of per-�ow state maintained by an NF is small
enough that it can be transferred during the inter-�owlet gap
and not cause stalls. Luckily, prior work [26] has shown that
per-�ow state size in typical NFs (e.g., PRADS [4], Snort [34])
is under just a few KB for the entirety of a �ow’s lifetime;
even smaller fraction of this may be updated per �owlet.
Note, however, that proactive replication is unlikely to help
with �owlets that were created from packets exceeding the
size threshold (as opposed to the timeout).
One issue is that proactive replication requires compute

units to communicate with each other directly. This is a sub-
stantial departure from existing serverless platforms, where
units (e.g., lambdas [1]) are disallowed from communicating
with each other, and all communication can happen only via
the external state store. We do not view this constraint as
fundamental, and for performance reasons, relax it to enable
communication between cooperating compute units.
To ensure the peer-to-peer state transfers are useful and

performant, two key questions need to be addressed - (1)
when should a compute unit proactively initiate state trans-
fer? and (2) where should it transfer state to?
(1) When to transfer? It is di�cult to accurately predict
when a �owlet will end. Replicating state whenever there is a
small period of inactivity for a �owmay lead to unnecessarily
doing proactive state transfers if the �owlet does not end
and more packets arrive. Waiting till the end of the inactivity
timeout would default to reactively pulling the state, which
has performance implications.
In SNF, we proactively replicate state once the period of

inactivity exceeds half of the �owlet inactivity timeout to
balance minimizing wait times against making unnecessary
state transfers. In case this �owlet does not end, processing
can carry on without interruption at the primary unit which
still holds a copy of the latest state. However, this can lead

301

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

Pseudocode 2 SNF State Management
1: . Given a replication factor R, decide where replication should occur

2: procedure D������������R���������(ReplicationFactor R)
3: �!

C . Candidate unit IDs
4: �!

G . Sorted active unit IDs
5: . Return the �rst R active compute units
6: return �!

G [1 : R]
7: end procedure

8: . Pick R units via a weighted (inversely to IDs) randomized distribution
9: procedureW�������R���������R���������(ReplicationFactor R)
10: �!

G . Sorted active unit IDs
11: �!

W . Weights assigned inversely to IDs
12: �!

C . Candidate unit IDs
13: while len(�!C) < R do
14: . Pick a compute unit from �!

G where units are weighed by �!
W

15: replicationSite = W�������R���������(�!G , �!W)
16: �!

C .���(replicationSite)
17: end while
18: return �!

C [1 : R]
19: end procedure

to inconsistent state updates, which we discuss and address
in §5.3. In case a new �owlet arrives at a new compute unit
before the proactive transfer begins, we �rst reactively pull
relevant state (from the compute unit with state for the im-
mediate preceding �owlet). If the �owlet arrives while the
proactive transfer is occurring, we hold o� processing.
(2) Where to replicate state? A strawman solution is to
broadcast to all other active units but this may cause unnec-
essary transfers. Instead, in SNF, the controller estimates the
top K units where the next �owlet of this �ow could likely
be assigned to and it tracks this information per �owlet. The
reason for picking the top K and not the exact one is because
it is not possible to know ahead of time as to where the next
�owlet would be assigned, because a unit that is available
currently may be saturated by the time the new �owlet ar-
rives (due to �owlets of other �ows being assigned in the
interim). The question is how to pick the “top K” such that
the probability of the compute unit chosen by the WA for
the next �owlet already having the necessary state is high.
We could replicate to the K least loaded units, expecting

that the WA would assign the next �owlet to them. But, the
load can change by the time the next �owlet of this �ow
starts. Also, implementing a load-aware strategy is complex,
as we need up-to-date load information at scale.
Since the WA deterministically processes compute units

(lines 2-7 in Pseudocode 2), one simple load-unaware strategy
is to pick the least K ID compute units, i.e., units with IDs
from 1 to K, to replicate to (the WA would preferentially
allocate a new �owlet amongst these). But doing this for
every �owlet’s replicationwould render proactive replication
ine�ective when the least K ID units become overloaded,

which is likely especially for a small K. In such cases, future
�owlets are assigned outside these K units, and thus they
would have to pull state reactively.

SNF uses a simple variant of the above strategy that al-
lows for some error in the estimated location where a future
�owlet goes to. We pick the top-K compute units to replicate
state to, with probability inversely proportional to the units’
IDs (lines 8-19 in Pseudocode 2). Doing so ensures we pick
the lower ID units’ with higher probability as is done by WA.

The next question is how should the controller make the
next assignment decision to account for state availability
and maximize the potential bene�ts of proactive replication?
A strawman solution would be for the controller to check if
any of the K compute units (which have the required state)
could handle this �owlet. If yes, the �owlet is assigned to
one of the units in question and processing can proceed
without any wait time. If not, then we assign the �owlet to
an available compute unit and the state is pulled reactively.
Unfortunately, this approach ignores load, and can cause
compute units to become fragmented with many compute
units poorly utilized.

Instead we extend the work assignment algorithm to make
decisions using a weighted scoring metric (line 32 in Pseu-
docode 1) for choosing from the compute units account-
ing for both utilization and state availability. This metric is
S = utilization + � ⇥ � , where � is 1 if the compute unit has
the replicated state; otherwise it is 0. � is a knob between
0 and 1, and balances utilization against proactive bene�ts:
� = 0 results in the controller making assignment decisions
to improve utilization (and ignoring state) and � = 1 biases
more in favor units where replicated state is available.

