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In this article, we study the modulation of intensity matri-
ces arising in cancer radiation therapy using multileaf col-
limators. This problem can be formulated by decomposing
a given m � n integer matrix into a positive linear combi-
nation of (0, 1) matrices with the strict consecutive 1’s
property in rows. We consider a special case in which no
technical constraints have to be taken into account. In this
situation, the rows of the intensity matrix are independent
of each other and the problem is equivalent to decompos-
ing m intensity rows—independent of each other—into
positive linear combinations of (0, 1) rows with the consec-
utive 1’s property. We demonstrate that this problem can
be transformed into a minimum cost flow problem in a
directed network that has the following special structures:
(1) the network is acyclic; (2) it is a complete graph (that is,
there is an arc (i, j) whenever i < j); (3) each arc cost is 1;
and (4) each arc is uncapacitated (that is, it has infinite
capacity). We show that using this special structure, the
minimum cost flow problem can be solved in O(n) time.
Because we need to solve m such problems, the total
running time of our algorithm is O(nm), which is an optimal
algorithm to decompose a given m � n integer matrix into
a positive linear combination of (0, 1) matrices. © 2004 Wiley
Periodicals, Inc. NETWORKS, Vol. 45(1), 36–41 2005
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1. INTRODUCTION

During radiation therapy, beams of radiation pass
through a patient’s body, depositing energy along the path

of the beams. High doses of radiation kill both cancerous
and normal cells. Therefore, the radiation treatment must be
carefully planned so that a clinically prescribed dose is
delivered to cancerous cells while sparing normal cells in
the surrounding organs and tissues. To accomplish this,
beams of radiation are generated by a device called a linear
accelerator and delivered through a beam head at a number
of different orientations, called gantry angles. These beams
are spaced around the patient so that their intersection
targets the cancerous cells, which receive the highest dose,
whereas the normal cells receive radiation from some but
not all the beams.

The beam head at each gantry angle can be conceived of
as a rectangle that is discretized into an m � n rectangular
grid; each individual rectangle in this grid is called a bixel.
At each gantry angle, the radiation head delivers the radia-
tion dose, which is specified by an m � n matrix M, called
the intensity matrix. We assume M to be an integer valued
matrix. For example, if we discretize the beam head into a
5 � 4 grid, then one possible intensity matrix is:

M � �Mij� � �
4 4 3 0
1 6 3 0
3 4 1 0
4 4 3 0
3 6 4 3

� (1)

However, the radiation generated in the linear accelerator
provides uniform intensity for all bixels. To generate the
nonuniform intensity matrix from a uniform intensity
source, a device called a multileaf collimator (MLC) is
used. A MLC has m rows, called channels, and each row
has a left leaf and a right leaf, whose positions can be
changed; the radiation can pass in between the left and right
leaves. If M has n columns 1, 2, . . . , n, then for each row
i, there are n � 1 positions, 1, 2, . . . , n, n � 1, at which
the left and right leaves can be positioned (see Fig. 1). If the
left leaf is at position l and the right leaf is at position r, then
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the radiation will pass through the bixels numbered l, l
� 1, . . . , r � 1.

Choices of the left and right leaves in all rows can be
specified by a 0-1 matrix called a shape matrix. A “0” in the
shape matrix indicates the corresponding bixel is blocked by
the leaves and does not deliver any radiation, and a “1”
indicates that the corresponding bixel delivers the radiation.
Figure 2 presents some possible shape matrices. Observe
that each shape matrix satisfies the consecutive 1’s property
that all the 1’s in each row are consecutive.

To deliver the given intensity matrix M, the linear ac-
celerator sends a uniform beam of radiation through the
MLCs with different shape matrices S1, S2, . . . , SK for
different lengths of time x1, x2, . . . , xK, called beam-on
times, such that M � ¥k�1

K Skxk. In Figure 3, we illustrate
a realization of a given intensity matrix through three shape
matrices.

