Granular Computing and Network Intensive Applications: Friends or Foes?

Arjun Singhvi, Sujata Banerjee, Yotam Harchol, Aditya Akella, Mark Peek, Pontus Rydin

Evolution of Computing Services

Decrease user involvement in management tasks

Allow more user focus on application logic

Programming Paradigm Shift

Serverless Traditional Monolithic Collection of Application **Functions**

Serverless Computing Control Flow

triggers

Serverless Computing Building Blocks

Serverless Computing Platforms

UW-Madison

Research on Serverless Computing

- Video Processing Applications
 ExCamera (NSDI '17)
- Distributed Computing Applications

- PyWren (SoCC '17)

Network Intensive Applications -> Network Functions

– Our Work (HotNets '17)

Network Functions

- Examine and perform *stateful* actions on packets/flows
- Ensure security, improve performance and provide other network-related functionality

- Lie in the critical path between source and destination
- Should be capable of handling packet bursts and failures

Network Functions State Taxonomy

State created or updated by an NF applies to either a **single flow** or a **collection of flows**

Network Functions Virtualization

- Leverage cloud computing and SDN in Telco infrastructures
 - Utilize commodity hardware
 - Reduce costs
 - Dynamically allocate NF instances

Why Network Functions?

- Network Functions are a demanding class of applications
- Trend of pushing Network Functions to the cloud
 - APLOMB (SIGCOMM '12), EMBARK (NSDI '16), AT&T Domain 2.0
- In the future, if serverless computing becomes the de-facto cloud standard

Why is it challenging to run network functions atop serverless computing platforms?

Foes?

Serverless Computing

Short-lived

Network Functions

Long-lived

Stateless

Stateful

No support for efficient chaining

No QoS guarantees Needs efficient chaining

Need QoS guarantees

What opportunities do serverless computing platforms provide to run network functions?

Friends?

- Network Functions Vision Micro-service based architecture that scales dynamically
 - Better resource utilization
 - Scale components independently
 - Reuse across chains
 - Reduce the costs
- Serverless Computing provides the building blocks
 - Has the capability to scale based on load
 - Encourages developers to design their applications in terms of micro-services
 - Reduces the costs

Serverless Packet Processing Design

• What is the granularity at which we want to launch lambdas? Per-packet

• Not viable

Serverless Packet Processing Design

• What is the granularity at which we want to launch lambdas? Per-flow

Per-flow Vs. Per-packet

- Pros –
 Cost effective
 State management easier
- Cons –

Needs additional infrastructure to coordinate launching of new lambdas

Cannot natively leverage what serverless platforms provides

AWS Lambda Benchmarking Study

- Within an AWS region
- EC2 VMs act as TCP traffic sources and sinks
- Three Click-based NFs
 - Packet Counter
 - Firewall
 - Intrusion Detection System

AWS Lambda – Network Provisioning

Bidirectional Bandwidth of around 500 Mbps

AWS Lambda – Network Provisioning

- Bandwidth does not scale linearly
- No per lambda request network guarantees

AWS Lambda – NF Framework

Network Function	Mean	Std-Dev	Mean	Std-Dev
	(Mbps)	(Mbps)	(msec)	(msec)
Packet Counter	367.14	18.34	2.89	1.14
Firewall	355.90	18.72	3.39	1.41
IDS	339.03	21.85	3.40	1.79

Modest results; but give us a hope as to what future serverless platforms may enable

Conclusion

- Serverless Computing Platforms are not perfect yet – are continuously evolving!
- Packet processing applications are not a natural fit; need –
 - Efficient in-network triggers
 - Efficient chaining support
 - Bandwidth guarantees

Open Questions

- Scalable remote storage service that meets our requirements?
- Better fault tolerance support?
- Faster control plane decisions?
- And many more ...

How to effectively support demanding stateful applications atop serverless platforms?