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Abstract

The performance of an OS’s networking stack can be
measured by its achieved throughput, CPU utilization,
latency, and per-flow fairness. To be able to drive in-
creasing line-rates at 10Gbps and beyond, modern OS
networking stacks rely on a number of important hard-
ware and software optimizations, including but not lim-
ited to using multiple transmit and receive queues and
segmentation offloading. Unfortunately, we have ob-
served that these optimizations lead to substantial flow-
level unfairness.

We describe Titan, an extension to the Linux network-
ing stack that systematically addresses unfairness arising
in different operating conditions. Across both fine and
coarse timescales and when NIC queues are undersub-
scribed and oversubscribed, we find that the Titan can
reduce unfairness by 58% or more when compared with
the best performing Linux configuration. We also find
that improving fairness can lead to a reduction in tail
flow completion times for flows in an all-to-all shuffle
in a cluster of servers.

1 Introduction

Many large organizations today operate data centers
(DCs) with tens to hundreds of thousands of multi-core
servers [37, 35, 20]. These servers run a variety of
applications with different performance needs, ranging
from latency-sensitive applications such as web services,
search, and key-value stores, to throughput-sensitive ap-
plications such as Web indexing and batch analytics.
With the scale and diversity of applications growing, and
with applications becoming more performance hungry,
data center operators are upgrading server network in-
terfaces (NICs) from 1Gbps to 10Gbps and beyond. At
the same time, operators continue to aim for multiplexed
use of their servers across multiple applications to ensure
optimal utilization of their infrastructure.

The main goal of our work is to understand how we
can enable DC applications to drive high-speed server
NICs while ensuring key application performance goals
are met—i.e., throughput is high and latency is low—and
key infrastructure performance objectives are satisfied—
i.e., CPU utilization is low and applications share re-
sources fairly.

Modern end-host network stacks offer a variety
of optimizations and features to help meet these
goals. Foremost, many 10Gbps and faster NICs
provide multiple hardware queues to support multi-
core systems. Recent advances in the network stack
(RPS [7]/RFS [6]/XPS [11]) allow systematic assign-
ment of these queues and the flows using them to CPU
cores to reduce cross-core synchronization and improve
cache locality. In addition, provisions exist both in hard-
ware and in the operating system for offloading the pack-
etization of TCP segments, which vastly reduces CPU
utilization [22]. Likewise, modern OSes and NIC hard-
ware provide a choice of software queuing logics and
configurable queue size limits that improve fairness and
lower latencies by avoiding bufferbloat [19].

The first contribution of this paper is a systematic ex-
ploration of the performance trade-offs imposed by dif-
ferent combinations of optimizations and features for
four key metrics, namely, throughput, latency, CPU uti-
lization, and fairness. We study performance under ex-
tensive controlled experiments between a pair of multi-
core servers with 10G NICs where we vary the level of
oversubscription of queues.

We find that existing configuration options can opti-
mize throughput and CPU utilization. But, we found
that across almost every configuration there is substan-
tial unfairness in the throughput achieved by different
flows using the same NIC: some flows may transmit at
twice the throughput or higher than others, and this can
happen at both fine and coarse time scales. Such unfair-
ness increases tail flow completion times and makes data
transfer times harder to predict. We find that this unfair-
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ness between flows arises because of three key aspects of
today’s networking stacks:

Foremost, OSes today use a simple hash-based scheme
to assign flows to queues, which can easily lead to
hash collisions even when NIC queues are undersub-
scribed (fewer flows than queues). Even a more op-
timal flow-to-queue assignment can result in flow im-
balance across queues especially under moderate over-
subscription (when the number of flows is only slightly
larger than the number of queues).

Second, NIC schedulers strive for equal throughput
from each transmit queue and thus service packets from
queues in a strict round-robin fashion. Flows that share a
queue as a result receive only a fraction of the throughput
of those that do not. Even over long periods, a flow may
receive half its fair-share throughput or less.

Finally, segmentation offload, which is crucial for low-
ering CPU utilization, exacerbates head-of-line blocking
because a large segment of a flow must be transmitted
before a segment from a different flow can be transmit-
ted out of the same queue. This becomes acute at high
levels of oversubscription, when there may be multiple
segments from different flows in each queue. In this case,
head-of-line blocking is also exacerbated by the number
of queues that are in use. The NIC performs round robin
scheduling of packets from different queues, and the OS
aims to keep the same number of bytes enqueued in each
hardware queue. If a large segment of the same size is in
every queue, a newly arrived packet will have to wait for
every enqueued segment to be sent before it can be sent,
regardless of which queue it uses.

The second contribution of this paper is an extension
to the Linux networking stack called Titan that incorpo-
rates novel ideas to overcome the above fairness issues.
First, Titan uses dynamic queue assignment (DQA) to
evenly distribute flows to queues based on current queue
occupancy. This avoids flows sharing queues in under-
subscribed conditions. Second, Titan adds a new queue
weight abstraction to the NIC driver interface and a dy-

namic queue weight assignment (DQWA) mechanism in
the kernel, which assigns weights to NIC queues based
on current occupancy. In Titan, NICs use deficit round-
robin [36] to ensure queues are serviced according to
computed weights. Third, Titan adds dynamic segmen-

tation offload sizing (DSOS) to dynamically reduce the
segment size and hence reduce head-of-line blocking un-
der over-subscription, which balances improvements to
fairness against increased CPU utilization.

We implement Titan in Linux, and, using experiments
both without and with network congestion, we show
that Titan greatly reduces unfairness in flow throughput
across a range of under- and oversubscription conditions
and both at short and long timescales. In many cases,
there is near zero unfairness, and in the cases where it re-

mains, Titan reduces unfairness by more than 58%. Our
experiments on a cluster of servers show that Titan offers
the most fair flow completion times and decreases flow
completion times at the tail (90th percentile).

Titan can increase CPU utilization and latency. We
have designed Titan so as to try to minimize its impact
on CPU utilization. In our experiments, Titan with DQA
and DQWA often increases CPU utilization by less than
10%, although in the worst case it increases CPU utiliza-
tion by 17% and 27% with and without pinning queues
to cores, respectively. Also, Titan often matches the RTT
latency of unmodified Linux with average latencies rang-
ing from 123–660µs. At most, Titan increases latency
by 134µs, and DSOS often reduces latency by more than
200µs. Still, latency under load still remains higher than
when there is no other traffic using the NIC (32µs).

