Themis: Fair and Efficient GPU Cluster Scheduling

Kshiteej Mahajan¹, Arjun Balasubramanian¹, Arjun Singhvi¹, Shivaram Venkataraman¹, Aditya Akella¹, Amar Phanishayee², Shuchi Chawla¹

Deep Learning at a Large Enterprise

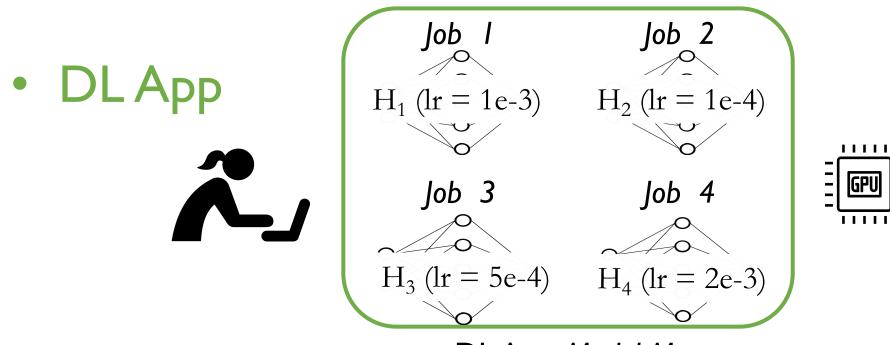
Speech, Image, Ads, NLP, Web Search...

Deep Learning at a Large Enterprise

Innovate and Train newer DL models on GPUs

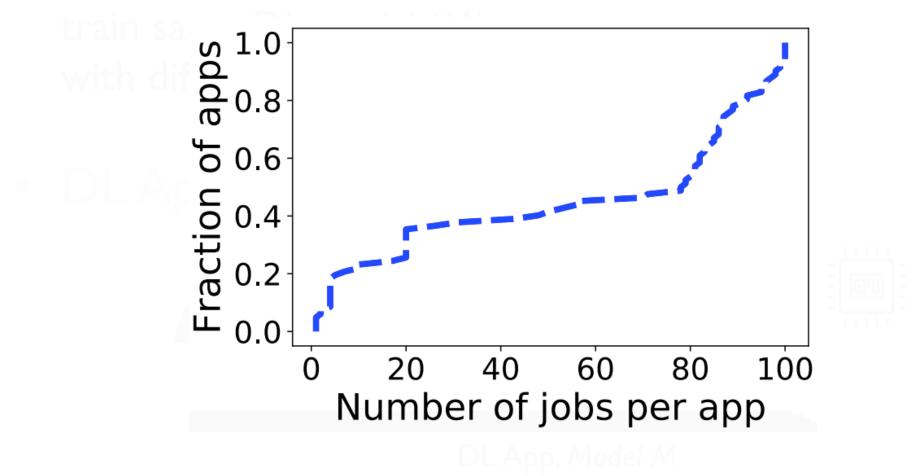
Deep Learning at a Large Enterprise

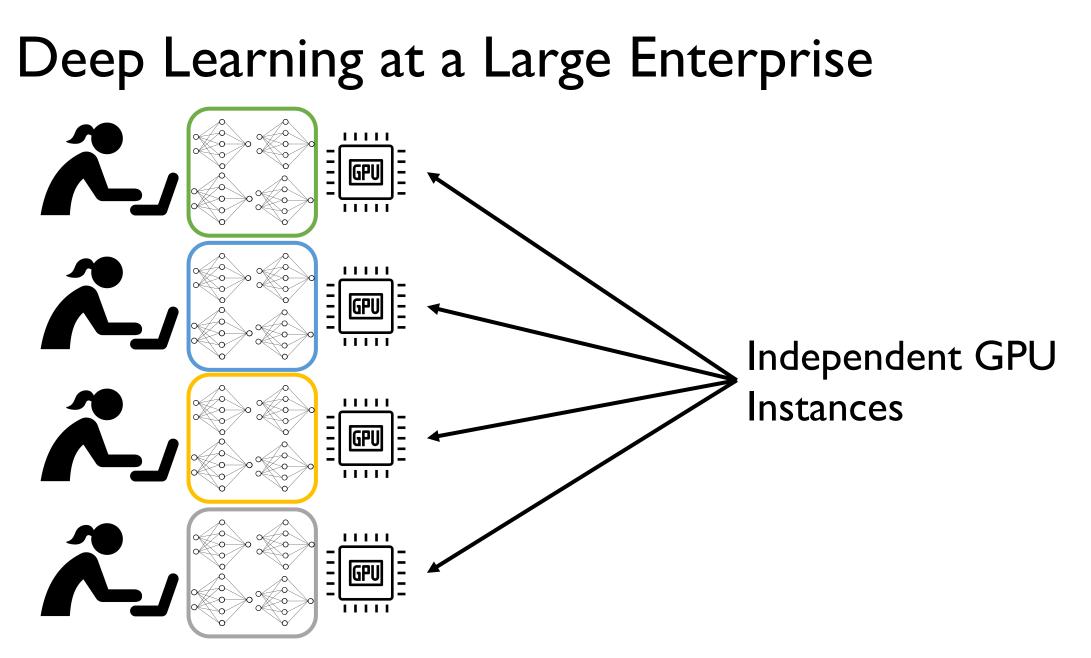
 Hyperparameter Optimization is typical – train same DL model (M) with different hyperparameters (H)



