
RoGUE: RDMA over Generic
Unconverged Ethernet

Yanfang Le
with Brent Stephens, Arjun Singhvi, Aditya Akella, Mike Swift

RDMA Overview

• RoCE: a protocol that provides RDMA over a lossless Ethernet network

USER

KERNEL

HARWARE

RDMA Zero Copy
Application Application

Buffer Buffer

Kernel Bypass Protocol Offload

Low Latency, High throughput, Low CPU utilization

Priority Flow Control

RoCE assumes Ethernet network to be lossless – achieved by enabling Priority
Flow Control (PFC).

Server/Switch Switch/Server

Pause frame

Motivation
• Data center providers are

reluctant to enable PFC
– Instead, isolate RDMA traffic and

TCP traffic

• RDMA has not seen the uptake
it deserves

Can we run RDMA over generic Ethernet
network without any reliance on PFC ?

Can we run RDMA over generic Ethernet
network without any reliance on PFC ?

RoCE + PFC
Congestion Control
No packet drop

Congestion Control
Retransmission
yet retain low latency, CPU utilization

RoGUE

Signal

CPU

RNIC

RDMA APP

RoCE Overview

Send QUEUE

Receive QUEUE
QP

Verb

Completion QUEUE Signal

Brake the animations

Where to fix: HW or SW?
Hardware

Low CPU utilization, Low
Latency
It requires to work with
NIC vendor
Heterogeneous network
hardware with non-
standard protocol
implementation
Complicates network
evolution

Software
Easy to implement
Packet level congestion signals
are unavailable
High CPU utilization if per-
packet operations

RoGUE Overview

CPU

RNIC

Congestion Control

Congestion Control loop

CPU-efficient segmenting

Hardware timestamp to measure RTT

Hardware rate limiter to pace packets

Loss Recovery

Hardware retransmission

Shadow Queue Pair

Congestion Signal

Sender Switch Receiver

Packets from different flows

ACKRTT

ACK

RTT

• RTT is high, the queue
builds up, reduce the
sending rate

• RTT is low, network is idle,
increase the sending rate

CPU Efficient Segmenting
• Two key questions
• How large a verb should RoGUE

send?
• How often should the RNIC

signaled?

• Small Verb (< 64KB)
• signal every 64KB
• CPU utilization (< 20%)

• Large Verb (>= 64KB)
• chunk, and signal every 64KB.
• CPU utilization (< 10%)

Host RNIC RNIC
Verb 1, 2, 3, 4, 5

Verb 6

Signal 1

Verb 6 packets

Signal 3

Signal 2

RTT measurement
Host RNIC RNIC

Verb 1

Verb 2

Verb 1 packets

Verb 2 packets
Signal 1

Signal 2

Send
Ack 1

Send
Ack 2

Tenc_s1

Tenc_s2

Tstart_s2

Tcomp_s2

Tcomp_s1

Tstart_si =max(
Verb i enqueued,

last packet of Verb i-1 goes out of NIC)

RTTi= Tcomp_si - Tstart_si - bytes/rate_limit

RTT is measured by Hardware
timestamp.

Congestion Response
• Similar to TCP Vegas, and Timely
• If congestion window >= 64KB, window-based + rate

limiter
• If congestion window < 64KB, rate limiter only
• Rate limiter is offloaded to RNIC

Evaluation
• Mellanox ConnectX-3 Pro 10Gbps RNICs,

DCQCN
• Baselines: DCTCP, DCQCN

Evaluation-Cluster Experiments
• Each of 16 hosts generates 1MB RPC for random destinations and send

1KB RPC once every ten 1MB RPC

10 25 50 75
Network Load (%)

(a)
Large RPCs (1MB) - Median FCT

0
1
2
3
4
5
6
7

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(m

s)

10 25 50 75
Network Load (%)

(b)
Small RPCs (1KB) - 90th %ile FCT

0
100
200
300
400
500
600
700

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(u

s)

RoGUE RoCE (w/ DCQCN) DCTCP

Evaluation-Congestion Response

0 50 100 150 200
Time (s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (G

bp
s)

flow 0
flow 1
flow 2
flow 3
flow 4

Evaluation-CPU Utilization

Client Server
0

10

20

30

40

50

60

C
PU

 U
til

iz
at

io
n

(%
)

DCTCP
RoCE (READ RC)
RoGUE (READ RC)

Summary
• It is possible to support RoCE without relying on PFC
• Judicious division of labor between SW and HW to do the

congestion control and retransmission, yet retain a low CPU
utilization

• RoGUE supports RC and UC transport types of CC
• Evaluation results validate that RoGUE has competitive

performance with native RoCE