5.3 Preventing Updates on Stale State
While the above techniques minimize packet wait time, we
need to ensure that a �owlet does not make updates on stale
state that is present at its compute unit. This can occur when
the optimistic approach of using half the �owlet timeout as
the deadline to proactively replicate state was erroneous in
assuming a �owlet would end. Here, the NF runtime would
proactively copy state, but a few lingering packets from the
original �owlet continue to arrive at the old unit and update
state there. State updates due to such packets should be
re�ected in the state copied over to the new unit before any
processing begins there.
To prevent a new �owlet from acting on stale per-�ow

state at the new unit, we introduce the notion of monotoni-
cally increasing logical clocks for each packet of a �ow. These
are assigned by the controller. Each packet carries its logical
clock as metadata. This prevents �owlets from making up-
dates on stale state in the following manner. The NF runtime
tags the state that is proactively replicated with the logical

302

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

clock of the last packet of this �ow that was received by the
old unit. When a new �owlet of this �ow arrives at the new
compute unit, before making updates to the state, the NF
runtime veri�es if the latest state is available by checking the
logical clock of the packet (i.e., �rst packet of the new �owlet)
is one more than the value with which the copied-over state
is tagged; if not, state update due to the new packet is stalled,
fresh state is pulled reactively, and then the update proceeds.

This technique also works in the rare event of packets ar-
riving out of order. As is done today, if the NF logic requires
packets to be processed in order, then the NF developer needs
to provide appropriate reordering logic. This typically in-
volves storing the out-of-order packet until the intermediate
packet arrives and then processing them in order. Thus, out-
of-order packets become a part of the ephemeral NF state
(which is tagged appropriately to prevent stale updates as
described above) and are processed per the logic de�ned.

6 FAULT TOLERANCE
In existing serverless platforms, physical decoupling of state
and externalization to a persistent store o�ers intrinsic fault
tolerance since state is always available. However, due to
logical state decoupling and ephemeral state coupling, SNF
as described cannot guarantee fault tolerance of NF state.
In SNF, when the originally assigned (or primary) NF

compute unit fails while processing a �owlet, a recovery
unit takes over the �owlet’s remaining processing. The key
fault tolerance property we desire here is that the per-�ow
state that the recovered unit is bootstrapped with should have
the same value as that with no failures. We describe how
we achieve this property. We assume the standard fail-stop
model in which a compute unit can crash at any point and
that the system can immediately detect the failure.
Traditional recovery mechanisms [14, 15] do not work

in the NF context due to the performance constraints they
impose, as well as the presence of non-deterministic state
update operations in NF logic (e.g., the use of random()) [35].
Our solution adapts prior NF-speci�c work on fault toler-
ance [25, 35]. Notably, SNF can adopt a simpler version of
such fault tolerance mechanisms, because: (a) SNF handles a
single type of NF (or a composite NF), as opposed to a chain
of NFs [25], and (b) SNF NFs use a single processing thread
as opposed to complex multi-threaded logic [35].
Output Logger (OL): Each NF unit is coupled with a sep-
arate output logger (OL), which is launched on a di�erent
physical machine. Once a packet has been processed by an
NF unit, the packet along with its state delta is sent to its OL;
here, delta is the change to the state value. The OL uses the
delta to locally update state it maintains for the NF, and only
then forwards the packet externally. Thus, the OL maintains
a consistent copy of the state of the primary NF unit. Note

that the OL can also be implemented using the same packet-
based programming model as NFs in SNF, with the di�erence
being that it only performs state IO on packet arrivals. As
an optimization, multiple NF units can share an OL.
NF or OL Failing (but not together): When an NF unit
fails, a recovery unit can take over by pulling state from the
associated OL. If an OL fails, then a recovery OL is initialized
by pulling state from its associated NF unit. The controller
provides the necessary metadata to the failover NF/OL to
pull state from the relevant location.
Race conditions: While this approach generally provides
the property we desire, a few race conditions can arise. AnNF
can crash after processing a packet but before/after transmit-
ting that packet alongwith the state delta to the OL. Similarly,
an OL can crash before or after transmitting the packet. In
our tech report [39], we prove that the above mechanism
ensures that the recovered state always has the same value
as under no failure even under such scenarios because some
participating entity will always have the correct state.
Controller failure: SNF controller is stateful – it maintains
logical clock, and current/previous �owlet-to-compute unit
mapping. Thus, upon failure, a recovery controller rebuilds
its state by querying all the active NF runtimes where the
state exists authoritatively - it obtains the clock values as-
sociated with each �ow and uses them to determine the
maximum clock value associated with each �ow before the
crash; in a similar manner, the �owlet-compute mapping is
also reconstructed.
Correlated failures: To protect against simultaneous NF
and OL failures, the state must be replicated at multiple
OLs before the packet is released. This increases overhead
and we do not consider it here; SNF by default assumes
that simultaneous NF+OL failures are rare. But, SNF can
handle correlated failures of an NF unit with controller as the
recovery controller can build the required state pertaining
to the failed NF unit from its OL. Likewise, SNF can handle
correlated failures of an OL with controller as it can build
the required state pertaining to the failed OL from its NF.