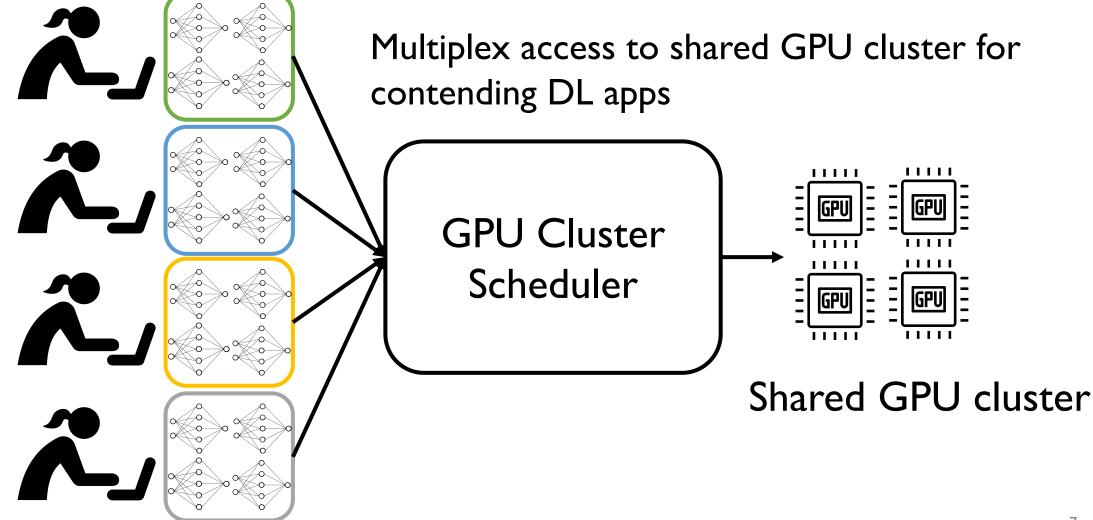
DL Apps at a Large Enterprise

• Hyperparameter Optimization is typical –

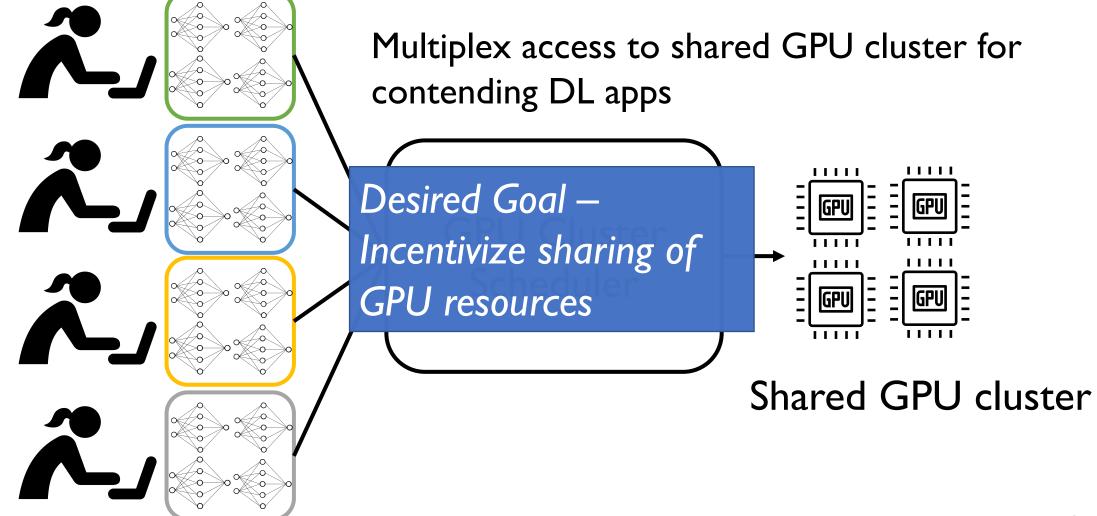




GPU Cluster Scheduler: Goal



GPU Cluster Scheduler: Goal



GPU Cluster Scheduler: Goal

Multiplex access to shared GPU cluster for

Primary Goal – Sharing Incentive (SI)

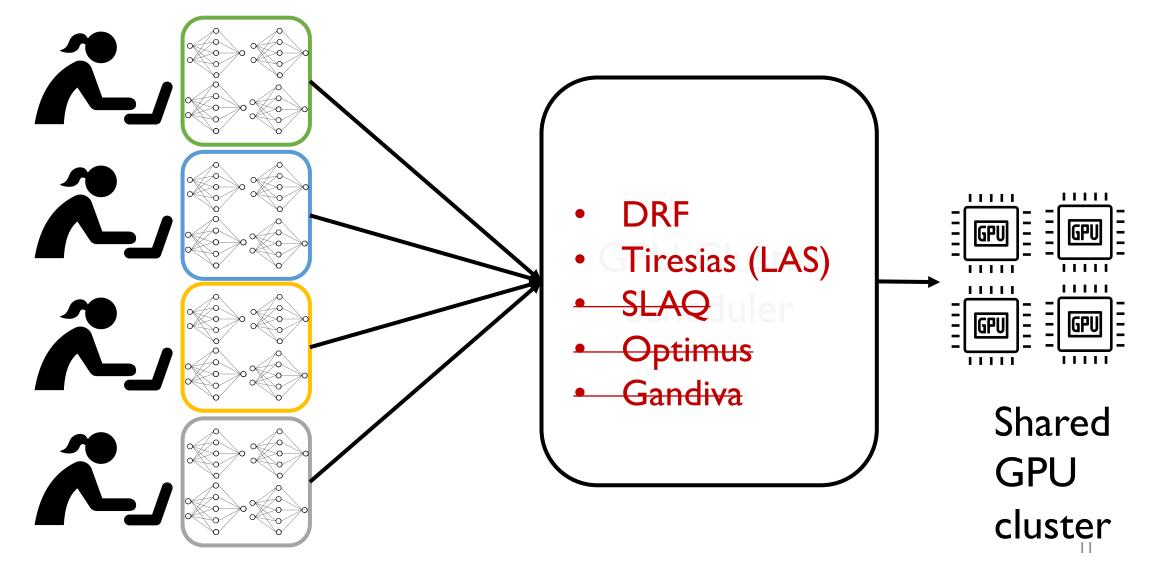
If N DL apps are sharing a cluster then no DL app should run slower than on a private cluster with I/N resources.

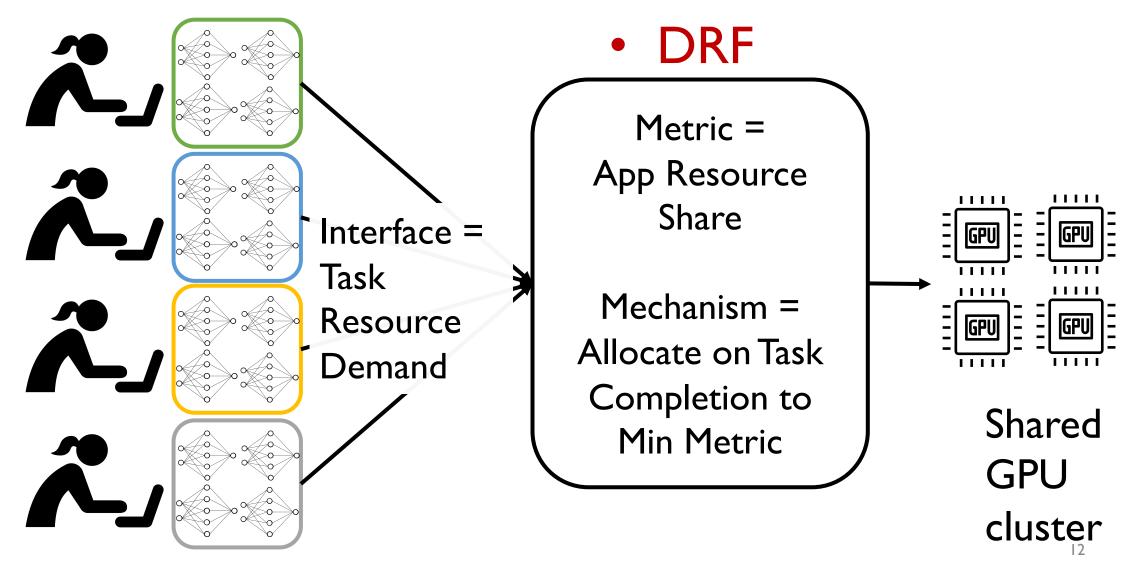
cluster

Overview

- Existing GPU Cluster Schedulers
 - Do not give Sharing Incentive
 - DL App Properties
 - Drawbacks
 - Requirements
- Themis
 - Design
 - Implementation
 - Evaluation

Existing GPU Cluster Schedulers





- Assume Short Tasks for Sharing Incentive
- Short Tasks allow for frequent multiplexing