Current best practices for preventing long-running
bulk data transfers from impacting latency sensitive traf-
fic is to isolate different traffic classes in different priori-
ties [26, 20]. Titan is compatible with DCB, so DCB pri-
orities can still be used to isolate latency-sensitive traffic
from bulk traffic in Titan. At the NIC level, this is ac-
complished by allocating dedicated pools of NIC queues
for each DCB priority.

In the next section we provide background material on
server networking stacks. Section 3 describes the design
of Titan, and Section 4 has information on the imple-
mentation. Sections 5 and 6 describe our methodology
and evaluation. We follow with related work and then
we conclude.

2 Background

Networking in modern OSes is complex. There are mul-
tiple cooperating layers involved, and each layer has its
own optimizations and configurations. Further, there are
multiple different dimensions by which the performance
of a server’s network stack can be measured, and dif-
ferent configurations have subtle performance trade-offs.
Figure 1 shows the different layers involved in a server’s
network stack (server-side networking), and Table 1 lists
the most significant configuration options.

2.1 Server Networking Queue Configura-
tions

We focus on the transmit (TX) side of networking be-
cause choices made when transmitting segments have a
much larger potential to impact fairness: a server has
no control over what packets it receives and complete
control over what segments it transmits. Although the
RX-side of networking is important, TX and RX are
largely independent, so recent improvements to the RX
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Figure 1: Different server-side TX networking designs:
(a) Single queue (SQ) TX networking. (b) Multiqueue
(MQ) TX networking. (c) Multicore-partitioned (XPS)
multiqueue TX networking.

side [25, 18, 30] are complementary to improvements to
the TX side.

In an OS, data from application buffers are passed as
a segment (smaller than some maximum segment size)
through many different layers of the network stack as it
travels to the NIC, where it is turned into one or more
packets on the wire. Both the design of each layer that
touches a segment and the interfaces between them can
impact performance.

There are many ways of connecting the layers of a net-
working stack that differ in the number of NIC transmit

queues and the assignment of queues to CPU cores. Fig-
ure 1 illustrates three designs. Figure 1a shows how the
OS interfaces with a single queue NIC (SQ). Figures 1b
and 1c show two different ways for an OS to interface
with a multiqueue NIC. The first (MQ) allows for flows
on any core to use any NIC queue. The second partitions
queues into pools that are dedicated to different cores,
which we refer to by its name in Linux, XPS (transmit
packet steering) [11].

Single Queue (SQ): In this design, segments from mul-
tiple competing applications (and containers/VMs) des-
tined for the same output device are routed by the TCP/IP
stack first to a per-device software queue and then to a
per-device hardware queue (Figure 1a). The software
queue (Qdisc in Linux) may implement any scheduling
policy. The hardware transmit queues are simple FIFOs.

On a multicore system, SQ can lead to increased re-
source contention (locking, cache coherency, etc.). Thus,
SQ has largely been replaced by designs that use multi-
ple independent software and hardware transmit queues.
Nevertheless, SQ offers the OS the most control over
packet scheduling because the NIC will transmit pack-
ets in the exact order chosen by the OS.

Multiqueue (MQ): To avoid SQ’s resource contention
overheads, many 10 Gbps and faster NICs provide mul-
tiple hardware transmit and receive queues (MQ). Most
OSes use multiple partitioned software queues, one for

each hardware queue. Figure 1b illustrates MQ in Linux.
Note that queues are not pinned to individual cores in
this model, although flows may be assigned to queues.
This allows computation to be migrated to idle or under-
utilized cores [32] at the expense of performance isola-
tion provided by dedicating queues to cores. Given a
multiqueue NIC, by default, Linux will use MQ.

The driver that we use (ixgbe) sets the number of
queues to be equal to the number of cores by default.
However, modern NICs typically can provide more hard-
ware queues than cores, and using more queues than
cores can be advantageous.

Moving to a multiqueue NIC requires that the OS im-
plement some mechanism for assigning traffic to queues.
In Linux, queue assignment is determined by RSS hash-
ing for incoming flows and by a per-socket hash for out-
going flows. Because the number of open sockets may be
much larger than both the number of NIC queues and the
number of simultaneously active sockets, hash collisions
would be expected given this approach regardless of the
specific hash algorithm that is used.

In MQ, NICs must implement some algorithm for pro-
cessing traffic from the different queues because they can
only send a single packet at a time on the wire. Both
the Intel 82599 and Mellanox ConnectX-3 NICs perform
round-robin (RR) scheduling across competing queues
of the same priority [2, 31]. Because of this, MQ can
increase HOL blocking latency. If a multi-packet seg-
ment is enqueued in an empty queue, the time to send
this entire segment in MQ will be the transfer time in SQ
multiplied by the number of active queues. For example,
sending a single 64KB segment at 10Gbps line-rate takes
52µs, while sending a 64KB segment from 8 different
queues takes 419µs. Further, if all of the queues are full,
the queueing latency of the NIC for any new segment is
at least equal to the minimum number of bytes enqueued
in a queue times the number of queues.

Multicore-Partitioned Multiqueue (XPS): The third
networking design partitions NIC queues across the
available CPUs, which can reduce or eliminate the inter-
core communication performed for network I/O and im-
prove cache locality. This configuration (transmit packet
steering or XPS [11]) is particularly important for per-
formance isolation because it ensures VMs/containers on
one core do not consume CPU resources on another core
to perform I/O. As in MQ, when a core can use multiple
queues, hashing is used to pick which queue individual
flows are assigned to in Linux.

