
CliqueMap: Productionizing an RMA-Based
Distributed Caching System

Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble,
Harshad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger,

Thomas F. Wenisch, Amin Vahdat

Introduction / Summary
In-memory key-value caching/serving systems are
crucial building blocks of user-facing services
throughout the industry (Twemcache(osdi20), CacheLib(osdi20) ….)

2

Remote Memory Access (RMA):
● Benefits: Performance/efficiency benefits
● Downsides: Limited programmability/narrow primitives
● Production Challenges

○ Delivering high availability and low cost
○ Balancing CPU- and RAM-efficiency
○ Evolving the system over time
○ Multi-language serving ecosystems
○ Navigating heterogeneous datacenters

How do we
productionize an

RMA-based
distributed caching

system?

CliqueMap: Productionized RMA-Based Caching System

Hybrid RMA+RPC caching system in
production use at Google 3+ years.
● Serves >1PB DRAM, >150M QPS
● RMAs on the critical serving path
● RPCs for mutations & other functions
● Simple “2xR” lookup protocol amenable

to different underlying RMA technologies
(RDMA, PonyExpress, 1RMA)

3

Bucket Fetch

Client Server

NICSW NIC SW
GET Complete

Data Fetch

A 2xR-style R=1 Lookup operation using RMA
primitives. A first operation to a predictable

location finds the datum in an index. A
second, dependent operation retrieves the

datum.

RPC or RMA? False dichotomy.

RMAs [No application code runs on target]
offer narrow but efficient primitives.

RPCs [Wherein arbitrary application code
runs/responds on target] offer easier
productionization and high flexibility.

Hybrids like CliqueMap leverage the strengths
of both: RMA for most/important operations
to gain efficiency, RPC when programmability
is needed.

4

Programmability/Features

Effi
ci

en
cy

RMA

RPC

CliqueMap Approach and Building Blocks

Self-verification: A lookup
self-verifies its outcome by strongly
checksumming data, key, and
metadata.

Retry at the Right Layer of the
Stack: E.g., checksum failures
repeat the lookup. Metadata
inconsistencies (e.g., during a
rollout) reload configuration.

5

Index Region

 Bucket
IndexEntry

IndexEntry

IndexEntry

 Bucket
IndexEntry

IndexEntry

IndexEntry

Data Region

DataEntry

DataEntry

DataEntry

Free

KeyHash

VersionNumber

Pointer

IndexEntry

Key Length

Key

Data Length

Data

Checksum

Format

DataEntry

Metadata

Challenge: Availability/Cost Tradeoffs

Tension with RMA: Synchronizing RMAs,
tolerating failures.

CliqueMap’s Approach:
● Modes for R=1, R=2, R=3.2 for tuning

availability/cost tradeoffs
● RPCs for mutations; RMAs are

self-verifying
● Data migration for maintenance events
● Tunable on demand repair

6

Client S1

NICSW

S2 S3

Preferred Backend

Metadata Quorum

GET Complete

Bucket Fetch Data Fetch

A 2xR-style R=3.2 Quorumed Lookup
operation. By establishing a quorum (majority

vote) on metadata, a slow, absent, or
inconsistent replica can be tolerated.

Challenge: Memory & CPU Efficiency

7

Plot of memory usage over time after Dynamic Backend
Scaling’s initial rollout. Initially, capacity was simply

slightly overprovisioned - this memory could be
released. At ~Week 8, demand on corpus fell and more

memory could be safely refunded.

Tension with RMA: Memory registration
is expensive/subtle; needs to be done
off the critical path.

CliqueMap’s Approach: Dynamic
Backend Scaling
● Start expanding memory when

usage above watermark
(RPC-triggered)

● Clients can discover new backend
geometries lazily, refresh metadata

Challenge: Evolution over Time

8

Tension with RMA: RMA exposes
in-memory binary formats, making
iteration difficult.

CliqueMap’s Approach: Metadata
verification during checksumming
enables protocol versioning. Entirely
new primitives can be introduced.

SCAR was a major feature introduction that occurred
post-productionization; evolution-friendly retry-based
design enabled a transition wherein the logical 2xR

lookup strategy could be flattened to a single
round-trip, leading to efficiency improvements across

all layers of infrastructure.

Tension with RMA: C/C++ predominance

CliqueMap’s Approach:
● Launch a subprocess containing the

normal C++ CliqueMap libraries
○ IPC solutions per target language

■ Go, Python → Named Pipes
■ Java → Shared Memory

● Enables established, large-scale
infrastructure with substantial non-C++
components to adopt CliqueMap.

Challenge: Language Interoperability

9

Challenge: Hardware heterogeneity

Tension with RMA: Wire Interoperability,
performance expectations, mixed-age
hardware

CliqueMap’s Approach:

● Resilient, generic high-level protocols
(2xR) suitable to different underlying
RMA implementations (e.g., SCAR)

● Evolve over time, embrasure of
programmable NICs

10

Coming up

A Deeper look at R=3.2
Backend Memory Layout in Detail

2xR GET/SET Example

Enduring Failures

11

CliqueMap Backend Memory Layout

Backend hashtable layout
chosen to be amenable to
self-verification, retries, and
evolution.

● Backend can relocate DataEntires,
e.g., to defrag

● Checksum covers index and data
end-to-end (client can detect
inconsistencies and retry)

● Fields include enough metadata to
hint at the right kind of retry

12

Index Region

 Bucket
IndexEntry

IndexEntry

IndexEntry

 Bucket
IndexEntry

IndexEntry

IndexEntry

Data Region

DataEntry

DataEntry

DataEntry

Free

KeyHash

VersionNumber

Pointer

IndexEntry

Key Length

Key

Data Length

Data

Checksum

Format

DataEntry

Metadata

R=3.2: Quoruming and Versioning

13

C1 S1 S2 S3

SET K=V1 @7.1

C2

Bucket Fetches K
Quorum V0

R=3.2: Quoruming and Versioning

14

C1 S1 S2 S3

SET K=V1 @7.1

C2

Bucket Fetches K
Quorum V0

C1 Quorum V0

R=3.2: Quoruming and Versioning

15

C1 S1 S2 S3

SET K=V1 @7.1

C2

Bucket Fetches K

V0 → V1

V0 → V1

Quorum V0

V0 → V1

Quorum V1

C1 SET
Complete

C1 Quorum V0

C1 SET
Complete

R=3.2: Quoruming and Versioning
C1 S1 S2 S3

SET K=V1 @7.1

C1 Quorum V0

C2

Bucket Fetches K

V0 → V1

V0 → V1

Quorum V0

Quorum V1

V0 → V1

C2 GET Complete,
Checksum Failure

Data Fetch
C1 SET

Complete

R=3.2 with Unplanned Failures

17

Cohorts
Repairing

R=3.2 with repair preserves performance across single unplanned failures.

R=3.2 with Planned Maintenance/Upgrades

18

Spare
Filling

Spare
Draining

R=3.2 with warm sparing maintains a clean quorum during planned maintenance events.

Closing Remarks

Leverage RPC, in composition with RMA, to maintain post-deployment agility

Enable multi-language software ecosystems

Don’t compromise memory efficiency

Simply design with self-validating server responses and client retries

Programmable NICs offer advantages through specialization

See the paper for many more details!

19

CliqueMap: Productionizing an
RMA-Based Distributed

Caching System

Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble,
Harshad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger,

Thomas F. Wenisch, Amin Vahdat

Thank you!

