
SNF: Serverless Network
Functions

Arjun Singhvi, Junaid Khalid, Aditya Akella, Sujata Banerjee

* This work does not have any affiliation with Google

Network Functions (NFs) 101

NFs are typically stateful and maintain per-flow internal state
• IDS: flow to automaton state mapping

• LB: flow to backend server mapping

• ….

How can one

offer NFs as a Service (NFaaS)?

Intuitive

programming

model

Delivers

low-latency

processing

requirements

Automatically

scale up/down

to meet the

demand

Usage-based

billing

Serverless Computing for NFaaS?
Seems to have the right building blocks

• Event-driven programming model

• Usage-based billing

• Automatic compute elasticity

Upload your function to

the serverless computing

platform and register for

event-based triggers
Execution is

triggered when an

event occurs

Platform runs

your function

only

when triggered

Pay just for the

computation

time

Issue 1: Stateless Function Abstraction

NAT1 NATn

Controller

Incoming Events

(e.g., packets)

Remote Storage Service

Issue 1: Stateless Function Abstraction
Functions are stateless by design –

no (guaranteed) local state across

events

State transfer via remote storage

� High per-packet processing

latencies due to physical decoupling

of compute and state

NAT1 NATn

Controller

Incoming Events

(e.g., packets)

Remote Storage Service

Issue 1: Stateless Function Abstraction
Functions are stateless by design –

no (guaranteed) local state across

events

State transfer via remote storage

� High per-packet processing

latencies due to physical decoupling

of compute and state

NAT1 NATn

Controller

Incoming Events

(e.g., packets)

Remote Storage Service

Why not opt for a “Server-full” NFaaS?
Compute and state are physically coupled

Leads to coarse-grained flow-level work allocation

- Commitment between a flow and compute unit

Trade-off between efficiency and performance

- Overload impacts performance

- Under utilization impacts efficiency

State migration during traffic redistribution has

high overheads

Compute

Memory

Server

Abstraction

NF logic

NF state

Issue 2: Work Allocation at Billing Granularity

Coupling between units of controller

work allocation and billing - events

� Leads to trade-off between resource

efficiency, performance and usage-

based billing.

� Packet

� Efficiency and ideal billing at

the cost of performance

� Flow

� Performance at the cost of

efficiency and ideal billing

Controller

Incoming Events

(e.g., packets)

NAT1 NATnAct at event granularity

Issue 2: Work Allocation at Billing Granularity

Coupling between units of controller

work allocation and billing - events

� Leads to trade-off between resource

efficiency, performance and usage-

based billing.

� Packet

� Efficiency and ideal billing at

the cost of performance

� Flow

� Performance at the cost of

efficiency and ideal billing

Controller

Incoming Events

(e.g., packets)

NAT1 NATnAct at event granularitySNF is a serverless platform that provides

support to stateful NFs and allows offering NFaaS

SNF Design Overview: Key Ideas

Decouple work

allocation and billing

granularity

Key Idea #1

Leverage the

existence of flowlets

Key Idea #3

Middleground for

compute-state

(de)-coupling

Key Idea #2

Flowlets are burst of packets that is separated in time

from other bursts by a sufficient gap — called the
flowlet timeout

SNF Design Overview: Key Abstractions

Controller

Incoming Events

(e.g., packets)

NAT1
NATn

SNF Design Overview: Key Abstractions

Controller

Incoming Events

(e.g., packets)

NAT1
NATn

Acts @
Packet

Granularity

SNF Design Overview: Key Abstractions

Controller

Incoming Events

(e.g., packets)

NAT1
NATn

Acts @
Flowlet

Granularity

Acts @
Packet

Granularity

Ephemeral Stateful Functions
� All events (packets) within a flowlet are sent to

the same function and state is maintained

locally

Peer-Peer Distributed Storage
� NFs share state with each other in a

peer-peer fashion

� Leverage the flowlet timeout to

proactively replicate state
RUNTIME RUNTIME

Storage Service

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

Controller

FW1 FW2

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

Controller

FW1 FW2

Flow F

Flowlet f1

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

Controller

FW1 FW2

Flow F

Flowlet f1

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

Controller

FW1 FW2

Flow F

Flowlet f2

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

Controller

FW1 FW2

Flow F

Flowlet f2

SNF Design: State Management - Why Proactive?

A flowlet fi+1 of flow F can be assigned to a different compute unit as

compared to flowlet fi

Controller

FW1 FW2

Flow F

Flowlet f2

Such reactive approaches

degrade performance!

SNF Design: State Management

Proactively replicate state before the next flowlet fi+1 arrives

When to proactively replicate?

- Balance between making unnecessary transfers and wait times

- Replicate at half the flowlet inactivity timeout

Where to proactively replicate?

