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RDMA Overview

• RoCE: a protocol that provides RDMA over a lossless Ethernet network
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Priority Flow Control

RoCE assumes Ethernet network to be lossless – achieved by enabling Priority 
Flow Control (PFC).
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Motivation
• Data center providers are 

reluctant to enable PFC
– Instead, isolate RDMA traffic and 

TCP traffic

• RDMA has not seen the uptake 
it deserves



Can we run RDMA over generic Ethernet 
network without any reliance on PFC ?
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Where to fix: HW or SW?
Hardware 

Low CPU utilization, Low 
Latency
It requires to work with 
NIC vendor
Heterogeneous network 
hardware with non-
standard protocol 
implementation
Complicates network 
evolution 

Software 
Easy to implement 
Packet level congestion signals 
are unavailable
High CPU utilization if per-
packet operations



RoGUE Overview
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Congestion Signal

Sender Switch Receiver

Packets from different flows

ACKRTT

ACK
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• RTT is high, the queue 
builds up, reduce the 
sending rate

• RTT is low, network is idle, 
increase the sending rate



CPU Efficient Segmenting
• Two key questions  
• How large a verb should RoGUE 

send?
• How often should the RNIC 

signaled?

• Small Verb (< 64KB)
• signal every 64KB
• CPU utilization (< 20%)

• Large Verb (>= 64KB)
• chunk, and signal every 64KB.
• CPU utilization (< 10%)
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RTT measurement
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Tstart_si =max(
Verb i enqueued, 

last packet of Verb i-1 goes out of NIC)

RTTi= Tcomp_si - Tstart_si - bytes/rate_limit

RTT is measured by Hardware 
timestamp.



Congestion Response
• Similar to TCP Vegas, and Timely
• If congestion window >= 64KB, window-based + rate 

limiter 
• If congestion window < 64KB, rate limiter only
• Rate limiter is offloaded to RNIC



Evaluation
• Mellanox ConnectX-3 Pro 10Gbps RNICs, 

DCQCN
• Baselines: DCTCP, DCQCN



Evaluation-Cluster Experiments
• Each of 16 hosts generates 1MB RPC for random destinations and send 

1KB RPC once every ten 1MB RPC
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Evaluation-Congestion Response
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Evaluation-CPU Utilization
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Summary
• It is possible to support RoCE without relying on PFC
• Judicious division of labor between SW and HW to do the 

congestion control and retransmission, yet retain a low CPU 
utilization

• RoGUE supports RC and UC transport types of CC
• Evaluation results validate that RoGUE has competitive 

performance with native RoCE