In Linux, partitioning queues across cores involves
significant configuration. XPS assigns NIC TX queues to
a pool of CPUs. Because many TX queues can share an
interrupt, interrupt affinity must also be configured cor-
rectly for XPS to be effective.
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Config Purpose Expected Impact

Segmentation offloading (TSO/GSO) Offload or delay segment packetization Increases to segment sizes should reduce CPU utilization, in-
crease latency, and hurt fairness

Choice of software queue (Qdisc) Optimize for different performance goals Varies
Assignment of queues to CPU cores (XPS, etc.) Improve locality and performance isolation Improved assignment should reduce CPU utilization
TCP queue occupancy limits (TCP Small Queues) Avoid bufferbloat Decreasing should reduce CPU utilization and latency up to

a point of starvation.
Hardware queue occupancy limits (BQL) Avoid head-of-line (HOL) blocking Decreasing the byte limit should reduce latency up to a point

of starvation. Further decreases should decrease throughput.

Table 1: A table that lists the different server-side network configurations investigated in this study, their purpose, and
their expected performance impact.

2.2 Optimizations and Queue Configura-
tions

There are many additional configurations and optimiza-
tions that impact network performance. Combined with
the above queue configurations, these options induce key
trade-offs in terms of latency, throughput, fairness and
CPU utilization.

TSO/GSO: Segmentation offloading allows the OS to
pass segments larger than the MTU through the net-
work stack and down to the NIC. This reduces the num-
ber of times the network stack is traversed for a given
bytestream. There are many per-segment operations in
an OS networking stack, so increasing segment sizes re-
duces CPU utilization [28].

Many NICs are capable of packetizing a TCP seg-
ment without CPU involvement, called TCP Segmen-
tation Offloading (TSO). For NICs that do not support
TSO, Generic Segmentation Offloading (GSO) provides
some of the benefit of TSO without hardware support by
passing large segments through the stack and segmenting
only just before passing them to the driver.

TSO/GSO hurts latency and fairness by causing HOL
blocking. Competing traffic must now wait until an en-
tire segment is transmitted. Further, sending large seg-
ments can cause bursts of congestion in the network [24].
To avoid the problems associated with TSO/GSO, Linux
does not always send as large of segments as possible.
Instead, Linux automatically reduces the size of TSO
segments to try to ensure that at least one segment is
sent each millisecond [9]. In effect, this causes Linux to
use smaller segments on slow networks while still using
as large of segments as possible on fast networks. (e.g.

10 Gbps and beyond).

Software Queue Discipline: Before segments are
passed to a hardware queue, they are processed by a soft-
ware queue (Qdisc). By default, the queuing discipline
in Linux is FIFO (pfifo fast), which is sub-optimal
for latency and fairness. Linux implements at least two
other superior policies: (1) The prio policy strictly pri-
oritizes all traffic from a configurable class over all other
traffic, improving latency. (2) The sfq policy imple-
ments Stochastic Fair Queueing (SFQ) using the defi-
cient round robin (DRR) scheduling algorithm [36] to
fairly schedule segments from competing flows regard-

less of differing segment sizes.
TSO Interleaving: Transmitting an entire TSO segment
at once for a given queue can significantly increase la-
tency and harm fairness, even if each queue is serviced
equally. Some NICs address this with TSO interleav-

ing [2, 31], which sends a single MTU sized packet from
each queue in round-robin even if TSO segments are en-
queued. This can lead to fairer packet scheduling as long
as there is only one flow per-queue. HOL blocking can
still occur if there are multiple flows in a queue.
TCP Queue Occupancy Limits: Enqueuing too
many bytes for a flow into software queues causes
bufferbloat [19], which can hurt latency and fairness.
TCP Small Queues (TSQ) [10] limits the number of out-
standing bytes that a flow may have enqueued in either
hardware or software queues to address this problem.
Once the limit is reached (256KB by default in Linux),
the OS waits for the driver to acknowledges that some
segments for that flow have been transmitted before en-
queuing more data. As long as more bytes are enqueued
per-flow than can be transmitted by the NIC before the
next interrupt, TSQ can still drive line-rate while reduc-
ing bufferbloat.

In Linux, the enqueueing of additional data for flows
sharing a queue in TSQ happens in batches. This is a
side-effect of Linux using the freeing of an skbuff as
a signal that it has been transmitted and skbuffs only
being freed by the driver in batches in the TX interrupt
handler.
Hardware queue occupancy limits: Hardware queues
are simple FIFOs, so increasing the bytes enqueued per-
hardware queue directly increases HOL blocking latency.
Byte Queue Limits (BQL) [1] in Linux limits the total
amount of data enqueued in a hardware queue. However,
it is important to enqueue at least as many bytes as can
be sent before the next TX interrupt, otherwise starvation
may ensue. A recent advancement is Dynamic Queue
Limits (DQL) [1], which dynamically adjusts each hard-
ware queue’s BQL independently so as to decrease HOL
blocking while avoiding starvation.

2.3 Configuration Trade-off Study

We studied the impact of the aforementioned config-
urations on server-side performance (CPU utilization,

434    2017 USENIX Annual Technical Conference USENIX Association



Cvanilla: Default Linux networking stack incurs significant latency and unfairness, regardless of how many NIC queues are used, but has
high throughput and low CPU.

C1: No TSQ: TSQ is an important optimization. Disabling can cause significant latency and unfairness.
C2: Improved software
scheduling:

Improving the software scheduler can significantly reduce latency and increase fairness, especially when only a single NIC queue
is used. Comes at the cost of CPU utilization.

C3: No BQL: BQL is an important optimization because disabling it can lead to increased latency and decreased fairness.
C4: 64KB BQL: Setting BQL too small decreases latency but hurts fairness at long timescales with many flows.
C5: No TSO: Disabling segmentation offloading hurts every performance metric because CPUs saturate.
C6: 16KB GSO: Using a smaller GSO size than the default (64KB) improves fairness at short timescales (ms), increases CPU utilization.
Cmax: C2 + 256KB BQL: Dynamic Queue Limits (DQL) leads to a higher queue limit than necessary to avoid starvation. If BQL is manually set smaller, it

is possible to reduce latency and improve fairness.

Table 2: Summary of experimental results for different networking configurations.

throughput, latency, and fairness). Our high-level take-
aways are listed in Table 2. These are synthesized from
the raw results presented for each combination of work-
load, queue configuration, and optimization, which we
detail in a technical report [40]. Table 3 in Section 6
shows the raw results for default Linux (Cvanilla) and
the best performing configuration (Cmax). These results
show that using SFQ for the queuing discipline with TCP
small queues enabled and byte queue limits manually
set to 256KB tend to out-perform all other combinations
across different queue configurations. This is denoted
by Cmax, which we henceforth focus on as the baseline
best-performing MQ/XPS configuration today.

