
CliqueMap: Productionizing an RMA-Based 
Distributed Caching System

Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, 
Harshad Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger, 

Thomas F. Wenisch, Amin Vahdat



Introduction / Summary
In-memory key-value caching/serving systems are 
crucial building blocks of user-facing services 
throughout the industry  (Twemcache(osdi20), CacheLib(osdi20) …. )
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Remote Memory Access (RMA):
● Benefits: Performance/efficiency benefits
● Downsides: Limited programmability/narrow primitives
● Production Challenges

○ Delivering high availability and low cost
○ Balancing CPU- and RAM-efficiency
○ Evolving the system over time
○ Multi-language serving ecosystems
○ Navigating heterogeneous datacenters

How do we 
productionize an 

RMA-based 
distributed caching 

system?



CliqueMap: Productionized RMA-Based Caching System

Hybrid RMA+RPC caching system in 
production use at Google 3+ years.
● Serves >1PB DRAM, >150M QPS
● RMAs on the critical serving path
● RPCs for mutations & other functions
● Simple “2xR” lookup protocol amenable 

to different underlying RMA technologies 
(RDMA, PonyExpress, 1RMA)
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A 2xR-style R=1 Lookup operation using RMA 
primitives. A first operation to a predictable 

location finds the datum in an index. A 
second, dependent operation retrieves the 

datum.



RPC or RMA? False dichotomy.

RMAs [No application code runs on target] 
offer narrow but efficient primitives.

RPCs [Wherein arbitrary application code 
runs/responds on target] offer easier 
productionization and high flexibility.

Hybrids like CliqueMap leverage the strengths 
of both: RMA for most/important operations 
to gain efficiency, RPC when programmability 
is needed.
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CliqueMap Approach and Building Blocks

Self-verification: A lookup 
self-verifies its outcome by strongly 
checksumming data, key, and 
metadata.

Retry at the Right Layer of the 
Stack: E.g., checksum failures 
repeat the lookup. Metadata 
inconsistencies (e.g., during a 
rollout) reload configuration.
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Challenge: Availability/Cost Tradeoffs

Tension with RMA: Synchronizing RMAs, 
tolerating failures.

CliqueMap’s Approach: 
● Modes for R=1, R=2, R=3.2 for tuning 

availability/cost tradeoffs
● RPCs for mutations; RMAs are 

self-verifying
● Data migration for maintenance events
● Tunable on demand repair
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A 2xR-style R=3.2 Quorumed Lookup 
operation. By establishing a quorum (majority 

vote) on metadata, a slow, absent, or 
inconsistent replica can be tolerated.



Challenge: Memory & CPU Efficiency
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Plot of memory usage over time after Dynamic Backend 
Scaling’s initial rollout. Initially, capacity was simply 

slightly overprovisioned - this memory could be 
released. At ~Week 8, demand on corpus fell and more 

memory could be safely refunded.

Tension with RMA: Memory registration 
is expensive/subtle; needs to be done 
off the critical path.

CliqueMap’s Approach: Dynamic 
Backend Scaling
● Start expanding memory when 

usage above watermark 
(RPC-triggered)

● Clients can discover new backend 
geometries lazily, refresh metadata

 



Challenge: Evolution over Time
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Tension with RMA: RMA exposes 
in-memory binary formats, making 
iteration difficult.

CliqueMap’s Approach: Metadata 
verification during checksumming 
enables protocol versioning. Entirely 
new primitives can be introduced.

SCAR was a major feature introduction that occurred 
post-productionization; evolution-friendly retry-based 
design enabled a transition wherein the logical 2xR 

lookup strategy could be flattened to a single 
round-trip, leading to efficiency improvements across 

all layers of infrastructure.



Tension with RMA: C/C++ predominance

CliqueMap’s Approach:
● Launch a subprocess containing the 

normal C++ CliqueMap libraries
○ IPC solutions per target language

■ Go, Python → Named Pipes
■ Java → Shared Memory

● Enables established, large-scale 
infrastructure with substantial non-C++ 
components to adopt CliqueMap.

Challenge: Language Interoperability
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Challenge: Hardware heterogeneity

Tension with RMA: Wire Interoperability, 
performance expectations, mixed-age 
hardware

CliqueMap’s Approach: 

● Resilient, generic high-level protocols 
(2xR) suitable to different underlying 
RMA implementations (e.g., SCAR)

● Evolve over time, embrasure of 
programmable NICs
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Coming up

A Deeper look at R=3.2
Backend Memory Layout in Detail

2xR GET/SET Example 

Enduring Failures
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CliqueMap Backend Memory Layout

Backend hashtable layout 
chosen to be amenable to 
self-verification, retries, and 
evolution.

● Backend can relocate DataEntires, 
e.g., to defrag

● Checksum covers index and data 
end-to-end (client can detect 
inconsistencies and retry)

● Fields include enough metadata to 
hint at the right kind of retry
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R=3.2: Quoruming and Versioning
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R=3.2: Quoruming and Versioning
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R=3.2: Quoruming and Versioning
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R=3.2: Quoruming and Versioning
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R=3.2 with Unplanned Failures
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Cohorts 
Repairing

R=3.2 with repair preserves performance across single unplanned failures.



R=3.2 with Planned Maintenance/Upgrades
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Spare 
Filling

Spare 
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R=3.2 with warm sparing maintains a clean quorum during planned maintenance events.



Closing Remarks

Leverage RPC, in composition with RMA, to maintain post-deployment agility 

Enable multi-language software ecosystems

Don’t compromise memory efficiency

Simply design with self-validating server responses and client retries

Programmable NICs offer advantages through specialization

See the paper for many more details!
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