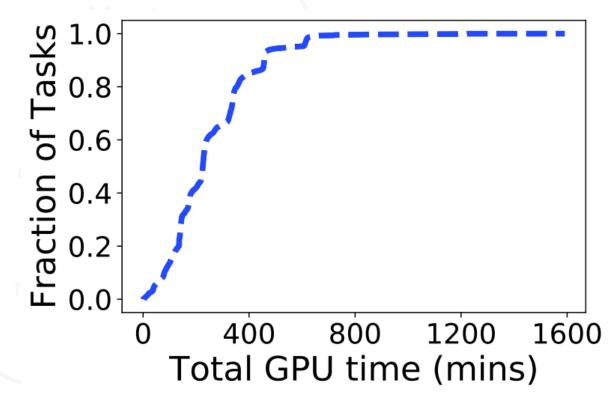


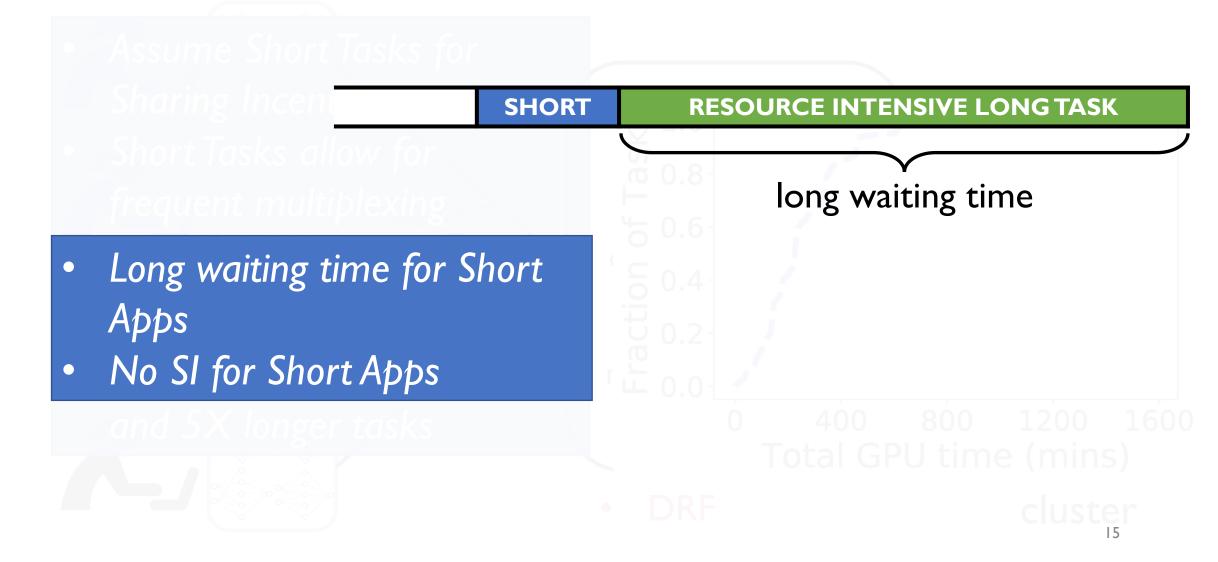
Metric = Resource Share

Mechanism = on task completion, schedule task from app with min Resource Share

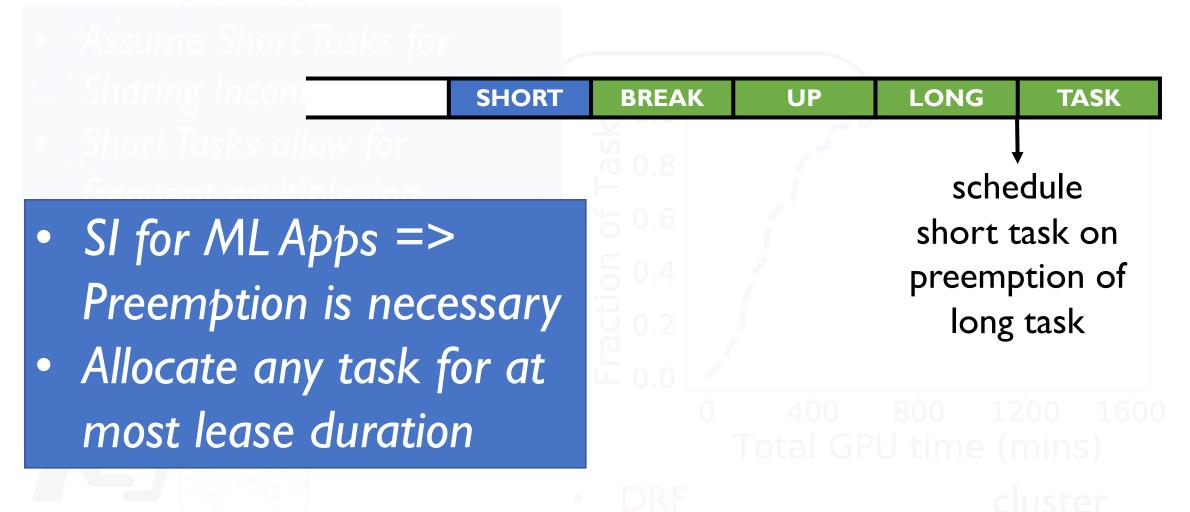
Shared GPU cluster

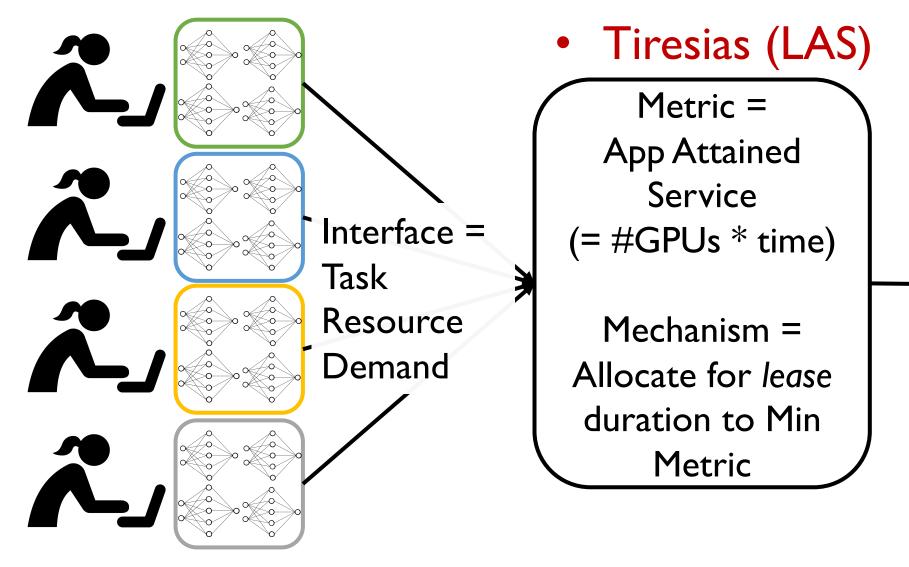
- Assume Short Tasks for Sharing Incentive
- Short Tasks allow for frequent multiplexing
- *ML* median task duration 3.75 hours
- Lot of apps with 5X shorter and 5X longer tasks





GPU Cluster Scheduler: Requirement I





....

....

....

Shared

cluster

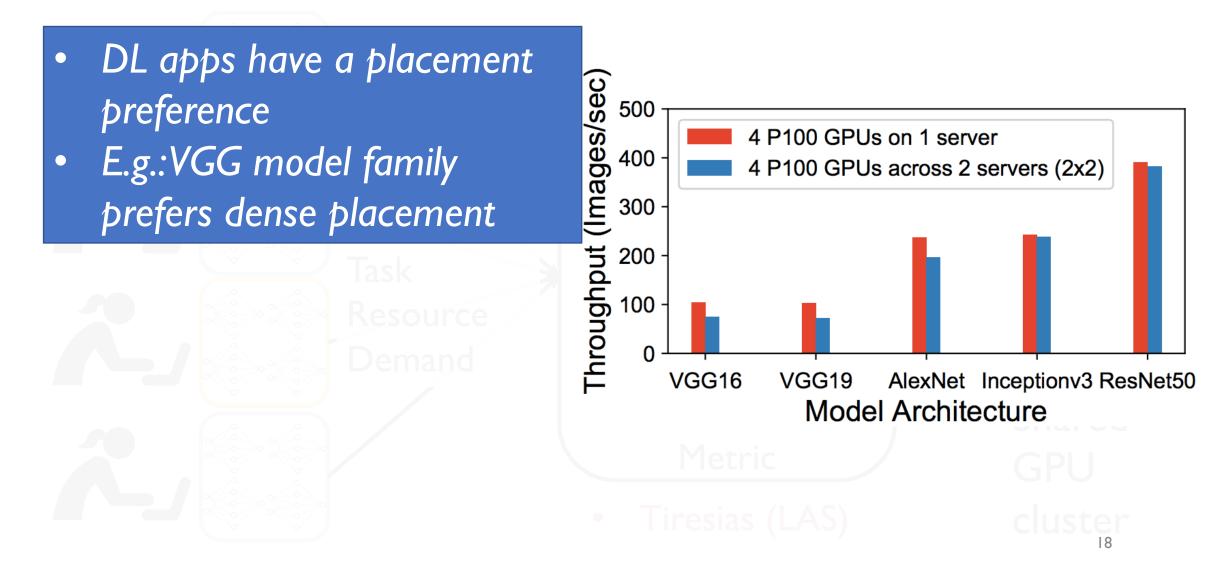
GPU

11111

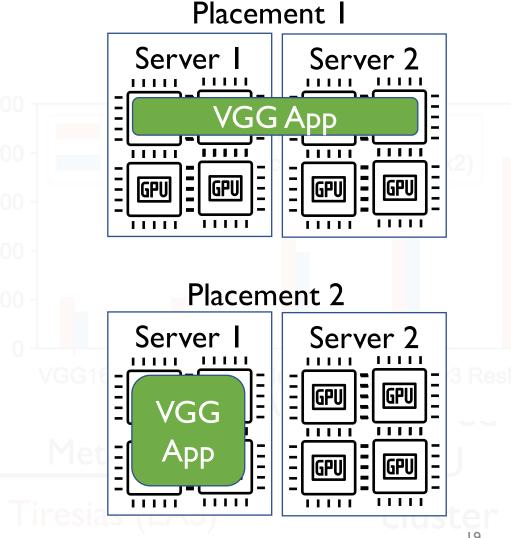
....

