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Introduction / Summary \(&
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In-memory key-value caching/serving systems are — ﬁ ‘
crucial building blocks of user-facing services | .
thrOUghOUt the indUStry (Twemcache(osdizm, CacheLibosdizo) .... ) | Chquzmmp

Remote Memory Access (RMA):

e Benefits: Performance/efficiency benefits pTTTTTT T
e Downsides: Limited programmability/narrow primitivesi How fjo yve
e Production Challenges  productionize an
o Delivering high availability and low cost : RMA-based
Balancing CPU- and RAM-efficiency ! distributed caching
Evolving the system over time ! system?

Multi-language serving ecosystems \
Navigating heterogeneous datacenters
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CligueMap: Productionized RMA-Based Caching System

Hybrid RMA+RPC caching system in
production use at Google 3+ years.

Serves >1PB DRAM, >150M QPS

RMAs on the critical serving path

RPCs for mutations & other functions
Simple “2xR" lookup protocol amenable

to different underlying RMA technologies
(RDMA, PonyExpress, TRMA)
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A 2xR-style R=1 Lookup operation using RMA
primitives. A first operation to a predictable
location finds the datum in an index. A
second, dependent operation retrieves the
datum.



RPC or RMA? False dichotomy.

RMAs [No application code runs on target]
offer narrow but efficient primitives.

RPCs [Wherein arbitrary application code
runs/responds on target] offer easier
productionization and high flexibility.

Efficiency

Hybrids like CligueMap leverage the strengths
of both: RMA for most/important operations
to gain efficiency, RPC when programmability
is needed.

RPC

Programmability/Features



CligueMap Approach and Building Blocks

Self-verification: A lookup
self-verifies its outcome by strongly
checksumming data, key, and
metadata.

Retry at the Right Layer of the
Stack: E.g., checksum failures
repeat the lookup. Metadata
inconsistencies (e.g., during a
rollout) reload configuration.
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Challenge: Availability/Cost Tradeoffs

Tension with RMA: Synchronizing RMAS,
tolerating failures.

CliqueMap's Approach:
e Modes for R=1, R=2, R=3.2 for tuning
availability/cost tradeoffs
e RPCs for mutations; RMAs are
self-verifying
e Data migration for maintenance events
e Tunable on demand repair

Client S1 S2 S3
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A 2xR-style R=3.2 Quorumed Lookup
operation. By establishing a quorum (majority
vote) on metadata, a slow, absent, or
inconsistent replica can be tolerated.



Challenge: Memory & CPU Efficiency

Tension with RMA: Memory registration
is expensive/subtle; needs to be done
off the critical path.

CliqueMap’s Approach: Dynamic
Backend Scaling
e Start expanding memory when
usage above watermark
(RPC-triggered)
e Clients can discover new backend
geometries lazily, refresh metadata
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Plot of memory usage over time after Dynamic Backend
Scaling's initial rollout. Initially, capacity was simply
slightly overprovisioned - this memory could be
released. At ~Week 8, demand on corpus fell and more
memory could be safely refunded.



Challenge: Evolution over Time

Tension with RMA: RMA exposes
in-memory binary formats, making
iteration difficult.

CliqueMap's Approach: Metadata
verification during checksumming
enables protocol versioning. Entirely
new primitives can be introduced.
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SCAR was a major feature introduction that occurred
post-productionization; evolution-friendly retry-based
design enabled a transition wherein the logical 2xR
lookup strategy could be flattened to a single
round-trip, leading to efficiency improvements across
all layers of infrastructure.




Challenge: Language Interoperability

Tension with RMA: C/C++ predominance 107

CliqueMap's Approach:
e Launch a subprocess containing the .
e

normal C++ CliqueMap libraries o Java =
o IPC solutions per target language CliqueMap Client Language

m  Go, Python — Named Pipes 300

m Java — Shared Memory

e Enables established, large-scale
infrastructure with substantial non-C++
components to adopt CliqueMap.
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Challenge: Hardware heterogeneity

Tension with RMA: Wire Interoperability,
performance expectations, mixed-age
hardware

CliqueMap’s Approach:

e Resilient, generic high-level protocols
(2xR) suitable to different underlying
RMA implementations (e.g., SCAR)

e Evolve over time, embrasure of
programmable NICs
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Coming up

A Deeper look at R=3.2
Backend Memory Layout in Detail
2XR GET/SET Example

Enduring Failures

Google
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CligueMap Backend Memory Layout
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Backend hashtable layout
chosen to be amenable to
self-verification, retries, and
evolution.

e Backend can relocate DataEntires,
e.g., to defrag

e Checksum covers index and data
end-to-end (client can detect
inconsistencies and retry)

e Fields include enough metadata to
hint at the right kind of retry
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R=3.2: Quoruming and Versioning
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R=3.2: Quoruming and Versioning
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R=3.2: Quoruming and Versioning
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R=3.2: Quoruming and Versioning
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R=3.2 with Unplanned Failures
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R=3.2 with repair preserves performance across single unplanned failures.
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R=3.2 with Planned Maintenance/Upgrades
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R=3.2 with warm sparing maintains a clean quorum during planned maintenance events.
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Closing Remarks

Leverage RPC, in composition with RMA, to maintain post-deployment agility
Enable multi-language software ecosystems

Don't compromise memory efficiency

Simply design with self-validating server responses and client retries
Programmable NICs offer advantages through specialization

See the paper for many more details!
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Thank you!

CligueMap: Productionizing an \< I <
RMA-Based Distributed
Caching System
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