7 CONTROLLER SCALABILITY
The latency overhead introduced by the controller is minimal
(§9.7), but as the input workload scales (e.g., 100 Gbps), a
single (even powerful) controller can become a bottleneck
eventually. Thus, to support large scale workloads, we would
need to have multiple controllers. One approach is for con-
trollers to operate on dedicate sets of compute units. But this
impacts compute e�ciency due to resource fragmentation as
controllers do not share units. Alternatively, controllers can
share the underlying compute units by using a state store to
share compute unit load information. But this imposes the
overhead of coordinating over store access for every work
allocation decision, i.e., every �owlet.

303

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

SNF’s computemanagement design (§4)makes it amenable
to adding hierarchy to address scalability. In SNF, we use a
global resource manager (RM) that manages a pool of com-
pute units. The various controllers ask for the required pro-
cessing capacity based on the load seen in the last epoch
(say 100ms). The RM allocates the requested capacity, which
can be fractional; e.g., the RM can allocate 2.5 units to a con-
troller, which requires spinning up 3 units with the full �rst
two units and half the capacity of the third unit allocated to
the requesting controller. When load in the current epoch
is nearing requested/allocated capacity (all units at > 90%;
§4.2), the controller requests for more capacity to avoid per-
formance degradation. Controllers give back resources once
they become inactive (§4.2). Our RM-based design ensures
that resource fragmentation across controllers is reduced as
it strives to pack (fractional) units to their capacity.

8 IMPLEMENTATION
We built SNF prototype from scratch in C++ (20K LOC) rather
than building o� existing platforms such as AWS Lambda
due to their blackbox nature [38, 43]. It consists of:
Resource Manager. Implemented as a standalone process,
it establishes TCP connections with controllers and handles
resource requests.
Controller. Implemented as a multithreaded process, it es-
tablishes TCP connections with compute units and runs the
compute management algorithm. It measures the compute
unit load bymonitoring the rate at which packets are drained.
It measures this load at �xed buckets (of 500us) and consid-
ers the load over multiple buckets when packing (last 200
buckets, i.e., the last 100ms). The #buckets considered indi-
cates the minimum time for which a change in tra�c pattern
should exist for the system to react. We choose the above
values because smaller values made our system unstable by
reacting to minor bursts, and larger values cause it to re-
act too slowly. Flowlet detection is implemented using an
approach similar to one described in [11, 42].
External Datastore and NF Runtime. Implemented as
multithreaded processes. The former holds NF con�gura-
tion state and the latter realizes the notion of ephemerally
physically coupled state. Packet reception, transmission, pro-
cessing, and datastore connection are handled by di�erent
threads. Protobuf-c [5] is used to encode and decode state
transferred between units. Also, the NF runtime exposes
APIs using which we reimplemented �ve NFs of varying
complexity:
NAT. Performs address translation and the list of available
ports is the NF con�guration state. When a new connection
arrives, it obtains an available port and it then maintains the
per-connection port mapping.

LB. Performs hash-based load balancing. The servers’ list
constitute the NF con�guration state. When a new connec-
tion arrives, it obtains the server based on hash, and then
maintains (a) per-connection server mapping and (b) per-
connection packet count.
IDS.Monitors packets using the Aho-Corasick algorithm [9]
for signature matching. The string matching rules (e.g., Snort
rules [34]) constitute the NF con�guration state. Also, the
NF maintains per-connection automaton state mapping.
UDPWhitelister. Prevents UDP-based DDoS attacks [17]
by recording clients who send a UDP request.
QoS Tra�c Policer. Implements the token bucket algo-
rithm to do per-connection tra�c policing. The per-connection
(a) committed rate and (b) token bucket size constitute the NF
con�guration state. Also, the NF maintains per-connection
mapping of (a) time since previous packet and (b) current
available tokens.

9 EVALUATION
We evaluate SNF to answer the following questions:
• Can it provision compute as per the tra�c demand at
�ne time scales? Do we meet our goal of maximizing
utilization without sacri�cing performance?

• Does proactive state replication curtail tail latencies?
• How does it perform when adversarial �owlets occur?
• How quickly can it recover in the presence of failures?
• Is it able to reduce resource fragmentation when multiple
controllers are being used?

• How does it perform with di�erent system parameters?
Experimental Setup:Weuse 30 CloudLab [16] servers each
with 20-core CPUs and a dual-port 10G NIC. The SNF RM
and controller run on dedicated machines. The controller
receives the replayed tra�c from traces (details below) while
the compute units run within LXC containers [8] on the
remaining machines. For our experiments, we use one con-
troller and each compute unit is con�gured to process pack-
ets at BWmax=1 Gbps, enabling 10 compute units per ma-
chine. The default parameters are: �owlet inactivity timeout
T = 500µs, the �owlet size threshold B = 15KB, the bal-
ancing knob � = 0.25 and the replication factor K = 3. We
evaluate the sensitivity to these parameters in §9.6.
Real Packet Traces:Weuse two previously collected packet
traces on the WAN link between our institution and AWS
EC2 for a trace-driven evaluation of our prototype. One trace
has 3.8M packets with 1.7K connections whereas the other
trace has 6.4M packets with 199K connections. The median
packet sizes are 368 Bytes and 1434 Bytes. All the experi-
ments were conducted on both the traces with similar results;
we only show results from the latter trace for brevity. Given
that the load of the collected traces was not high, we scale
the trace �les by reducing the packet inter-arrival times.