While we find that using multiqueue NICs can gener-
ally offer low CPU utilization and high throughput, we
also find that the current Linux networking stack is un-
able to provide fairness at any time scale across flows
at any subscription level. In the undersubscribed case,
the central problem with MQ in Linux is the assign-
ment of flows to queues. At low oversubscription, un-
fairness is uniformly high at short (1ms) and long (1 sec)
timescales. We find that this largely occurs because some
queues have more flows than others, and flows that share
a queue send half as much data as those that do not. At
high oversubscription, fairness is uniformly worse, as
hashing is not perfect and leads to variable number of
flows per queue, and a flow sharing a queue with 9 other
flows will send much more slowly than one sharing with
5. However, using the best practices, exemplified partic-
ularly by configuration Cmax, can have substantial bene-
fits over vanilla Linux without optimizations (Cvanilla).

2.4 Summary

Multiqueue NICs allow different CPU cores to perform
network I/O independently, which is important for reduc-
ing the CPU load of network I/O caused by locking and
cross-core memory contention. Each core can use inde-
pendent software queueing disciplines feeding indepen-
dent hardware queues. Further, TSO reduces CPU uti-
lization by allowing the OS to treat multiple sequential
packets as a single large segment. However, as a conse-
quence, a packet scheduler in the NIC is now responsi-
ble for deciding which queue is allowed to send packets
out on the wire. Because the NIC performs round-robin

scheduling across competing hardware queues and TSO
segments cause HOL blocking, the NIC will emit an un-
fair packet schedule when the network load is asymmet-
rically partitioned across the NIC’s hardware queues and
when multiple flows share a queue.

3 Titan

This section presents the design of Titan, an OS net-
working stack that that introduces new mechanisms for
improving network fairness with multiqueue NICs. To
improve fairness, Titan dynamically adapts the behavior
of the many different layers of an OS’s network stack to
changes in network load and adds a new abstraction for
programming the packet scheduler of a NIC. Specifically,
Titan comprises the following components: Dynamic
Queue Assignment (DQA), Dynamic Queue Weight As-
signment (DQWA), and Dynamic Segmentation Offload
Sizing (DSOS).

Given a fixed number of NIC queues, we target the
three behavior modes of behavior we previously de-
scribed: undersubscribed, low oversubscription, and
high oversubcription. Titan is designed to improve
server-side networking performance regardless of which
mode a server currently is operating in, and the different
components of Titan are targeted for improving perfor-
mance in each of these different regimes. The rest of this
section discusses the design of these components.

3.1 Dynamic Queue Assignment (DQA)

When it is possible for a segment to be placed in more
than one queue, the OS must implement a queue assign-
ment algorithm. In Linux, a per-socket hash is used to
assign segments to queues. Even when there are fewer
flows than queues (undersubscribed), hash collisions can
lead to unfairness.

Titan uses Dynamic Queue Assignment (DQA) to
avoid the problems caused by hash collisions when there
are fewer flows than queues. Instead of hashing, DQA
chooses the queue for a flow dynamically based on the
current state of the software and hardware queues. DQA
assigns flows to queues based on queue weights that are
internally computed by Titan. In other words, there are
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two components to DQA: an algorithm for computing
the OS’s internal weight for each queue and an algorithm
for assigning a segment to a queue based on the current
weight of every software/hardware queue that the seg-
ment can use.

Queue weight computation: Titan uses the current traf-
fic that is enqueued in a software/hardware queue pair to
compute a weight for each queue. We assume that the OS
can assign a weight to each network flow based on some
high-level policy. Titan dynamically tracks the sum of
the weights of the flows sharing the same queue: it up-
dates a queue’s weight when a flow is first assigned to a
queue and when a TX interrupt frees the last outstanding
skbuff for the flow.

Queue assignment algorithm: Dynamically tracking
queue occupancy can allow a queue assignment algo-
rithm to avoid hash collisions. Our goals in the design
of a DQA are to avoid packet reordering and provide ac-
curate assignment without incurring excessive CPU uti-
lization overheads. We use a greedy algorithm to assign
flows to queues with the aim of spreading weight evenly
across all queues. This algorithm selects the queue with
the minimum weight.

The main overhead of our current implementation of
DQA is that it reads the weights of every queue a flow
may use. XPS reduces this overhead by reducing the
number of queue weights that need to be read: if a flow is
not allowed to use a queue, DQA will not read its weight.
Although not necessary, our current implementation in-
troduces a lock to serialize queue assignment per XPS
pool. We are currently investigating using a lock-free
priority queue to allow multiple cores to simultaneously
perform queue assignment without reading every queue’s
weight while still avoiding choosing the same queues.

In order to avoid packet reordering, DQA only
changes a flow’s queue assignment when it has no
outstanding bytes enqueued in a software or hardware
queue. This also has the added benefit of reducing the
CPU overheads of queue assignment because it will be
run at most once per TX interrupt/NAPI polling interval
and often only once for as long as a flow has backlogged
data and is allowed to send by TCP. However, this also
implies that unfairness can arise as flows complete be-
cause remaining flows are not rebalanced.

3.2 Dynamic Queue Weight Assignment
(DQWA)

DQA computes queue weights to perform queue assign-
ment. However, these queue weights are only an OS con-
struct. The NIC does not perform scheduling decisions
based on these weights; it services queues based on sim-
ple round-robin instead. During periods of oversubscrip-
tion, this can lead to unfairness.

To solve this problem, Titan modifies NIC drivers
to expose a queue weight abstraction whereby higher
levels of the network stack can cause the NIC sched-
uler to service queues in proportion to the OS’
weights. This is accomplished by introducing the
new ndo set tx weight network device operation
(NDO) for drivers to implement. The OS calls this func-
tion whenever it updates a queue’s weight, which allows
the NIC driver to dynamically program the NIC sched-
uler. We call this Dynamic Queue Weight Assignment
(DQWA). Although simple, this new function allows the
NIC to generate a fair packet schedule provided that the
NIC scheduler is capable of being programmed.