....

....



- Attained Service is equal in • both placements (= 4 GPUs * time)
- Both placements are 0 equivalent
- *Poor placement => slower* lacksquareexecution time
- VGG app would rather prefer its own server
- No SI



- **Binary Placement** ightarrowEnforcement – Strict Consolidation (wait for Placement 2)
- Partial Progress can be made with Placement 1
- Long wait time without progress
- SI is violated



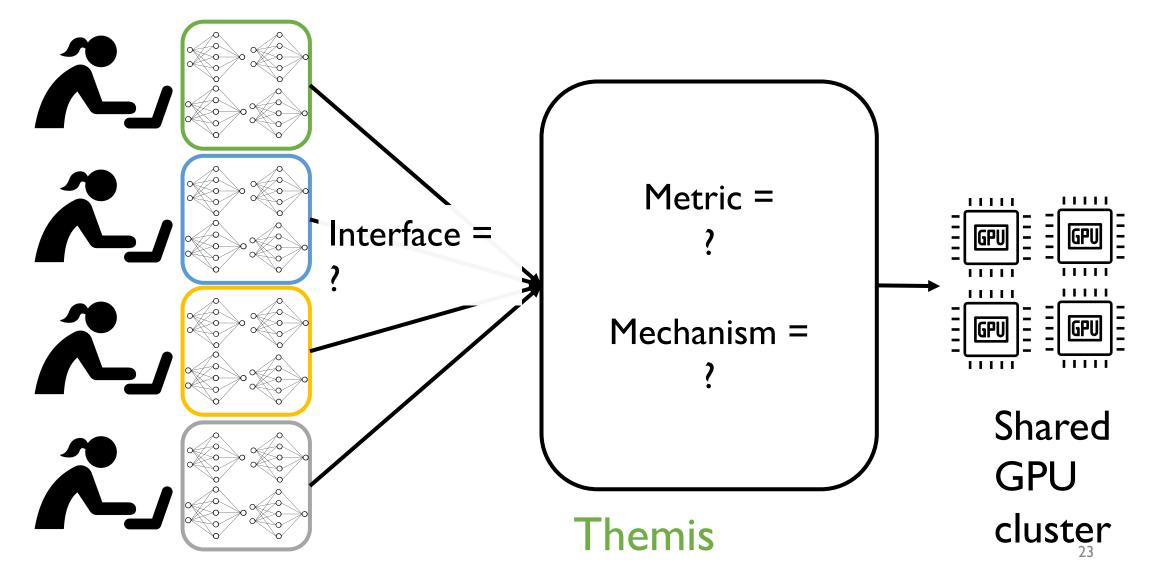
GPU Cluster Scheduler: Requirement 2

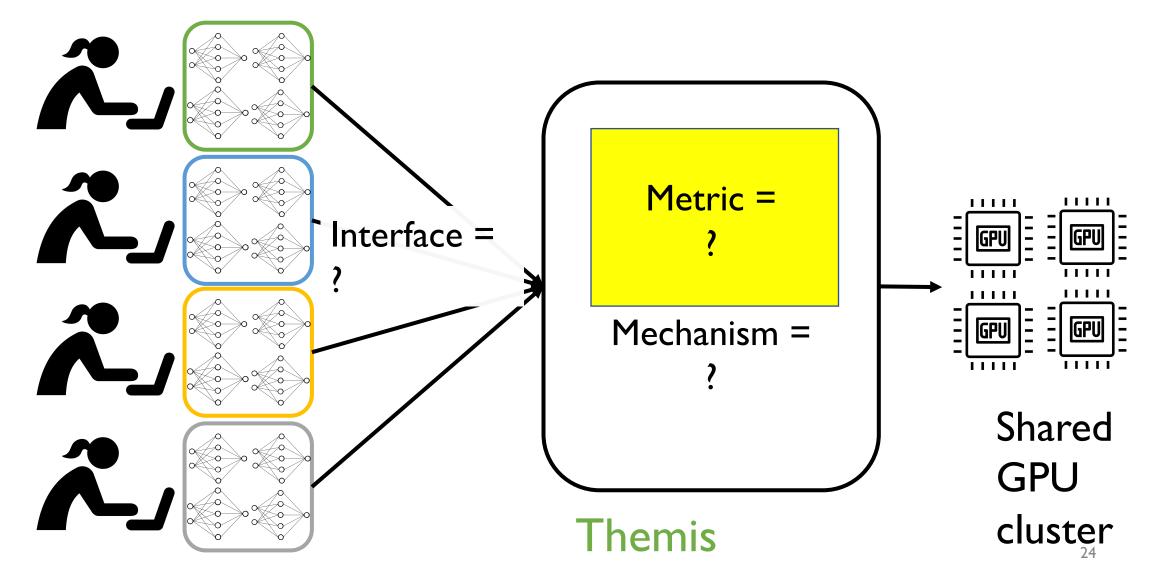
- Binary Placement
 Enforcement –
 Strict Consolidation (only)
- SI for ML Apps => Fine-grained Placement Preference

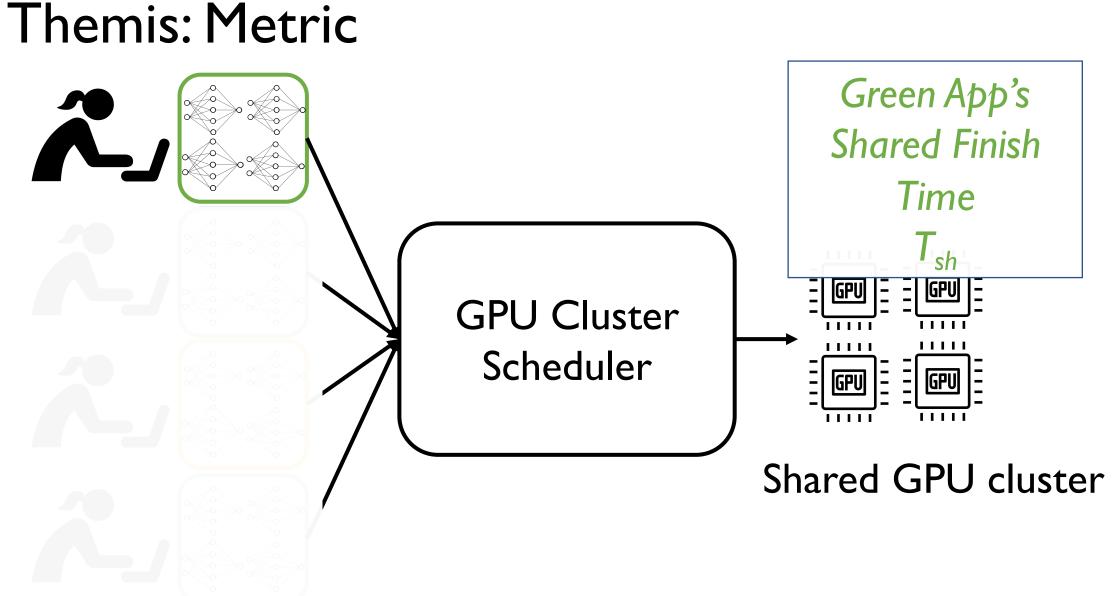
Overview

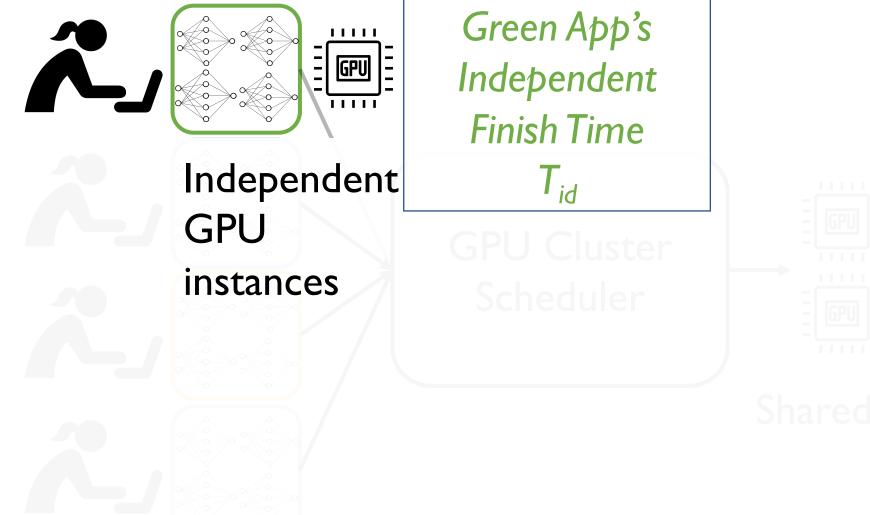
- Existing GPU Cluster Schedulers
 - Do not give Sharing Incentive
 - DL App Properties
 - Drawbacks
 - Requirements
- Themis
 - Design
 - Implementation
 - Evaluation