- Future flowlet to compute unit assignment not known

- Top K compute units in a weighted randomized manner

- weights correspond to how controller prioritizes allocation to a particular compute unit

SNF Design: Compute Management

Weighted greedy bin-packing algorithm

- Maximally pack flowlets into few compute units

- Prefers units to which have been proactively

replicated

Score = Utilization + ⍺ x StateExists

⍺ balances utilization against proactive
benefits

SNF Design: Compute Management

Weighted greedy bin-packing algorithm

- Maximally pack flowlets into few compute units

- Prefers units to which have been proactively

replicated

Score = Utilization + ⍺ x StateExists

⍺ balances utilization against proactive
benefits

NF2NF1 NF3

Controller

SNF Design: Compute Management

Weighted greedy bin-packing algorithm

- Maximally pack flowlets into few compute units

- Prefers units to which have been proactively

replicated

Score = Utilization + ⍺ x StateExists

⍺ balances utilization against proactive
benefits

NF2NF1 NF3

Controller

SNF Design: Compute Management

Weighted greedy bin-packing algorithm

- Maximally pack flowlets into few compute units

- Prefers units to which have been proactively

replicated

Score = Utilization + ⍺ x StateExists

⍺ balances utilization against proactive
benefits

NF1 NF3

Controller

SNF Evaluation: Implementation and Testbed

Prototype – built from scratch

Workload – replay previously captured packet traces (3.8 M packets

with 1.7K connections)

NFs – NAT, LB, IDS, UDP Whitelister, QoS Traffic Policer

Compute units configured to handle 1Gbps incoming workload

SNF Evaluation: Compute Management
Can SNF provision compute as per the incoming traffic demand at fine

time scales?

Baselines:

Vanilla Flow Allocation
Allocate when new flow

arrives

(associated with compute unit

for entire lifetime)

Adopted by generic

server-full alternatives

Allocate when new flow

arrives and every X ms

Smart Flow Allocation (Xms)

Adopted by NF

specific solutions

SNF Evaluation: Compute Management

Vanilla Flow Smart Flow (100ms) Smart Flow (50ms) Flowlet

SNF Evaluation: Compute Management

Vanilla Flow Smart Flow (100ms) Smart Flow (50ms) Flowlet

Vanilla Flow Allocation does not adapt well to incoming workload

Smart Flow (Xms) Allocation leads to most overprovisioning of compute units

Flowlet Allocation closely matches the incoming load

SNF Evaluation: Compute Management

Vanilla Flow Smart Flow (100ms) Smart Flow (50ms) Flowlet

Vanilla Flow Allocation does not adapt well to incoming workload

Smart Flow (Xms) Allocation leads to most overprovisioning of compute units

Flowlet Allocation closely matches the incoming load

SNF Evaluation: Compute Management

Vanilla Flow Smart Flow (100ms) Smart Flow (50ms) Flowlet

Vanilla Flow Allocation does not adapt well to incoming workload

Smart Flow (Xms) Allocation leads to most overprovisioning of compute units

Flowlet Allocation closely matches the incoming load

SNF Evaluation: Compute Management

Vanilla Flow Smart Flow (100ms) Smart Flow (50ms) Flowlet

Vanilla Flow Allocation does not adapt well to incoming workload

Smart Flow (Xms) Allocation leads to most overprovisioning of compute units

Flowlet Allocation closely matches the incoming load

Flowlet Allocation gets 3.36x more opportunities to assign work

SNF Evaluation: Compute Management

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

Smart Flow Mode
Moderately High Latencies

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

Smart Flow Mode
Moderately High Latencies

Unable to handle low-

time scale overloads

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

Smart Flow Mode
Moderately High Latencies

Unable to handle low-

time scale overloads

Reactive State

Transfers

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

Smart Flow Mode
Moderately High Latencies

Unable to handle low-

time scale overloads

Reactive State

Transfers

Flowlet Mode
Low Latencies

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

Smart Flow Mode
Moderately High Latencies

Unable to handle low-

time scale overloads

Reactive State

Transfers

Flowlet Mode
Low Latencies

Proactive State

Transfers

SNF Evaluation: Compute Management

Vanilla Mode
High Latencies

Pinning of flows

to compute

Smart Flow Mode
Moderately High Latencies

Unable to handle low-

time scale overloads

Reactive State

Transfers

Flowlet Mode
Low Latencies

Proactive State

Transfers

Frequent Work

Allocation

SNF Evaluation: Compute Management

Can SNF provision compute as per the incoming traffic demand at fine

time scales?

Does SNF provide its performance while not sacrificing utilization?

SNF Evaluation: Compute Management
Vanilla Flow Smart Flow (100ms) Smart Flow (50ms) Flowlet

Flowlet allocation mode ensures that there is

rare overload and lesser under utilization

SNF Evaluation: State Management

Does proactive state replication help curtail tail latencies?

Baselines:

Reactive
On arrival of new flowlet, state

pulled from compute unit where

previous flowlet was processed

NF State Management Solutions State Management in Serverless

Platforms Today

Optimized State External
State proactively pushed to

external store and pulled

on arrival of new flowlet

SNF Evaluation: State Management

SNF Evaluation: State Management

Baselines
Tail latencies

dominated

by RTT

SNF Evaluation: State Management

Baselines
Tail latencies

dominated

by RTT

Proactive (SNF)
Low tail latencies

due to proactive

state transfers

SNF Evaluation: State Management

Baselines
Tail latencies

dominated

by RTT

Proactive (SNF)
Low tail latencies

due to proactive

state transfers

12-15x
improvement in

tail latencies

SNF Summary

Performant and efficient serverless platform that offers NFaaS

Decouple work allocation granularity (flowlet) from billing (packet)

granularity

Realize the notion of ephemeral stateful functions

SNF Summary

Performant and efficient serverless platform that offers NFaaS

Decouple work allocation granularity (flowlet) from billing (packet)

granularity

Realize the notion of ephemeral stateful functions

More details

in paper

How to deal with

adversarial flowlets?
……..

How to ensure state

fault tolerance?

SNF: Serverless Network
Functions

Arjun Singhvi, Junaid Khalid, Aditya Akella, Sujata Banerjee

Thank you!
asinghvi@cs.wisc.edu

mailto:asinghvi@cs.wisc.edu

