
Atoll: A Scalable Low-Latency 
Serverless Platform 

Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish Shaikh, 
Shivaram Venkataraman, Aditya Akella



Serverless Computing 101

Upload your function to the 
serverless computing 

platform and register for 
event-based triggers Execution is 

triggered when an 
event occurs

Platform runs your 
function only

when triggered
Pay just for the 

computation time

Automatic Scaling Support

Ideal Goal à Ensure that function end-to-end latency is close to native execution time



Characterizing Real World Serverless Apps

Looked at the top 50 most deployed real world apps in the AWS 
Serverless Application Repository

Benchmarked the apps by triggering their execution from a VM in 
the same region 

Recorded statistics such as provisioned memory, execution time, 
sandbox setup overhead etc. 



Characterizing Real World Serverless Apps
[T1] Functions have a range of execution times



Characterizing Real World Serverless Apps
[T1] Functions have a range of execution times

[T2] Sandbox setup dominates execution times



Serverless Platform Requirements
Maximize number of requests whose end-to-end 

latency is close to native execution times  
(deadline specified by end-user)

Minimize impact 
of sandbox setup 

overhead on 
end-to-end 

request latencies

Minimize impact 
of control plane 

overhead on 
end-to-end 

request latencies

Have a scalable 
control plane



Current Serverless Platforms - Issues
Sandbox Management Policy

Reactive : setup sandboxes only when requests arrive
Fixed and Workload Unaware : keep sandbox around for fixed time
Leads to additional latency overheads or wasteful memory consumption

Request

Setup 
sandbox

Sandbox setup 
overhead

Execution

Keep sandbox provisioned to 
potentially serve future requests 

for a fixed-duration

Destroy 
sandbox



Current Serverless Platforms - Issues
Sandbox Management Policy

Reactive : setup sandboxes only when requests arrive
Fixed and Workload Unaware : keep sandbox around for fixed time
Leads to additional latency overheads or wasteful memory consumption

Sub-Optimal Scheduler Architecture 
Centralized approaches do not scale
Decentralized approaches trade-off scheduling quality/predictability for scale

Homogeneous Request Handling 
Treat all requests in the same manner
But not all requests have strict latency requirements (have varying slack)



Current Serverless Platforms - Issues
Sandbox Management Policy

Reactive : setup sandboxes only when requests arrive
Fixed and Workload Unaware : keep sandbox around for fixed time
Leads to additional latency overheads or wasteful memory consumption

Sub-Optimal Scheduler Architecture 
Centralized approaches do not scale
Decentralized approaches trade-off scheduling quality/predictability for scale

Homogeneous Request Handling 
Treat all requests in the same manner
But not all requests have strict latency requirements (have varying slack)

Atoll is a scalable serverless platform that 
enables low latency request executions



Atoll Design Overview : Key Idea #1
Cluster managed by autonomous 
semi-global schedulers (SGS) 

Each SGS exclusively manages a 
partition of cluster machines –
worker pool 

Ensures that schedulers don’t 
become a bottleneck and yet make 
optimal decisions within their 
worker pool 

Scheduling Service



Atoll Design Overview : Key Idea #2
Co-design the load balancer and 
scheduling layers

Provides the required visibility to 
ensure individual schedulers do 
not become hotspots

Enables maximizing sandbox 
reuse leading to better latency 
performance

Scheduling Service



Atoll Design Overview : Key Idea #3
Decouple sandbox allocation 
from request scheduling

Semi-Global 
Scheduler

Allocate Sandbox 
and 

Schedule Request

Request Arrives

Sent to worker



Atoll Design Overview : Key Idea #3
Decouple sandbox allocation 
from request scheduling

Removes sandbox allocation 
from critical path

Enables proactive workload-
aware sandbox allocation and 
eviction

Scheduler

Request Arrives

Sent to worker

Estimator Allocate/Evict

Sandbox Manager             



Atoll Design Overview : Additional Details

Scheduling Service

Load Balancing Service

Workers

Deadline-Aware 
Scheduling

Shortest Remaining 
Slack First

Intelligent Sandbox 
Management

Evenly allocate/evict 
sandboxes corresponding 

to a function
+ evict sandboxes 

only under memory 
pressure

Sandbox-Aware Request 
Routing

Based on sandboxes 
available at a scheduler

Logical scaling of per-
function SGSs

Gradually scale up/down 
using lottery scheduling



Atoll Evaluation : Implementation and Setup
Prototype: Built from scratch in Go

Setup: 74-machine cluster on CloudLab
- 1 load balancer, 8 semi-global schedulers with each managing 8 machines

Workload: Mixture of DAGs that have varying execution times and deadlines and follow 
Poisson/sinusoidal/on-off arrival patterns   

Incremental Baselines:
- GFR – Global View, FIFO Scheduler and Reactive Sandbox Allocation 
- GDR – Replace FIFO Scheduler with Deadline-Aware Scheduler in GFR
- GDPI – Replace Reactive Sandbox Allocation with Proactive Sandbox Allocation and Instant Eviction in GDR
- Atoll – Replace Instant Eviction with Soft Eviction in GDPI
- D-Atoll – Decentralized version of Atoll – SGS schedules requests from two randomly picked workers



Atoll Evaluation : Atoll Vs Baselines

Atoll leads to 4.18x better tail latencies and 26x fewer deadlines missed over GFR

Deadline aware 
scheduling

Lesser cold starts Semi-Global View



Atoll Evaluation : Additional Highlights

Similar trends hold true across a spectrum of sandbox allocation overheads 

Atoll continues to provide benefits even under memory pressure

Evenly spreading sandboxes improves performance due to better multiplexing

Gradual scaling using sandbox-aware routing leads to lower latencies 



Atoll Summary

Atoll enables low latency function execution

Partitions cluster into small number of worker pools, with each being 
managed by an SGS

Uses proactive sandbox allocation and deadline-aware scheduling
within an SGS

Uses sandbox-aware routing and automatically scales SGSs per 
serverless app



Atoll: A Scalable Low-Latency 
Serverless Platform 

Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish Shaikh, 
Shivaram Venkataraman, Aditya Akella

Thank you!
asinghvi@cs.wisc.edu

mailto:asinghvi@cs.wisc.edu

