CligueMap: Productionizing an RMA-Based
Distributed Caching System

Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble,
Harshad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger,
Thomas F. Wenisch, Amin Vahdat

“,';/:‘ E)) (6 V"\-‘x\
\W// UNIVERSITY OF WISCONSIN-MADISON

Introduction / Summary \(&

_ e
In-memory key-value caching/serving systems are — ﬁ ‘
crucial building blocks of user-facing services | .
thrOUghOUt the indUStry (Twemcache(osdizm, CacheLibosdizo)) | Chquzmmp

Remote Memory Access (RMA):

e Benefits: Performance/efficiency benefits pTTTTTT T
e Downsides: Limited programmability/narrow primitivesi How fjo yve
e Production Challenges productionize an
o Delivering high availability and low cost : RMA-based
Balancing CPU- and RAM-efficiency ! distributed caching
Evolving the system over time ! system?

Multi-language serving ecosystems \
Navigating heterogeneous datacenters

—————————————————

o O O O

CligueMap: Productionized RMA-Based Caching System

Hybrid RMA+RPC caching system in
production use at Google 3+ years.

Serves >1PB DRAM, >150M QPS

RMAs on the critical serving path

RPCs for mutations & other functions
Simple “2xR" lookup protocol amenable

to different underlying RMA technologies
(RDMA, PonyExpress, TRMA)

Client Server
. Bucket Fetch
—
Data Fetch
—>|
R = R GET Complete T

SW NIC NIC SW

A 2xR-style R=1 Lookup operation using RMA
primitives. A first operation to a predictable
location finds the datum in an index. A
second, dependent operation retrieves the
datum.

RPC or RMA? False dichotomy.

RMAs [No application code runs on target]
offer narrow but efficient primitives.

RPCs [Wherein arbitrary application code
runs/responds on target] offer easier
productionization and high flexibility.

Efficiency

Hybrids like CligueMap leverage the strengths
of both: RMA for most/important operations
to gain efficiency, RPC when programmability
is needed.

RPC

Programmability/Features

CligueMap Approach and Building Blocks

Self-verification: A lookup
self-verifies its outcome by strongly
checksumming data, key, and
metadata.

Retry at the Right Layer of the
Stack: E.g., checksum failures
repeat the lookup. Metadata
inconsistencies (e.g., during a
rollout) reload configuration.

KeyHash

VersionNumber

Pointer

IndexEntry

Index Region

Bucket

IndexEntry

IndexEntry

IndexEntry

{ Bucket

IndexEntry

IndexEntry

IndexEntry

Data Region

——

DataEntry

Format

Key Length

Key

Data Length

DataEntry

Data

Metadata

Free

DataEntry

Checksum

DataEntry

Challenge: Availability/Cost Tradeoffs

Tension with RMA: Synchronizing RMAS,
tolerating failures.

CliqueMap's Approach:
e Modes for R=1, R=2, R=3.2 for tuning
availability/cost tradeoffs
e RPCs for mutations; RMAs are
self-verifying
e Data migration for maintenance events
e Tunable on demand repair

Client S1 S2 S3
L L

A 2xR-style R=3.2 Quorumed Lookup
operation. By establishing a quorum (majority
vote) on metadata, a slow, absent, or
inconsistent replica can be tolerated.

Challenge: Memory & CPU Efficiency

Tension with RMA: Memory registration
is expensive/subtle; needs to be done
off the critical path.

CliqueMap’s Approach: Dynamic
Backend Scaling
e Start expanding memory when
usage above watermark
(RPC-triggered)
e Clients can discover new backend
geometries lazily, refresh metadata

)

=512

2 384- ’

25

> 256~ Memory

£ 128- reshaping

o , launched | i : '

2 O yeeki Week4 Week7 Week10 Week13

Plot of memory usage over time after Dynamic Backend
Scaling's initial rollout. Initially, capacity was simply
slightly overprovisioned - this memory could be
released. At ~Week 8, demand on corpus fell and more
memory could be safely refunded.

Challenge: Evolution over Time

Tension with RMA: RMA exposes
in-memory binary formats, making
iteration difficult.

CliqueMap's Approach: Metadata
verification during checksumming
enables protocol versioning. Entirely
new primitives can be introduced.

2640-
B 2xR EXIMSG

Q.
3 1760- E&E SCAR
2
-
o L
S 880

0 CliqueMap Client Pony Express
SCAR was a major feature introduction that occurred
post-productionization; evolution-friendly retry-based
design enabled a transition wherein the logical 2xR
lookup strategy could be flattened to a single
round-trip, leading to efficiency improvements across
all layers of infrastructure.