Towards a new GPU Cluster Scheduler

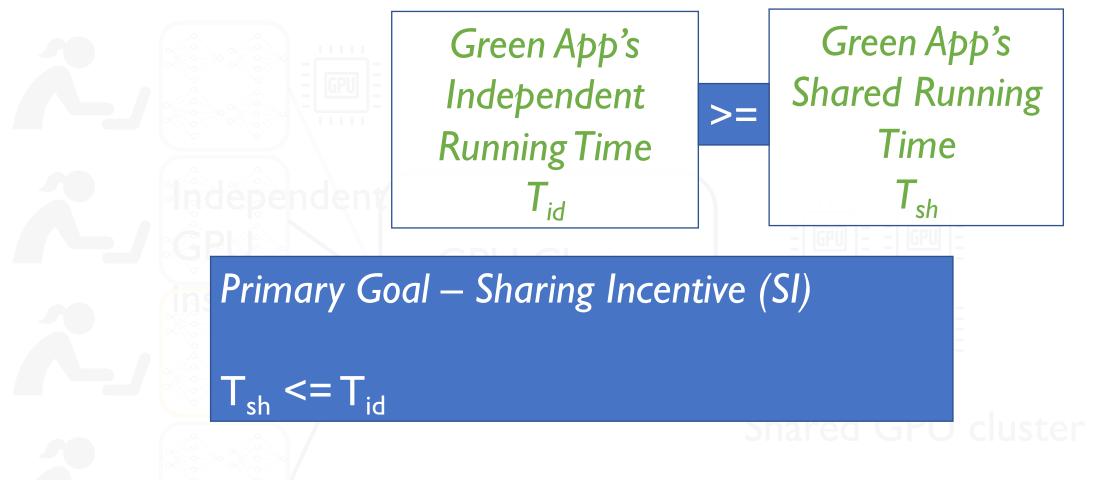








Shared GPU cluster



Themis: Finish-Time Fairness Metric

- $\rho = T_{sh} / T_{id}$
 - T_{sh} : finish-time of app in shared cluster
 - T_{id} : finish-time of app in exclusive I/N share of cluster
 - N:Average contention during app lifetime

Themis: Finish-Time Fairness Metric

• $\rho = T_{sh} / T_{id}$

- T_{sh}: finish-time of app in shared cluster
- T_{id}: finish-time of app in exclusive 1/N share of cluster
- N:Average contention during app lifetime
- SI: for all apps, ρ <= I

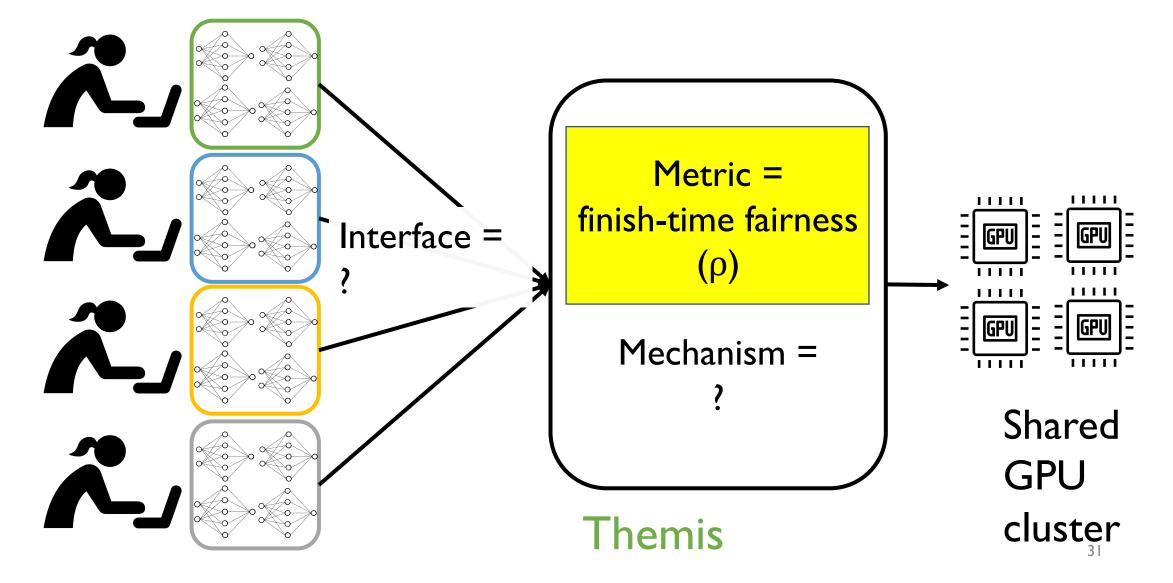
Themis: Finish-Time Fairness Metric

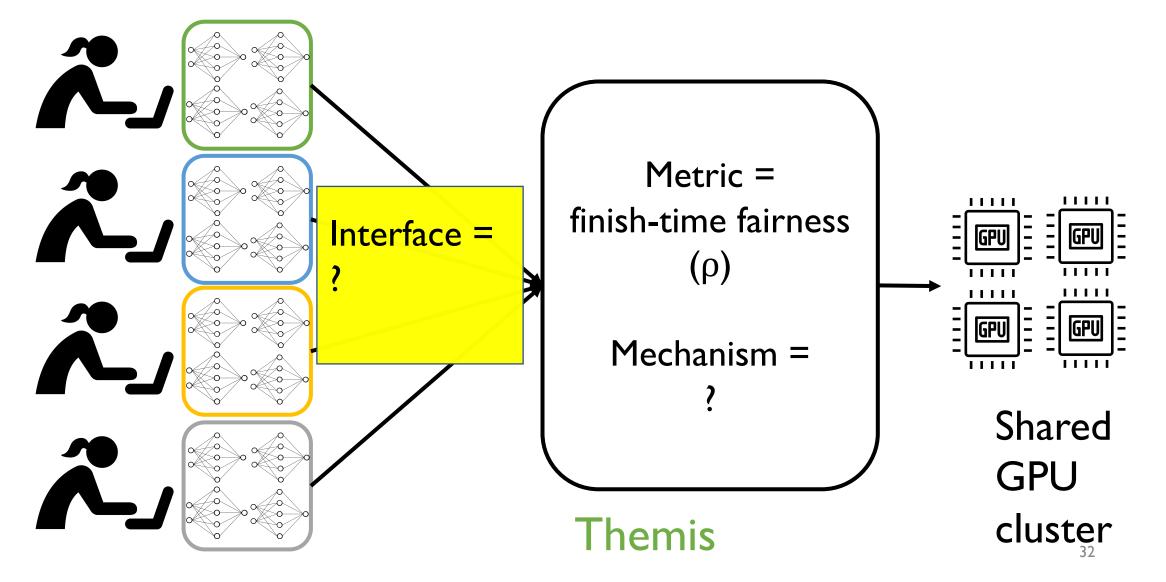
• $\rho = T_{sh} / T_{id}$

- T_{sh}: finish-time of app in shared cluster
- T_{id}: finish-time of app in exclusive I/N share of cluster
- N:Average contention during app lifetime

• SI: for all apps, $\rho \leq 1$

- Fine-Grained Placement Preferences
 - Excessive queueing or bad placements worsens T_{sh} and hence ρ

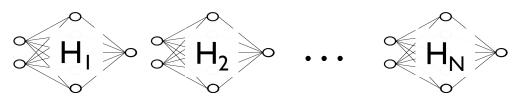


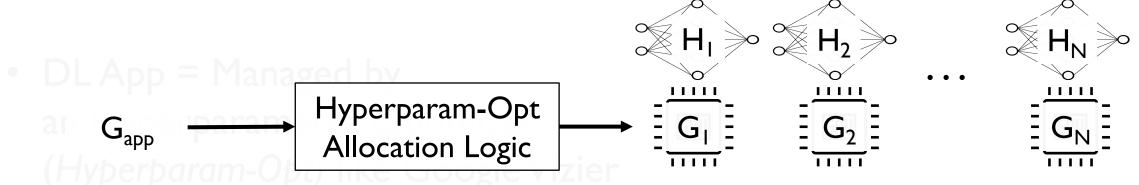


- Key Purpose: Enable book-keeping of ρ
- Who calculates ρ the app or the scheduler?