304

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

0 5 10 15 20 25 30
Epochs

0
2
4
6
8

10

Ba
nd

w
id

th
 (G

bp
s)

Incoming Load
Provisioned Capacity

(a) Vanilla Flow

0 5 10 15 20 25 30
Epochs

0
2
4
6
8

10

Ba
nd

w
id

th
 (G

bp
s)

Incoming Load
Provisioned Capacity

(b) Smart Flow (100ms)

0 5 10 15 20 25 30
Epochs

0
2
4
6
8

10

Ba
nd

w
id

th
 (G

bp
s)

Incoming Load
Provisioned Capacity

(c) Smart Flow (50ms)

0 5 10 15 20 25 30
Epochs

0
2
4
6
8

10

Ba
nd

w
id

th
 (G

bp
s)

Incoming Load
Provisioned Capacity

(d) Flowlet

Figure 1: Compute provisioning across various work allocation modes.

100 101 102 103 104 105 106

Packet Processing Latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y

Vanilla Flow
Flowlet
Smart Flow (100ms)
Smart Flow (50ms)

Figure 2: Packet processing latencies (NAT) across var-
ious work allocation modes.

9.1 Compute Management Performance
We �rst evaluate SNF’s approach of �owlet-level work al-
location. We measure (1) the provisioning e�ciency with
changes in tra�c demands by recording the number of ac-
tive compute units at 100 ms time intervals (referred to as
an epoch hereafter), (2) the NF packet processing latencies
which re�ect the time spent in the input queue at the com-
pute unit (queuing delay) plus packet processing time and
(3) compute unit utilizations.

We compare against two state-of-the-art baselines:
(1) Vanilla Flow Allocation: work allocation is done when
�ows arrive, and once a �ow is assigned to a compute unit,
it is associated with that unit for its entire lifetime. This
mimics work allocation techniques used by today’s server-
full compute alternatives (when optimized state reallocation
schemes [20] are not used). (2) Smart Flow Allocation (X
ms): work allocation is done when �ows arrive, and if re-
quired, �ows are reallocated every X ms to avoid overload-
/underutilization at any compute unit. This re�ects state-of-
the-art work allocation schemes NF solutions use - it involves
using state reallocation mechanisms and thus supports �ow
migration [19, 20, 25, 44].

Figs. 1a-1d show a runtime snapshot of SNF’s provisioned
bandwidth and the packet processing demand2. We see that
acting on �owlets enables SNF to closely match the incoming
load, which is not the case at the �ow granularity, irrespec-
tive of whether �ow migration is supported or not.

2Since each compute instance has BWmax=1 Gbps, the provisioned band-
width is 1x #instances.

In the vanilla allocation mode, we see that the system
does not adapt well to the incoming load as it can react only
when new �ows arrive. In the smart �ow allocation mode,
when we reallocate, if required, every X ms (X being 50ms
or 100ms) the system is more adaptive in comparison to the
vanilla �ow mode as it gets more opportunities to reallocate
�ow. Acting at the �owlet granularity gives us 3.36X more
opportunities to assign work as compared to the alternatives,
enabling SNF to better react to incoming load variations.
Additionally, when operating in the smart �ow mode,

there is over provisioning of units (greater when we are
more aggressive to reallocate, i.e., smart �ow (50ms)) due to
the poor packability of �ows which are larger work alloca-
tion units (in comparison to �owlets). However, even when
acting in the �owlet mode, at times, additional 1-2 compute
units are used in order to extract the bene�ts of proactive
replication (§9.2).
Packet Processing Latencies. Fig. 2 shows that the packet
processing latency for the NAT NF while using the vanilla
�owmode is signi�cantly worse in comparison to the �owlet
mode: the 75th%-ile latency is 275.4ms, which is 19.6K times
worse than for �owlet mode. Once �ows are pinned to a
compute unit, their association continues until the �ows end
and because �ow rates vary during their lifetime (at times
more than the estimated rate during work allocation) we
observe input queues at compute units to build up. This is
further exacerbated by the presence of elephant �ows (5%
of the �ows in our trace have a size greater than 10KB). The
trends for the other NFs are similar.
In the smart �ow mode when we reallocate every 100ms

(50ms), the latency is still worse than �owlets: the 75th%-ile
latency is 64.5ms (41.1ms), which is 4.6K (2.9K) times worse
than the �owlet mode. This is due to (1) the mode being
unable to handle overloads that occur at lower time-scales
than the reallocation frequency (50ms or 100ms) causing
input queues at the compute units to build up and (2) hold
up of packets once reallocated until the relevant state is
pulled from the prior compute unit. In the �owlet case the
99%-ile latency is 2.8ms, while the median is 5µs. The tail is
contributed by micro bursts as the prototype cannot detect
changes that last < 100ms, leading to queuing occurring at
the units and also due to �owlets for which the NF runtime

305

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

0 4 8 12 16 20 24 28 32
Epochs

0
20
40
60
80

100
120
140

U
til

iz
at

io
n

(%
)

(a) Vanilla Flow

0 4 8 12 16 20 24 28 32
Epochs

0
20
40
60
80

100
120
140

U
til

iz
at

io
n

(%
)

(b) Smart Flow (100ms)

0 4 8 12 16 20 24 28 32
Epochs

0
20
40
60
80

100
120
140

U
til

iz
at

io
n

(%
)

(c) Smart Flow (50ms)

0 4 8 12 16 20 24 28 32
Epochs

0
20
40
60
80

100
120
140

U
til

iz
at

io
n

(%
)

(d) Flowlet

Figure 3: Epoch-wise utilization distribution of the active compute units across various work allocation modes.