The main overhead of DQWA is that each update gen-
erates a PCIe write. Like DQA, DQWA weights only
need to be changed at most once per TX interrupt/NAPI
polling interval. However, if necessary, the number of
DQWA updates can also be rate limited.

While not all commodity NICs allow weight setting,
it is a small addition to mechanisms already present. A
NIC scheduler must implement a scheduling algorithm
that provides per-queue fairness even if different sized
segments are enqueued. To modify this algorithm to ser-
vice queues in proportion to different weights is simple;
we borrow the classic networking idea of Deficit Round
Robin (DRR) scheduling [36]. Specifically, by allocat-
ing each queue its own pool of credits that are decreased
proportional to the number of bytes sent by the queue,
DRR can provide per-queue fairness. Providing an inter-
face to modify the allocation of credits to queues enables
the NIC to configure DRR to service queues in propor-
tion to different weights.

We implement the ndo set tx weight in the
ixgbe driver by configuring the NIC scheduler’s per-
queue DRR credit allocation.

3.3 Dynamic Segmentation Offload Sizing
(DSOS)

When segments from competing flows share the same
software/hardware queue pair, the size of a GSO seg-
ment becomes the minimum unit of fairness. Under pe-
riods of heavy oversubscription, the GSO size can be-
come the major limiting factor on fairness because of the
HOL blocking problems that large segments cause. Im-
portantly, improving the interleaving of traffic from mul-
tiple different flows at finer granularities can also benefit
network performance [18].

Currently, the only way to improve the fairness of soft-
ware scheduling is by reducing the GSO size. How-
ever, this only improves fairness when multiple flows
share a single queue. Otherwise, TSO interleaving in
the NIC provides per-packet fairness independent of the
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GSO (TSO) size. Reducing the GSO size when the net-
work queues are not oversubscribed only wastes CPU.

Dynamic Segmentation Offload Sizing (DSOS) en-
ables an OS to reduce GSO sizes for improved fairness
under heavy load while avoiding the costs of reducing
GSO sizes when NIC queues are not oversubscribed.
This provides a better CPU utilization trade-off than was
previously available.

In DSOS, packets are segmented from the default GSO
size to a smaller segment size before being enqueued in
the per-queue software queues only if multiple flows are
sharing the same queue. (In our current implementation,
re-segmentation happens in all queues as soon as there
is oversubscription.) Segmentation in DSOS is identi-
cal to the implementation of GSO except that segmen-
tation happens before Qdisc instead of after. Because
the software queue (Qdisc) is responsible for fairly
scheduling traffic from different flows, this enables the
OS to generate a fair packet schedule while still ben-
efiting from using large segments in the TCP/IP stack.
Further, many multiqueue NICs also support passing a
single segment as a scatter/gather list of multiple regions
in memory. This enables a single large segment to be
converted into multiple smaller segments without copy-
ing the payload data. If automatic TSO sizing generates
segments smaller than the DSOS segment size, then no
additional work is done.

4 Implementation

We implemented Titan in Linux 4.4.6 and modified In-
tel’s out-of-tree ixgbe-4.4.6 release [4] to support
the new ndo set tx weight NDO. We were able to
implement this new NDO in this driver from the pub-
lic hardware datasheets [2]. In a similar spirit, Titan
is open source and available at https://github.
com/bestephe/titan.

There is one major limitation in our current ixgbe
driver implementation. We were only able to program
the packet scheduler on the Intel 82599 NIC when it
was configured in VMDq mode. As a side-effect, this
causes the NIC to hash received packets (received side
steering, or RSS) to only four RX queues. This ef-
fectively decreases the NIC’s RX buffering capacity, so
enabling this configuration can increase the number of
packet drops. To try to mitigate the impact of reduc-
ing the receive buffering capacity of the NIC, we modi-
fied the ixgbe-4.4.6 driver to enable a feature of the
82599 NIC that immediately triggers an interrupt when
the number of available RX descriptors drops below a
threshold.

During development, we found a problem with the
standard Linux software queue scheduler. Linux tries to
dequeue packets from software queues in a batch and

enqueue them in their corresponding hardware queue
whenever a segment is sent from any TCP flow. When
multiple ACKs are received in a single interrupt, multi-
ple TCP flows may try to create new skbuffs and en-
queue them. If no bytes are enqueued in the software
queues for two flows, and then ACKs for both flows ar-
rive, the second flow will not have a chance to enqueue
new skbuffs in the software queues before packets are
dequeued from the software queue until the hardware
queue is filled up to the BQL limit. In general, send-
ing segments to the NIC as soon as the first TCP flow
sends a segment may cause later TCP flows to miss an
opportunity to send, leading to unfairness.

In Titan, we improve fairness with TCP Xmit Batch-

ing. With this mechanism, all of the TCP flows that en-
queue segments at the same time in TSQ are allowed to
enqueue packets into their respective software queues be-
fore any packets are dequeued from software queues and
enqueued in the hardware queues. This is accomplished
by changing the per-CPU TSQ tasklet in Linux so en-
queuing a segment returns a pointer to a Qdisc. Pack-
ets are dequeued from the returned Qdiscs only after all
pending segments have been enqueued.

5 Methodology

To evaluate Titan, we perform experiments by sending
data between two servers and within a cluster of servers.

In the two server experiments, we use a cluster of
three servers connected to a dedicated TOR switch via
10 Gbps Ethernet cables. One server is a source, another
a sink, and the third server is for monitoring. The switch
is a Broadcom BCM956846K-02. The first and second
server are the traffic source and sink respectively. Both of
these servers have a 4-core/8-thread Intel Xeon E5-1410
CPU, 24GB of memory, and connect to the TOR with
Intel 82599 10 Gbps NICs [2]. We configure the switch
to use port mirroring to direct all traffic sent by the first
server to the third server. To monitor traffic, this server
uses an Intel NetEffect NE020 NIC [5], which provides
packet timestamps accurate to the microsecond.