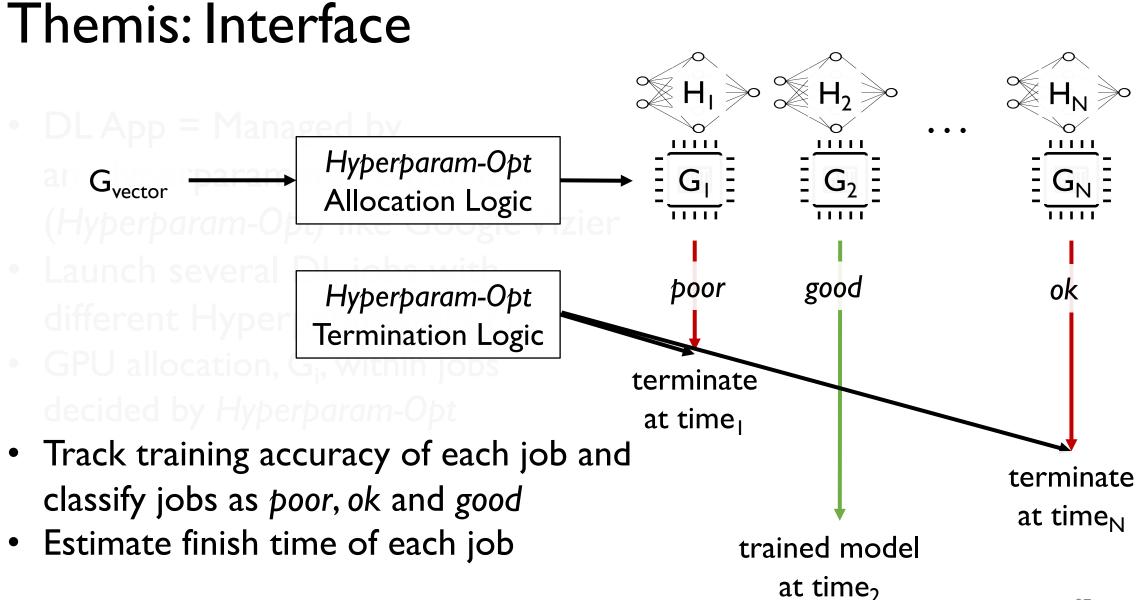
 DL App = Managed by an Hyperparameter Optimizer (Hyperparam-Opt) like Google Vizier

- DL App = Managed by an Hyperparameter Optimizer (Hyperparam-Opt) like Google Vizier
- Launch several DL jobs with different Hyperparameters H_i





- Launch several DL jobs with different Hyperparameters H_i
- GPU allocation, G_i, within jobs decided by *Hyperparam-Opt*



Themis: Interface

- DL App = Mai an _{Gvector} para (Hyperparam-(
- Launch severa different Hype
- GPU allocation decided by Hyp
- Terminate poo instances until
- $W_{left} = \sum_i G_i *$ the Hyperparan

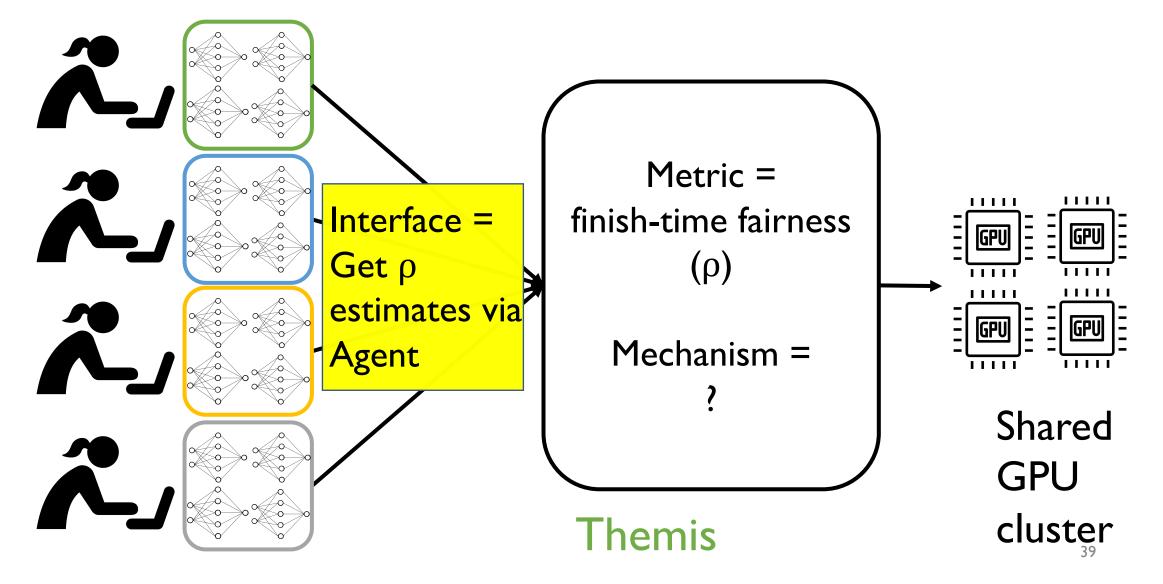
App's Hyperparam-Opt tracks per-job progress

App does calculation of ρ

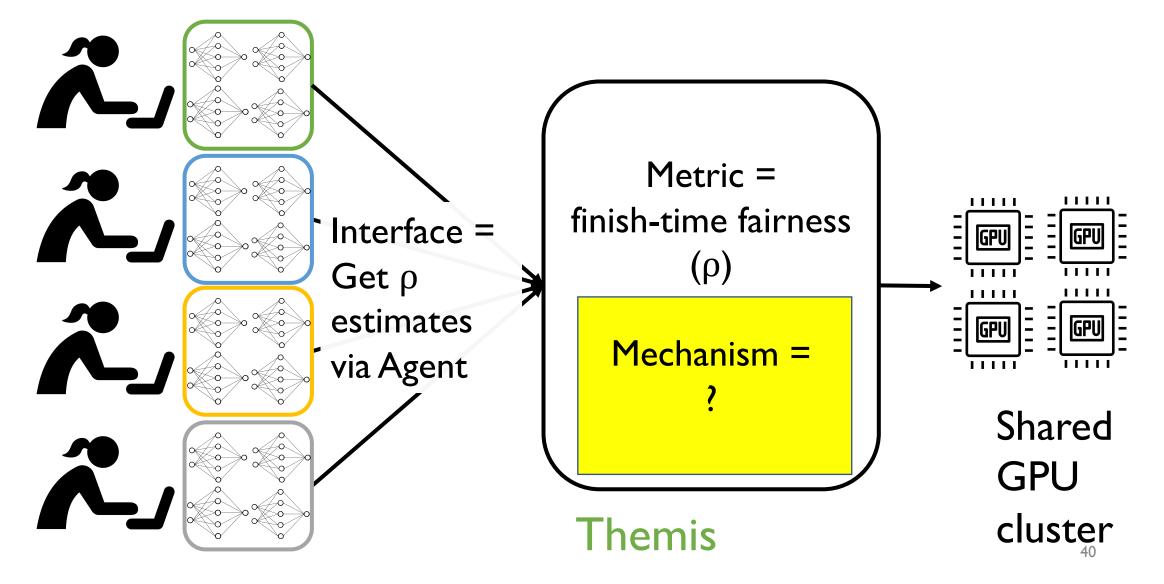
- Scheduler pulls updated values
 of ρ from the Agent co-located
 with App's Hyperparam-Opt
- Details in the paper

terminate at time_N

Towards a new GPU Cluster Scheduler



Towards a new GPU Cluster Scheduler

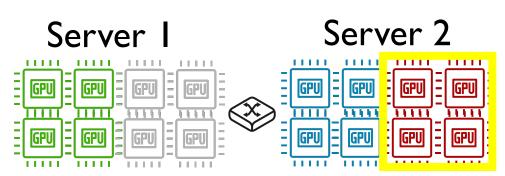


Themis: Mechanism

- Key Goal: Sharing Incentive
- SI: for all apps, $\rho \leq 1$
- Difficult to guarantee with online arrivals
- Our focus: min (max ρ): empirically keeps ρ 's \approx I without admission control