NAT Load
Balancer

IDS UDP
Whitelist

Traffic
Policer

0.1

1

10

100

Pa
ck

et
P

ro
ce

ss
in

g
Ti

m
e

(u
se

c)

Optimized External Reactive Proactive

Figure 4: Packet processing latencies (1-25-50-75-99%-
iles) for di�erent storage modes.

has to reactively pull state from the previous units where
the prior �owlet in the �ow was processed.
Utilization.Whilewe have seen that operating in the �owlet
mode has the best performance, we need to verify that this
improved performance is not coming at the cost of simply
using more compute units. To do so, we delve deeper and
look at the epoch-wise distribution of the active compute
unit utilizations under the various modes (see Figs. 3a-3d).

As expected, while operating in the vanilla �ow mode we
experience maximum number of overloaded compute units
as the system is the least reactive. Interestingly, in the smart
�ow (100ms) mode, even though over-provisioning occurs,
we do see certain compute units being overloaded and this
is due to the fact that the system can react only every 100ms.
Consequently, in the smart �ow (50ms) mode, we see lesser
overload. Moreover, in all these modes wherein we act the
�ow level, we do experience more underutilization as well
due to the poor packability of �ows.
On the other hand, operating at the �owlet granularity

rarely experiences overload as we get far more opportunities
to react and have lesser underutilization as �owlets being
smaller work units pack better in comparison to �ows.

9.2 State Management Performance
We now evaluate SNF’s approach of proactively replicating
ephemeral state. We compare it against two state-of-art alter-
natives: (1) Optimized External: state is proactively pushed
(rather than waiting for the �owlet end) to an external in-
memory store and is read at the beginning at the �owlet. This
baseline is an optimization to how state is transferred across

compute units in today’s serverless platforms3. (2) Reactive:
state is pulled on the arrival of a �owlet from the previous
compute unit that the �ow was processed at. This represents
existing NF state managements solutions [20, 25, 44].
We measure the per-packet processing latencies for the

various NFs (Figure 4). For the NAT, the median latencies
across the three modes, external, reactive and proactive are
more or less similar (0.67µs, 0.61µs and 0.44µs) due to the
fact that state for most �owlets is eventually locally available
in all the three models. However, the tail latencies improve
while shifting from the external to reactive and �nally to
proactive (168.18µs, 132.74µs and 11.01µs respectively). In
both the baselines, upon arrival of the new �owlet, the up-
dated state needs to be pulled from the external store and
the previous compute unit respectively, thus the latencies
are dominated by the network RTT. The tail latencies in
case of using an external store are slightly higher than when
reactively pulling state in a peer-peer fashion as there may
be scenarios wherein a �owlet makes a reactive request to
the external store and its state is not available, and thus has
to wait longer. In the proactive mode, state is made available
prior to the arrival of a new �owlet (unless there is a delay
due to network anomalies or the �owlet has been scheduled
to a unit which does not have replicated state) due to which
processing is not stalled due to state unavailability. Similar
latency trends are noticed for the other NFs.
Proactive State Replication:We carry out deeper analyses
to understand where the bene�ts of proactive replication
arise from. For the �owlets that were assigned to di�erent
units than the previous unit for the various NFs, proactive
replication ensured that 90.43% of �owlets (on average across
the NFs) were able to proceed seamlessly without any wait
time whereas the remaining 9.57% reactively pulled state.
This indicates that proactive replication comes into e�ect
the majority of time helping to vastly reduce the tail.
Thus, with state optimizations, SNF achieves median la-

tencies similar to when state is maintained locally which
reduces the tail in comparison to existing alternatives.

3Today serverless platform don’t write to external stores by default; such
stores would have to be provisioned by the application.

306

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

Burst per
100th flow

Burst per
50th flow

Burst per
10th flow

1

10

1000

10000

Pa
ck

et
P

ro
c.

Ti
m

e(
us

ec
)

Timeout Timeout+Size

100

1000

Figure 5: Packet processing latencies (1-25-50-75-99%-
iles) in the presence of adversarial �owlets.

9.3 Tackling Adversarial Flowlets
To evaluate if SNF can tackle adversarial �owlets we use
three synthetic workloads with varying frequency of such
�owlets: we create these �owlets every 100th, 50th and 10th
�ow by adding bursts of 20 packets (⇠1400 bytes) on average.
Other aspects of the experimental setup remain the same.
For brevity, we only present results for NAT.
Recall that SNF should be able to mitigate the impacts of

adversarial �owlets as it uses a size threshold in addition
to inactivity timeout to detect �owlets. To study whether
this helps, we compare detecting �owlets using both the
criteria (timeout + size) with a baseline mode of using just the
timeout (timeout) in terms of the packet processing latencies.