We perform two types of two server experiments.
First, we generate traffic using at most one iperf3 [3]
client per core pinned to different CPUs. Each client only
uses a single thread. Because the fairness problems only
arise when load is asymmetric, we distribute the flows
across cores such that half of the cores have twice as
many active flows as the other half of the cores. To mea-
sure latency, we use sockperf [8]. To measure CPU
utilization, we use dstat. To avoid impacting CPU uti-
lization by measuring latency, we measure latency and
CPU utilization in separate experiments. Second, we use
YCSB [12] to request both small and large values from
memcached from different threads. We perform all of
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the two server experiments with the NIC configured in
VMDq mode.

In the cluster workloads, we use a cluster of 24 servers
on CloudLab. Each of the servers has 2 10-core In-
tel E5-2660 v2 CPUs and 256GB of memory. All the
servers connect to a Dell Networking S6000 switch via
Intel 82599 NICs. Inspired by shuffle workloads used
in prior work [13, 33, 22], we have all 24 servers simul-
taneously open a connection to every other server and
send 1GB. We measure flow completion times. Because
iperf3 opens up additional control connections that
can impact performance, we use a custom application to
transfer data in this workload.

We compare Titan against two base configurations:
Cvanilla, which is the default Linux configuration, and
Cmax, which uses the MQ configuration system with a
GSO size of 64KB, a TCP small queues limit of 256KB,
and byte queue limits manually set to 256KB. In Cmax,
interrupt coalescing on the NIC is also configured so that
the NIC will use an interrupt interval of 50µs. In other
words, the NIC will wait at least 50µs after raising an
interrupt before it will be raised again. In the 2 server
experiments, the traffic sink always uses configuration
Cmax. Large receive offload (LRO) is disabled in all of
the experiments because it can increase latency. We per-
form all experiments 10 times and report the average.

6 Evaluation

First, we evaluate the performance impact of individ-
ual components of Titan in the absence of any network
congestion. Second, we evaluate Titan on a cluster of
servers. In summary, we find that Titan is able to im-
prove fairness on multiqueue NICs while only having a
small impact on other metrics.

We study the following four metrics:

1. We measure CPU utilization as the sum percent of
the time each core was not idle during a one sec-
ond interval, summed across all cores and averaged
across the duration of the experiment.

2. We measure network throughput as the total number
of bytes that were sent per second across all flows,
averaged across the duration of the experiment.

3. We measure latency with sockperf and report av-
erage latency. When we configure Linux software
queues (Qdiscs), we prioritize the port used by
sockperf above all other traffic.

4. We use a normalized fairness metric inspired by
Shreedhar and Varghese [36]. For every flow i ∈ F ,
there is some configurable quantity fi that expresses
i’s fair share. In all of our experiments, fi is 1. If
senti(t1, t2) is the total number of bytes sent by flow
i in the interval (t1, t2), then the fairness metric FM

is as follows:

FM(t1, t2) =

max{i, j ∈ F |senti(t1, t2)/ fi − sent j(t1, t2)/ f j}

In other words, the fairness metric FM(t1, t2) is the in-
stantaneous worst case difference in the normalized bytes
sent by any two competing flows over the time interval.
Ideally, the fairness metric should be a small constant no
matter the size of the time interval [36].

For our experiments, we do not report this ideal FM
but instead use normalized fairness NFM(τ), which is the
fairness metric FM over all intervals of duration τ , nor-
malized to the fair share of data for a flow in the interval.

NFM(τ) = FM(τ)∗
line rate∗ τ

∑ j∈F f j

−1

For example, with 10 flows, a flow’s fair share of a 10
Gbps link over 1 second is 128MB; if the highest FM
over a 1-second interval is 64 MB, then NFM is 0.5.
Note that NFM can exceed 1 when some flows get much
higher performance than others.

6.1 Two Server Performance

There are multiple complementary components to Titan,
and we evaluate the impact of individual components on
performance in the absence of network congestion. Ta-
ble 3 shows the performance of different components
of Titan for each metric. The expected benefit of Titan
is improved fairness, but it is possible for Titan to hurt
throughput, latency, or CPU utilization. These results
show that Titan is able to significantly improve fairness
often without hurting throughput and latency and with a
small increase in CPU utilization (often < 10%)

Dynamic Queue Assignment: DQA ensures that when
there are fewer flows than queues, each flow is assigned
its own queue. The Cmax (hashing) and DQA results
in Figure 2 shows the fairness differences between using
hashing and DQA for assigning flows to queues given
8 hardware queues and a variable number of flows. We
report NFM, the normalized fairness metric.

With hashing, fairness is good with 3 flows as there are
few collisions. However, with more flows, the unfairness
of hashing is high at short and long timescales because
there are often hash collisions. Unfairness is bad because
of HOL blocking while waiting for GSO/TSO-size seg-
ments and hashing leading to uneven numbers of flows
per queue.

In contrast, with DQA there is no unfairness in the
undersubscribed case, as DQA always assigns every flow
its own queue. In the low oversubscription case of 12
flows, there is also unfairness because some flows must
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Config
3 flows, 8 Queue (1 per CPU)

Config
12 flows, 8 Queues (1-per CPU)

TPut CPU Latency NFM NFM TPut CPU Latency NFM NFM
(Gbps) (%) (µs) (1ms) (1s) (Gbps) (%) (µs) (1ms) (1s)

Cvanilla 9.4 64 298 0.33 0.31 Cv: 9.4 58 912 1.83 1.23
Cmax: SFQ/Prio + 256KB BQL 9.4 72 125 0.16 0.15 Cmax: 9.4 55 912 1.79 1.39
Titan1: DQA 9.4 78 123 0.00 0.00 T1: 9.4 66 657 1.17 0.78
Titan2: DQA + DQWA 9.4 77 124 0.00 0.01 T2: 9.4 70 516 1.10 0.12
Titan3: DQA + DQWA + DSOS (16KB) 9.4 82 180 0.02 0.02 T3: 9.4 96 395 0.55 0.17