Challenge: Language Interoperability

Tension with RMA: C/C++ predominance 107

CliqueMap's Approach:
e Launch a subprocess containing the .
e

normal C++ CliqueMap libraries o Java =
o IPC solutions per target language CliqueMap Client Language

m Go, Python — Named Pipes 300

m Java — Shared Memory

e Enables established, large-scale
infrastructure with substantial non-C++
components to adopt CliqueMap.

CPU-us/op

[y
A

[N)
oo W&
S o

—
oo
(=

(o
(=)

Op Latency (us)

|._3.=.==|

cpp java go Py
CliqueMap Client Language

Challenge: Hardware heterogeneity

Tension with RMA: Wire Interoperability,
performance expectations, mixed-age
hardware

CliqueMap’s Approach:

e Resilient, generic high-level protocols
(2xR) suitable to different underlying
RMA implementations (e.g., SCAR)

e Evolve over time, embrasure of
programmable NICs

® @| Pony Express scale out |

Iient-only scale-out

‘
S -~ = NN ow o»

19:50

20:00

20:10

a2 I
20:20 20:30

1RMA Command Executor Timestamps

18:00

18:10

18:20

18:30 18:40 18:50

(6}

o »
1N0-8[B2S NdD Hodsues]

o
(3]

10

Coming up

A Deeper look at R=3.2
Backend Memory Layout in Detail
2XR GET/SET Example

Enduring Failures

Google

11

CligueMap Backend Memory Layout

Index Region

KeyHash

VersionNumber

Pointer

IndexEntry - i

Bucket

IndexEntry

IndexEntry

IndexEntry

| Bucket

IndexEntry

IndexEntry

IndexEntry

Data Region

b

DataEntry

Format

Key Length

Key

Data Length

DataEntry

Data

Metadata

Free

Checksum

DataEntry

DataEntry

Backend hashtable layout
chosen to be amenable to
self-verification, retries, and
evolution.

e Backend can relocate DataEntires,
e.g., to defrag

e Checksum covers index and data
end-to-end (client can detect
inconsistencies and retry)

e Fields include enough metadata to
hint at the right kind of retry

12

R=3.2: Quoruming and Versioning

Ci Si | QuorumVo | S,

%
\
—

Jcket Fetches K

R=3.2: Quoruming and Versioning

o S | Quorum Vo | s Sy Co
B cket Fetches K
SET K=v: @71 |
Q\
——— o
\\

C1 Quorum Vo

R=3.2: Quoruming and Versioning

Ci St | Quorum Vo | S, Ss
gucket Fetch®® &
ET K=v: @7.1 |
\
T ——
,)2 Vo — V1
Vo — Vi1 C1 Quorum Vo
C:SET <«
Complete |
Quorum Vi
\/ \/ \/ \/

Cz

15

R=3.2: Quoruming and Versioning

C+ St . Quorum Vo S2 Ss3 Co

gucket Fetch®® K

—ET KV @7y | |

\
T
,)2 Vo — V1
Vo s Vs C+ Quorum Vo
_ / /m’ Data Fetch
C1SET <«
Complete | |
C2 GET Complete
. v
'---C-?-L-K-)-r-qm--j---' Checksum Failurgj

R=3.2 with Unplanned Failures

120 - -15M
e it S
) A,/ R CEE TR VRS I 9
= -+ 50p Latency E \ o
> 80F 99.9p Latency !/ \ 1 IOME
c # RPC Bytes/sec / Cohorts 5
= Repairing \ 8]
—Ql_ 40 - Z 2 I./ \ -5M 8
' o -' S
@ / ; -
./ -
0- - N 7 1 [N e _0
14:23 14:24 14:25 14:26

R=3.2 with repair preserves performance across single unplanned failures.

17

R=3.2 with Planned Maintenance/Upgrades

120 -
. ~y -1.2
—~~ k "‘* / |
9 ‘--;—A-\———A-----A-----A---r gl et
= gl / \ /./ | *50p Latency
9 / \-\ : | & 99.9p Latency-0.8
3 | Spare Spare | RPC Bytes/sec
\ l
= / Filling Drammq
3 40- i \ oy -04
Qe 2 o e P — '
O : & | \.
- \ i w
0-— -} D il — 1 e |
13:52 13:53 13:54 13:55

R=3.2 with warm sparing maintains a clean quorum during planned maintenance events.

M

M

<

RPC Bytes/sec

18

Closing Remarks

Leverage RPC, in composition with RMA, to maintain post-deployment agility
Enable multi-language software ecosystems

Don't compromise memory efficiency

Simply design with self-validating server responses and client retries
Programmable NICs offer advantages through specialization

See the paper for many more details!

19

Thank you!

CligueMap: Productionizing an \< I <
RMA-Based Distributed
Caching System

| CIII:I'IJII'_'mINr:I

Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble,
Harshad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger,
Thomas F. Wenisch, Amin Vahdat

Google WISCONSIN