We see in Fig. 5, that it is bene�cial to use both timeout and
size in comparison to just using the timeout - from the least
aggressive to the most aggressive workload we observe that
the median (tail) latency reduces from 101µs (677.9µs) to 87µs
(504.4µs), 201.2µ (1.5ms) to 93µs (702.4µs) and 752µ (5.2ms)
to 102µs (756.2µs). Using both helps SNF bound the impact
of adversarial �owlets by starting a new �owlet as soon
as the size threshold has been met, which happens quickly
for an adversarial �owlet and gives us the opportunity to
reallocate such �owlets (does not occur while using just
timeout) leading to reduced packet processing latencies.

9.4 Fault Tolerance
We study the performance of SNF under failure recovery
and compare it against state of the art NF fault tolerance
solutions - FTMB and CHC [25, 35]. The main metric of
interest is the recovery time, i.e., the amount of time it takes
to ensure that a new NF unit is available with up to date state.
We fail a single NAT unit and measure the recovery times
for FTMB, CHC and SNF at 50% load. We assume that the
failover compute unit is launched immediately in all cases.
In case of FTMB, the recovery time is 25.7ms (assuming

that FTMB does checkpointing every 50ms) and includes the
time taken to load the latest checkpoint as well as the time
taken to process the packets that need to be replayed to bring
the new NAT unit up to date. CHC under the same failure
scenario takes 3.2ms during which the latest state is fetched
from the datastore and the in-transit packets are replayed.

0 4 8 12 16 20 24 28 32
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ov

is
io

ne
d

- L
oa

d
(G

bp
s)

(a) Independent Controllers

0 4 8 12 16 20 24 28 32
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ov

is
io

ne
d

- L
oa

d
(G

bp
s)

(b) SNF’s Solution

Figure 6: Comparison of epoch-wise overprovisioning
distribution by each controllers while using indepen-
dent controllers and our approach.

On the other hand, in SNF the recovery time is 140µs which
accounts for the amount of time taken to transfer the state
from the OL of the failed NAT unit to this newly launched
NAT unit. Unlike FTMB and CHC, given that SNF stores a
copy of the latest state at the OL, it does not need to replay
packets during recovery leading to a faster recovery time.

9.5 Multiple Controllers
To evaluate SNF at scale when using multiple controllers we
compare our approach of using a RM to the baseline mode
of operating the controllers independently. We use 10 con-
trollers and the cumulative load is on average 93.5 Gbps. We
record the per-controller provisioned capacity and actual
load received and look at their di�erence (see Fig. 6a-6b).
The Y-axis value being 0 represents the ideal case (provi-
sioned capacity equals load), > 0 indicates over provisioning
(reducing e�ciency).

As seen in Figs. 6a-6b, the amount of over provisioning
is minimal in case of SNF as opposed to using independent
controllers. The reason being that in the baseline mode there
is more resource fragmentation due to controllers provision-
ing compute units independently. With SNF, since the RM
“leases out” capacity of compute units, resource fragmenta-
tion is reduced as multiple controllers can send tra�c to the
same shared compute unit (up to their allocated share).

9.6 Sensitivity Analysis
Flowlet Inactivity Timeout (T): Setting the �owlet inac-
tivity timeout plays a crucial role in SNF as the value decides
how closely SNF can adapt to tra�c changes. Additionally,
it impacts the e�ciency of proactive replication. We con-
sider two timeout thresholds: T = 100µs and T = 500µs. In
comparison to allocation at the per �ow level, we see 5.18X
and 4.66X more opportunities to do work allocation when
T = 100µs and T = 500µs, respectively. While T = 100µs
clearly has bene�ts, we choose T = 500µs in SNF. This im-
proves the bene�ts of proactive replication, given that to
replicate state of our NFs takes about 160µs.
Flowlet Size Threshold (B): We consider multiple thresh-
olds to study the impact on both performance and utilization

307

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

3 6 9
(a) Replication Factor (K)

0
20
40
60
80

100
120
140

9
9

 %
ile

 (
u

se
c)

0 0.15 0.25 0.75

3 6 9
(b) Replication Factor (K)

0

20

40

60

80

100

C
o

m
p

u
te

In

cr
e

m
e

n
t

(%
)

0 0.15 0.25 0.75

3 6 9
(c) Replication Factor (K)

0

20

40

60

80

100

S
e

a
m

le
ss

F

lo
w

le
ts

 (
%

)

0 0.15 0.25 0.75

Figure 7: Impact of varying K and � on (a) packet processing time, (b) compute instances and (c) �owlets that can
be processed seamlessly.

1K 10K 20K 40K 80K
(a) Flowlet Size Threshold (Bytes)

0
200
400
600
800

Pk
t P

ro
c.