XPS: Cmax + XPS 9.4 54 130 0.16 0.15 XPS: 9.4 55 526 1.87 1.55
TitanXPS1: DQA 9.4 55 126 0.00 0.00 TX1: 9.4 49 660 1.32 0.87
TitanXPS2: DQA + DQWA 9.4 57 121 0.01 0.00 TX2: 9.4 50 505 0.68 0.11
TitanXPS3: DQA + DQWA + DSOS (16KB) 9.4 65 128 0.04 0.01 TX3: 9.4 59 269 0.66 0.23

48 flows, 8 Queue (1 per CPU) 192 flows, 8 Queues (1-per CPU)

Cvanilla 9.4 72 2019 5.01 1.95 Cv: 9.4 98 3881 15 3.32
Cmax: SFQ/Prio + 256KB BQL 9.4 83 653 4.06 1.58 Cmax: 9.1 109 604 6.93 1.39
Titan1: DQA 9.4 89 660 3.83 0.38 T1: 9.5 118 554 8.35 0.54
Titan2: DQA + DQWA 9.4 87 585 3.85 0.46 T2: 9.5 103 509 8.42 0.49
Titan3: DQA + DQWA + DSOS (16KB) 9.3 103 285 2.92 0.80 T3: 9.4 113 342 3.50 0.80

XPS: Cmax + XPS 9.4 53 639 4.37 1.49 XPS: 9.5 119 517 10 2.66
TitanXPS1: DQA 9.4 61 660 5.02 1.58 TX1: 9.5 113 552 8.46 0.76
TitanXPS2: DQA + DQWA 9.4 62 606 3.92 0.50 TX2: 9.5 123 519 8.28 0.57
TitanXPS3: DQA + DQWA + DSOS (16KB) 9.4 76 333 1.83 0.53 TX3: 9.4 138 300 3.50 0.81

Table 3: The performance of different OS configurations given 3, 12, 48, and 192 flows spread across 8 cores.
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Figure 2: The impact of the individual aspects of Titan
on short-term and long-term fairness.

share queues, and without DQWA to program weights in
the NIC, all queues are serviced equally. With 48 flows,
DQA has low unfairness over long timescales because it
will place exactly 6 flows in each queue.

Dynamic Queue Weight Assignment: DQWA enables
an OS to pass queue weights, in this case the number of
flows, to the NIC so that queues with more flows receive
more service. Figure 2 shows the fairness of the DQA
queue assignment algorithms when DQWA is enabled.
These results show that over short timescales, DQWA
has little impact as it takes time for queue weights to fix
transient unfairness, and in highly oversubscribed cases

HOL blocking is the major cause of unfairness. Over
longer timescales, DQWA improves the fairness at low
levels of oversubscription because the NIC is able to give
more service to queues with more flows. At high levels of
oversubscription, DQA is able to evenly distribute flow
weights across queues, so DQWA is not able to further
improve fairness.

We note that DQA is a software-only solution that has
the largest impact in undersubcribed cases and helps at
both short and long timescales. DQWA helps most in (i)
oversubscribed cases and (ii) over longer timescales. In
addition, DQWA requires hardware support that, while
minimal, may not be present in all NICs. Also, we evalu-
ated DQWA with hashing instead of DQA, and we found
that DQWA also improves fairness without DQA.

Dynamic Segmentation Offload Sizing: DSOS ad-
dresses HOL blocking by reducing segment size from the
default 64KB to a smaller size dynamically under over-
subscription. We compare DQA and DQWA with and
without DSOS for 16KB DSOS segment sizes. Figure 2
shows that DSOS improves fairness at the 1ms timescale.
In the 3 and 6 flow cases there is no oversubscription, so
DSOS leaves the GSO size at 64KB. For 12, 24, and 48
flows, though, DSOS reduces the segment size to reduce
HOL blocking. At short timescales, this improves fair-
ness. Over longer timescales, DSOS can slightly hurt
fairness. This is because DSOS can increase CPU uti-
lization.

XPS: So far, our evaluation has focused our discus-
sion on the multiqueue NIC configuration (MQ). Trans-
mit packet steering (XPS; Section 2.1) assigns pools
of queues to pools of CPUs and behaves differently
than MQ. To understand these differences, Figure 2 also
shows the fairness of Titan when XPS is configured. For
the most part, this figure shows that XPS has little impact
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on network fairness in Titan.

The biggest change in Figure 2 is that XPS improves
the fairness of DSOS (with both DQA and DQWA en-
abled) at short timescales during oversubscription. When
there are 48 flows, using a 16KB dynamic segment size
with XPS almost halves NFM at short time scales. The
reason for this is because XPS reduces the CPU over-
heads of DSOS (Table 3). This is because XPS improves
cache locality.

CPU Utilization, Throughput and Latency: While the
goal of Titan is improved fairness, it must not come at the
cost of increased CPU utilization, decreased throughput,
or increased latency. Tables 3 compares the performance
of Titan with Cvanilla and Cmax.

At all subscription levels, throughput is almost always
identical with Titan and standard Linux networking op-
tions. Similarly, CPU utilization is slightly higher with
Titan. It must do more work for queue assignment and
weight-setting. During oversubscription, DSOS must
segment and process smaller segments. Fortunately, en-
abling XPS reduces the CPU utilization of all of the fea-
tures of Titan.

Regardless of the subscription level, Titan can increase
latency. In the absence of any other traffic, the average
baseline latency we observed is 32µs. In the presence of
bulk transfers, the minimum average latency we observe
is 121µs, and the highest average latency we observe is
3.9ms. This high latency is because the HOL blocking
latency of the NIC (for a given priority) is at least equal
to the minimum number of bytes enqueued in any queue
multiplied by the number of active queues. Although we
find that latency in general is high, we observe that Ti-
tan does not significantly hurt latency. The latency of
Titan is often near that of Cmax, and at most Titan in-
creases latency by 134µs. When NIC queues are over-
subscribed, we observe that DSOS can reduce latency by
over 200µs. Further, we also looked at tail latency and
found that the 90th percentile latency for Titan is never
more than 200µs higher than the average.

Currently, the best practice for addressing this prob-
lem is to use DCB priorities to isolate high priority traffic
onto independent pools of NIC queues that are serviced
with higher priority by the NIC hardware. Traffic in one
DCB priority is not able to increase the latency of traffic
in a higher DCB priority.