Strawman Mechanism

SI Objective – min (max ρ)

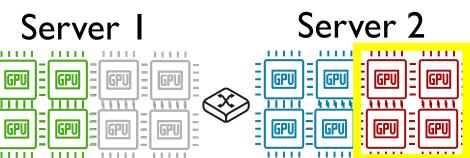


Red GPUs become available

Strawman Mechanism

SI Objective – min (max ρ)

Interface: Get ρ estimates from all apps

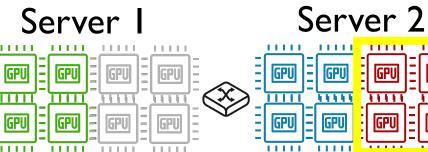


Red GPUs become available

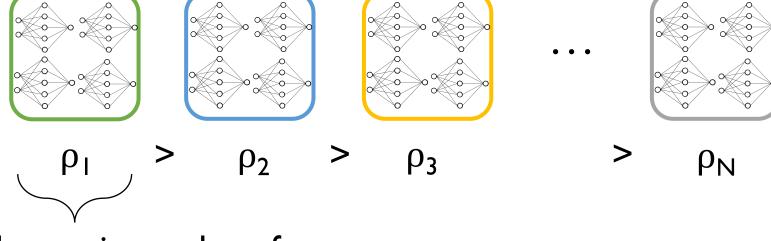
Strawman Mechanism

SI Objective – min (max ρ)

Interface: Get ρ estimates from all app



Red GPUs



become available

Sort in decreasing order of $\boldsymbol{\rho}$

Allocate to app with highest ρ (green app) for lease duration

I. Inefficient Allocation – Red GPUs are not co-located with Green Apps GPUs

2. Lying Apps – Apps can lie with high ρ values to hoard GPU resources

Sort in decreasing order of ρ Allocate to app with highest ρ (green app) for lease duration

Themis: Mechanism

SI Objective – min (max ρ)

Interface: Get ρ estimates from all app

• •

Server I

GPU

GPU

111

GPU

Ш

GPU

Red GPUs become available

IGPU

Server 2

GPU

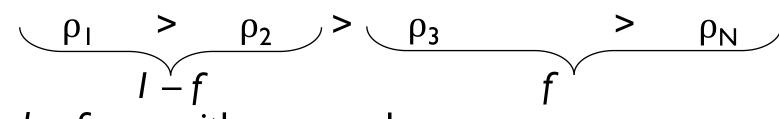
....

GPU

11111

GPU

GPU

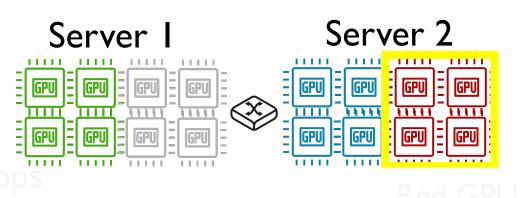


I. Filter I - f apps with max ρ values

2. Allocate to one or more of I - f apps for *lease* duration using Partial Allocation Auctions

Themis: Mechanism

SI Objective – min (max ρ)

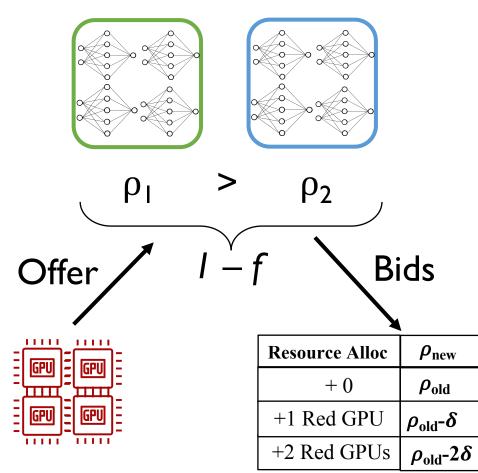


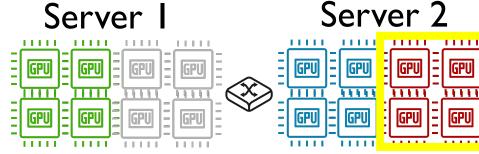
I.Tradeoff SI for Efficiency – $f \rightarrow 0 =>$ More apps to allocate resources => Better opportunity to match placement preference of apps to resources. Our sensitivity analysis suggests f = 0.8 gives a good tradeoff.

2. Partial Allocation Auction within $I - f apps - Incentivizes truth telling of <math>\rho$

- I. Filter I f apps with max ρ values
- 2. Allocate to one or more of I f apps for *lease* duration (Red GPUs can potentially go to Blue App) using Auctions

Themis: Mechanism: Partial Allocation Auction





Red GPUs become available

GPU

ππ

GPU

Themis: Mechanism: Partial Allocation Auction

- Input: Valuation Tables from filtered apps
- Pareto efficiency (PE) max $\prod_i 1/\rho_{i new}$ proportional fair allocations
- Strategy Proofness (SP) Allocate a fraction of this per app for *lease* duration – rest is "hidden payment"
- More lying => higher hidden payments => incentivizes truth-telling
- Leftover Allocation Allocate hidden payments to unfiltered apps at random to avoid unallocated resources and enable work conservation