 T
im

e
(u

se
c)

1K 10K 20K 40K 80K
(b) Flowlet Size Threshold (Bytes)

0
3
6
9

12

C
om

pu
te

In

cr
ea

se
 (%

)

Figure 8: Impact of size threshold on latency and com-
pute provisioning.

for NAT. As the �owlet size increases, the processing la-
tencies improve (Fig. 8a) primarily because the number of
reactive state pulls decrease. On the other hand, this decrease
in latency comes at the cost of increased usage of compute
units (Fig. 8b) due to poor packability of the larger work
allocation units.
Replication Factor (K) and Balancing Knob (�): Figs. 7a-
7c show the impact of changing the value of K and � while
having a maximum of 15 compute units in use. Here the NF
capacity used is 500 Mbps. For a given K, on increasing � ,
the number of �owlets that can be processed without state
unavailability delays increases, as our scoring metric gives
more importance to units that have the state (§5). However,
this comes at the cost of using some amount of additional
compute units. Needless to say, the tail latencies improve
as the value of � increases as more �owlets are scheduled
on units where their state is present (e.g., for K = 3, the
latency decreases from 107µs to 6.8µs when � changes from
0 to 0.75). While for smaller values of � , the latencies are
dominated by reactive state pulls, for larger values of � we
see that as K increases, the latency increases from 6.8µs to
15.2µs (when K changes from 3 to 9) re�ecting the overhead
involved in proactively replicating state.

9.7 Overheads
Work Allocation Overhead. The controller calls into the
work allocation algorithm for every new �owlet. This adds
a latency of 1µs, but this is once per �owlet and hence is
amortized across the packets of the �owlet.
Proactive Replication. In our current prototype, we proac-
tively replicate state to K compute units every 250us (half of
the �owlet timeout). For the said trace with K = 3, the proac-
tive replication for NAT, LB, IDS, UDP Whitelister and QoS

Tra�c Policer uses up an additional bandwidth of 3.62 Mbps,
4.13 Mbps, 3.12 Mbps, 2.9 Mbps and 4.8 Mbps respectively.

10 OTHER RELATEDWORK
Some recent studies have show the bene�ts of using existing
serverless platforms in unmodi�ed form for “non-standard”
applications, e.g., scalable video encoding [18], and paral-
lelized big data computations [22, 33]. Other works instead
focus on improving key aspects of serverless computing, e.g.,
reducing container start-up times [12, 31], improved sys-
tem performance [10], new storage services [27, 28], which
proposed elastic ephemeral storage for serverless, and secu-
rity [13]. Our work falls into this second category, where
we provide additional support for high performance stateful
applications such as NFs. [37] proposes a high-performance
stateful serverless runtime using software-fault isolation
which avoids expensive data movement when functions are
co-located on the same machine. However, it defaults to reac-
tively pulling state when functions are on di�erent machines
leading to high processing latencies. SNF adds to the long
line of literature on NFs and NFV. Improving performance
in standalone software environments is the goal of several
papers [2, 21, 32, 41]. There has also been signi�cant e�orts
in failure resiliency for NFV environments [25, 29, 35].

11 CONCLUSIONS
We show the bene�ts of leveraging serverless computing
for streaming stateful applications, using NFs. SNF e�ec-
tively matches varying NF demands, while ensuring good
e�ciency and packet processing performance, and o�ering
�ne-grained resource tracking and billing. SNF decouples
the functions operation unit and serverless work allocation
unit, using �owlets for the latter. The SNF runtime proac-
tively replicates state during inter-�owlet gaps, realizing
ephemeral physical coupling between compute and state.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers of SoCC’20
and the members of WISR Lab for their insightful comments
and suggestions. This research was supported by NSF Grants
CNS-1565277, CNS-1719336, CNS-1763810, CNS-1838733 and
by gifts from Google and VMWare.

308

SoCC ’20, October 19–21, 2020, Virtual Event, USA Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Banerjee

REFERENCES
[1] 2017. AWS Lambda. https://aws.amazon.com/lambda.
[2] 2017. Berkeley Extensible Software Switch (BESS). http://span.cs.

berkeley.edu/bess.html.
[3] 2018. AWS S3. https://aws.amazon.com/s3/.
[4] 2018. PRADS. https://gamelinux.github.io/prads/.
[5] 2018. Protobuf-c. http://lib.protobuf-c.io/.
[6] 2019. AWS Elastic Load Balancing. https://aws.amazon.com/

elasticloadbalancing/.
[7] 2019. AWS Firewall Manager. https://aws.amazon.com/�rewall-

manager/.
[8] 2019. LXC Containers. https://linuxcontainers.org/lxc/introduction/.
[9] Alfred V Aho and Margaret J Corasick. 1975. E�cient string matching:

an aid to bibliographic search. Commun. ACM 18, 6 (1975), 333–340.
[10] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). 923–935.

[11] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA:
Distributed congestion-aware load balancing for datacenters. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM. 503–514.

[12] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
2018. Putting the "Micro" Back in Microservice. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18). 645–650.

[13] Stefan Brenner and Rüdiger Kapitza. 2019. Trust More, Serverless. In
Proceedings of the 12th ACM International Conference on Systems and
Storage. 33–43. https://doi.org/10.1145/3319647.3325825

[14] Brendan Cully, Geo�rey Lefebvre, Dutch Meyer, Mike Feeley, Norm
Hutchinson, and Andrew War�eld. 2008. Remus: High availability via
asynchronous virtual machine replication. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation.
San Francisco, 161–174.