In summary, we find that overall Titan greatly im-
proves fairness across a wide range of subscription lev-
els, often at no or negligible throughput or latency over-
heads. Titan can cause a small increase in CPU utiliza-
tion, often less than 10%. At most, this increase is 17%
and 27% with and without XPS, respectively.

Finally, we have also performed experiments to evalu-
ate the impact of Titan on average and tail request com-
pletion times in memcached. These experiments use
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Figure 3: The impact of Titan on fairness on a cluster of
servers performing a shuffle.
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Figure 4: The impact of Titan on flow completion times
(FCT) on a cluster of servers performing a shuffle.

YCSB with 7 request threads, 6 of which request 512KB
values, while the remaining thread requests small objects
(2–64KB). We find that Titan is able to reduce the aver-
age and 99th percentile completion times for the small
objects by 3.2–10.6% and 7.3–32%, respectively. This
is because Titan is able to avoid HOL blocking latency
through dynamic queue assignment.

6.2 Cluster Performance

In order to evaluate the cluster performance of Titan,
we measure the impact of improving the fairness of the
packet stream emitted by a server when there is net-
work congestion and when there are more communicat-
ing servers. To do so, we perform an all-to-all shuffle
for different cluster sizes where each server simultane-
ously opens connections to every other server and trans-
fers 1GB of data. This workload is inspired by the shuffle
phase of Map/Reduce jobs.

Figure 3 shows the impact of Titan on network per-
formance in a cluster of 6, 12, and 24 servers. We plot
a CDF of the difference in the completion time of the
earliest completing flow and that of the last completing
flow. First, Figure 3 confirms that without Titan flow
fairness is a problem in a cluster of servers. Both the
default Linux configuration (Cvanilla) and an optimized
Linux configuration (Cmax) behave similarly and show
substantial variation in completion times. In contrast,
with Titan unfairness substantially improves at all three
subscription levels and is consistently much better than
Cvanilla and Cmax.

Further, we find that Titan is not only able to improve
fairness, but that improving fairness also reduces the tail
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flow completion times (>80th percentile) for the flows in
the shuffle as well. To show why, Figure 4 shows a CDF
of the flow completion times across all the flows in the
shuffle for different cluster sizes. This figure shows that
Titan provides more consistent flow completion times.
Because of this, the fastest flows (<20th percentile) in
Cvanilla and Cmax complete faster. However, this comes
at the expense of tail flow completion times. Figure 4
shows that Titan can reduce the tail of the flow comple-
tion time distribution (>80th percentile).

Finally, for this test, DQA (without DQWA or DSOS)
is enough to get most of the fairness benefit of Titan. At
small cluster sizes, we found that DQWA can still further
improve fairness. Unfortunately, we discovered that con-
figuring our NICs into VMDq mode reduces RX buffer-
ing capacity and hurts completion times. Because our
implementation of DQWA requires VMDq mode to pro-
gram queue weights, we cannot evaluate DQWA’s benefit
for large clusters.

7 Related Work

Titan is closely related to SENIC [31] and Silo [23]1.
SENIC argues that NICs in the future will be able to pro-
vide enough queues such that two flows will never have
to share the same queue. In contrast, Silo builds a system
for fairly scheduling traffic from competing VMs using
a single transmit queue (SQ) because of the control it
gives to the OS. Titan introduces a middle ground that
can achieve some of the benefits of both designs.

Many projects in addition to Silo have used the SQ
model. In particular, the SQ model is popular for emulat-
ing new hardware features not yet provided by the under-
lying hardware [31, 21, 25]. This is because it provides
the OS with the most control over packet scheduling.

Similar to Titan, PSPAT [34] performs per-packet
scheduling in a dedicated kernel thread that is separated
from applications and device drivers with two sets of
lock-free queues. Making per-packet scheduling deci-
sions in PSPAT instead of per-segment decisions in Titan
can significantly improve fairness and latency, and Titan
can cause PCIe contention that is avoided in PSPAT by
only issuing PCIe writes from a single core. If PSPAT
were extended to use multiple independent scheduling
threads to drive independent NIC queues, then program-
ming the NIC scheduler with DQWA in Titan would be
complementary.

There has been recent work on building networks that
provide programmable packet scheduling [38, 29, 16],
allowing flows to fairly compete [15, 41, 39], and per-
forming traffic engineering in the network [13, 22, 17,

1The Titan Missile Museum is located in a silo. We imagine it is
scenic.

33, 14, 18]. Titan is motivated by similar concerns and
is complementary. If the packet schedule emitted by a
server is not fair, then the end-server can become the
main limiting factor on fairness, not the network. Thus,
Titan can improve the efficacy of the aforementioned
techniques.

Affinity-Accept [30] improves connection locality on
multicore processors, and Fastsocket [27] improves the
multicore scalability of the Linux stack when a server
handles many short-lived network connections. Titan is
complementary to both of these designs. Titan bene-
fits from their improvements in connection setup, while
these designs can benefit from improved flow fairness in
Titan.

8 Conclusions

With increasing datacenter (DC) server line rates it be-
comes important to understand how best to ensure that
DC applications can saturate high speed links, while also
ensuring low latency, low CPU utilization, and per-flow
fairness. While modern NICs and OS’s support a va-
riety of interesting features, it is unclear how best to
use them towards meeting these goals. Using an exten-
sive measurement study, we find that certain multi-queue
NIC configurations are crucial to ensuring good latency,
throughput and CPU utilization, but substantial unfair-
ness remains. To this end, we designed Titan, an exten-
sion to the Linux network stack that incorporates three
main ideas – dynamic queue assignment, dynamic queue
weights, and dynamic segmentation resizing. Our eval-
uation using both experiments between two servers on
an uncongested network and between a cluster of servers
shows that Titan can reduce unfairness across a range of
conditions while minimally impacting the other metrics.

Titan is complementary with a variety of other
DC host networking optimizations, such as DCB and
receive-side network optimizations. Titan’s sender-side
fairness guarantees are crucial to ensure the efficacy of
in-network fair-sharing mechanisms. Finally, the three
main ideas in Titan can be employed alongside other sys-
tems, e.g., those for DC-wide traffic scheduling and other
existing systems optimized for short-lived connections.
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