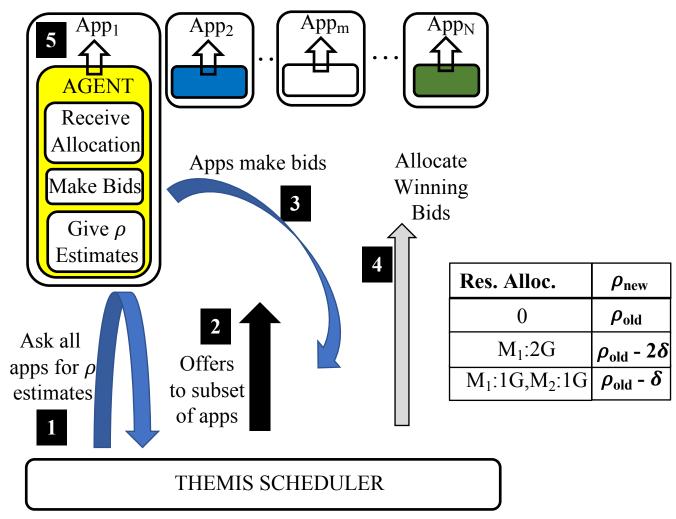
Themis: Overall Design

Hyperparam-opt at the top

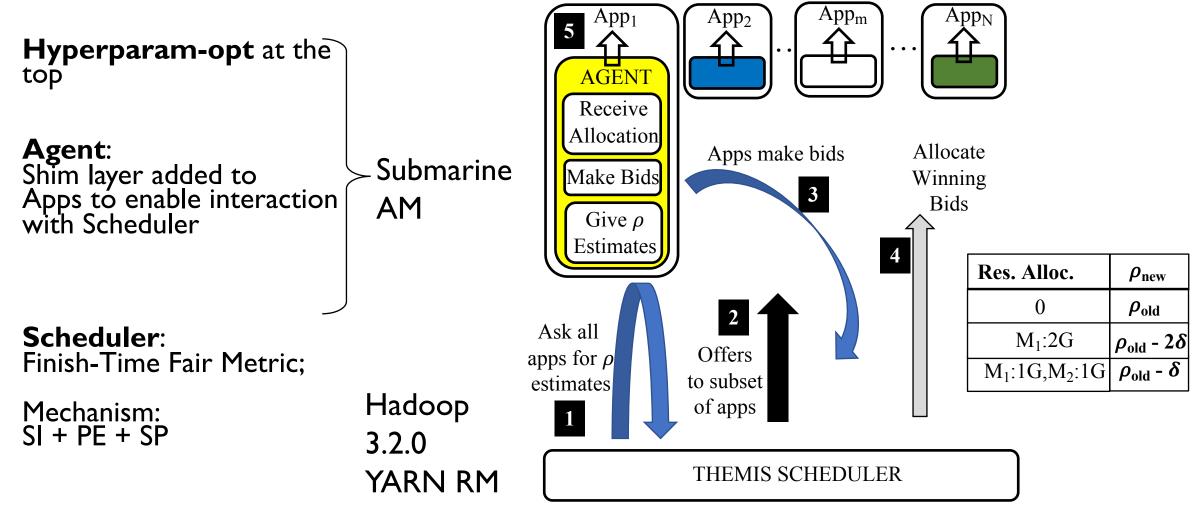
Agent: Shim layer added to Apps to enable interaction (estimate ρ , make bids) with Scheduler

Scheduler: Finish-Time Fair Metric (ρ);

Mechanism: SI + PE + SP



Themis: Implementation

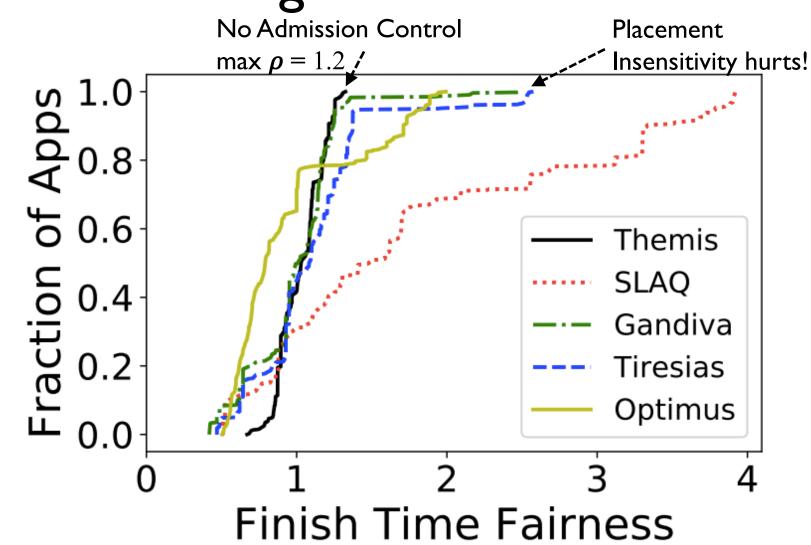


Themis: Evaluation

- 20 machine, 64 GPU cluster
 - 8 instances each with 2 Tesla K80 GPUs and
 - 12 instances each with 4 Tesla K80 GPUs
- A publicly available trace of DL apps from Microsoft
- Baselines:
 - Tiresias Least Attained Service Job First
 - **Optimus** Best Throughput Scaling First
 - Gandiva Best Packing Job First
 - **SLAQ** Best Loss Gradient Job First

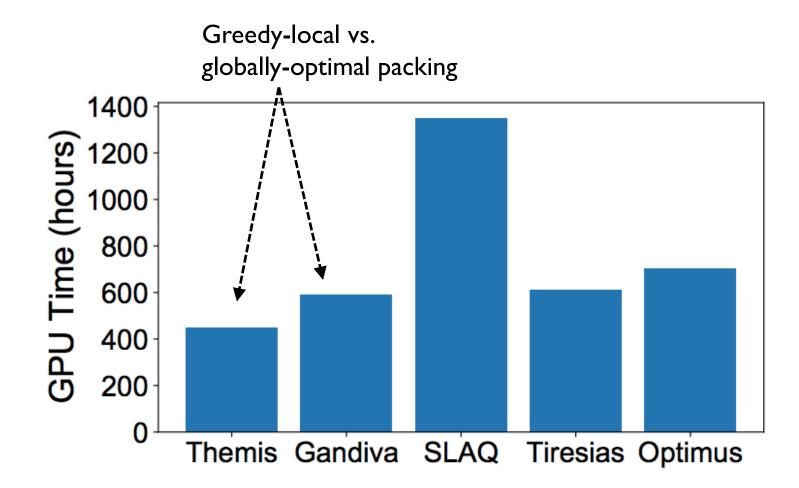
Macrobenchmark: Sharing Incentive

- CDF of ρ for all apps in the workload
- max ρ = 1.2 (~1) with Themis
- ρ distribution has long tail without Themis



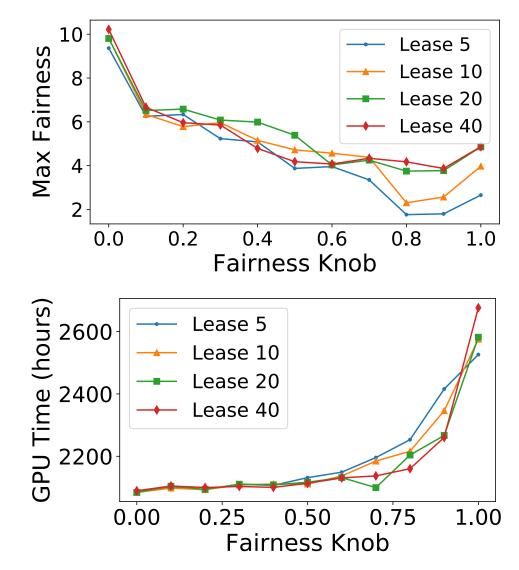
Macrobenchmark: Efficiency

- GPU Time to execute workload
- Themis better than Gandiva
- Auctions enable globally optimal packing



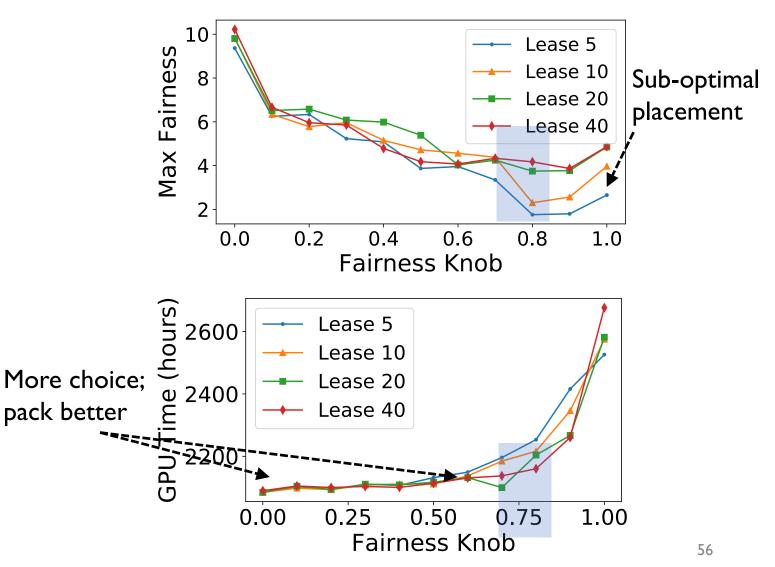
Sensitivity Analysis/Tradeoffs

 max finish-time fair metric (ρ) and GPU time for different values of fairness knob (f)



Sensitivity Analysis/Tradeoffs

- max finish-time fair metric (ρ) and GPU time for different values of fairness knob (f)
- f = 0.8 maximizes sharing incentive without degrading efficiency



Conclusion

- Consolidation of GPUs => Sharing Incentive is key
- DL App properties => existing schedulers violate SI
- Themis proposes a new metric finish-time fairness that captures SI
- Filtering + Partial Allocation Auctions => Themis performs better than existing schedulers on SI and Efficiency