[15] YaoZu Dong, Wei Ye, YunHong Jiang, Ian Pratt, ShiQing Ma, Jian Li,
and HaiBing Guan. 2013. Colo: Coarse-grained lock-stepping vir-
tual machines for non-stop service. In Proceedings of the 4th annual
Symposium on Cloud Computing. 1–16.

[16] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). 1–14.

[17] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. 2015.
Bohatei: Flexible and Elastic DDoS Defense. In 24th USENIX Security
Symposium (USENIX Security 15). 817–832.

[18] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and KeithWinstein. 2017. Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny Threads. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). 363–376.

[19] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl,
Xiaoyang Gao, Ashok Anand, Theophilus Benson, Vyas Sekar, and
Aditya Akella. 2013. Stratos: A network-aware orchestration layer for
virtual middleboxes in clouds. arXiv preprint arXiv:1305.0209 (2013).

[20] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.

OpenNF: Enabling Innovation in Network Function Control. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM (Chicago, Illi-
nois, USA) (SIGCOMM ’14). ACM, New York, NY, USA, 163–174.
https://doi.org/10.1145/2619239.2626313

[21] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. In 11th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14). 445–458.

[22] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for the
99%. In Proceedings of the 2017 Symposium on Cloud Computing (Santa
Clara, California) (SoCC ’17). ACM, New York, NY, USA, 445–451.
https://doi.org/10.1145/3127479.3128601

[23] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming
Simpli�ed: A Berkeley View on Serverless Computing. Technical Re-
port UCB/EECS-2019-3. EECS Department, University of California,
Berkeley.

[24] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. State-
less Network Functions: Breaking the Tight Coupling of State and
Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). 97–112.

[25] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance
for Stateful Chained Network Functions. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). 501–516.

[26] Junaid Khalid, Aaron Gember-Jacobson, RoneyMichael, Anubhavnidhi
Abhashkumar, and Aditya Akella. 2016. Paving the Way for NFV:
Simplifying Middlebox Modi�cations Using StateAlyzr. In 13th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
16). 239–253.

[27] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfe�erle, and Animesh Trivedi. 2018. Understanding Ephemeral Stor-
age for Serverless Analytics. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18). 789–794.

[28] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfe�erle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). Carlsbad, CA, 427–444.

[29] Sameer G Kulkarni, Guyue Liu, K. K. Ramakrishnan, Mayutan Aru-
maithurai, Timothy Wood, and Xiaoming Fu. 2018. REINFORCE:
Achieving E�cient Failure Resiliency for Network Function Virtualiza-
tion Based Services. In Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies (CoNEXT ’18).
ACM, 41–53.

[30] Chang Lan, Justine Sherry, Raluca Ada Popa, Sylvia Ratnasamy, and Zhi
Liu. 2016. Embark: Securely Outsourcing Middleboxes to the Cloud. In
Proceedings of the 13th USENIX Conference on Networked Systems Design
and Implementation (Santa Clara, CA) (NSDI’16). USENIX Association,
Berkeley, CA, USA, 255–273.

[31] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). 57–70.

[32] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of
NFV. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 203–216.

[33] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shu�ing,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation

309

SNF: Serverless Network Functions SoCC ’20, October 19–21, 2020, Virtual Event, USA

(NSDI 19). 193–206.
[34] Martin Roesch. 1999. Snort - Lightweight Intrusion Detection for

Networks (LISA ’99). 229–238.
[35] Justine Sherry, Peter Xiang Gao, Soumya Basu, Aurojit Panda, Arvind

Krishnamurthy, Christian Maciocco, Maziar Manesh, João Martins,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. Rollback-
Recovery for Middleboxes. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. 227–240.

[36] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy,
Sylvia Ratnasamy, and Vyas Sekar. 2012. Makingmiddleboxes someone
else’s problem: network processing as a cloud service. ACM SIGCOMM
Computer Communication Review 42, 4 (2012), 13–24.

[37] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for E�cient Stateful Serverless Computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). 419–433.

[38] Arjun Singhvi, Sujata Banerjee, Yotam Harchol, Aditya Akella, Mark
Peek, and Pontus Rydin. 2017. Granular Computing and Network
Intensive Applications: Friends or Foes?. In Proceedings of the 16th
ACM Workshop on Hot Topics in Networks. 157–163.

[39] Arjun Singhvi, Junaid Khalid, Aditya Akella, and Sujata Baner-
jee. 2019. SNF: Serverless Network Functions (Tech Report).

arXiv:1910.07700 [cs.DC]
[40] Shan Sinha, Srikanth Kandula, and Dina Katabi. 2004. Harnessing

TCP’s burstiness with �owlet switching. In Proceedings of the 3rd ACM
Workshop on Hot Topics in Networks.

[41] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017.
NFP: Enabling Network Function Parallelism in NFV. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communi-
cation (Los Angeles, CA, USA) (SIGCOMM ’17). ACM, New York, NY,
USA, 43–56. https://doi.org/10.1145/3098822.3098826

[42] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. 2017. Let it �ow: Resilient asymmetric load balancing with
�owlet switching. In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). 407–420.

[43] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
133–146.

[44] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic Scaling of Stateful Network Func-
tions. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). 299–312.

310