The total delivery time is the sum of the beam-on times
plus the setup times needed to go from one shape matrix to
another shape matrix. Let c(Sk, Sk�1) denote the setup time
needed to go from the shape matrix Sk to the shape matrix
Sk�1. In the above example, we need three setups and the
beam-on time is 3 � 1 � 2 � 6 units. The minimum delivery
time problem is to determine the shape matrices S1,
S2, . . . , SK and their corresponding beam-on times so as to

minimize z* :� �
k�1

K

xk � �
k�0

K�1

c�Sk, Sk�1� (2a)

subject to

�
k�1

K

Skxk � M (2b)

Sk is a valid shape matrix and xk � 0 for all k

� 1, 2, . . . , K, (2c)

where S0 is the initial setup matrix, which can correspond to

the MLC completely closed. Note that in this formulation all
variables are required to be strictly positive because setup
costs only have to be considered for those variables. In
particular, K, the number of shape matrices used in the
decomposition is part of the output of the problem. This
becomes obvious in the special case of the minimum deliv-
ery time problem when we assume that the setup time is
constant, that is, independent of the shape matrices. We
refer to this problem as the minimum delivery time problem
with constant setup times. Burkard [7] has demonstrated
that this problem is NP-hard (see Section 3). Therefore, the
general problem and its special case are unlikely to be
solvable in polynomial time. We will thus focus on a special
case of (2) for which setup times are assumed to be negli-
gible, compared to the beam-on times, and so can be ig-
nored. This problem, referred to in the following as the
minimum beam-on time problem, is

minimize z* :� �
k�1

L

xk (3a)

subject to

�
k�1

L

Skxk � M (3b)

Sk is a valid shape matrix and xk � 0 for all k

� 1, 2, . . . , L. (3c)

Note that, in contrast to Problem (2), the variables are no
longer required to be strictly greater than 0 because we take
the sums in the objective function and the constraints over
the set of all possible shape matrices indexed by 1, 2, . . . ,
L. Therefore, L in (3) is the total number of shape matrices.

To be more specific, we should refer to this problem as
the unconstrained minimum beam-on time problem because
we do not consider any technological constraints on the
multileaf collimator. The same approach has been taken by
Bortfeld et al. [6] in their sweep algorithm. In fact, our
article can be considered an efficient implementation of the
sweep algorithm and a rigorous proof that this technique
does indeed provide an optimal solution.

Depending on the technology of the multileaf collimator,
constraints may have to be taken into account. Often, for
instance, adjacent interleaf pairs cannot overlap. To include
this constraint in the model, we can add interleaf motion
constraints, which state that the left leaf in channel i must

FIG. 3. Realizing an intensity matrix through three shape matrices.
FIG. 1. A single channel (row) of a multileaf collimator with the left leaf
at position l � 3 and the right leaf at position r � n � 2. Radiation passes
through the bixels 3, . . . , n � 3.

FIG. 2. Examples of shape matrices.
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be left of the right leaves of channels (i � 1) and (i � 1),
and that the right leaf in channel i must be right of the left
leaves in channels (i � 1) and (i � 1). The resulting
constrained beam-on time problem is obviously more diffi-
cult. It has been tackled by Lenzen [9] and Hamacher and
Lenzen [8] using integer programming models and by Bo-
land et al. [5] using a network flow approach. In the latter
article, a polynomial-time algorithm solves the minimum
beam-on time to optimality. It uses, however, a large net-
work with O(mn2) nodes, so that problems with a large
number of bixels in the multileaf collimator cannot be
solved within a reasonable amount of time. The article also
contains a discussion of other articles dealing with multileaf
collimator problems. Out of these, the heuristics of Xia and
Verhey [12] and of Siocci [11] are probably the best known.
The latter heuristic has been implemented as the IMFAST
procedure, and is part of the commercial radiation system
CORVUS. More recent articles by Baatar [2] and Baatar
and Hamacher [3] reduced the number of variables in the
Boland et al. [5] model by a factor of n and thus improved
the computational time considerably.

The fact that our article deals with the unconstrained
problem is justified by the technology of some MLCs and
the possibility of using any optimal solution of (3) as a
starting point of a more involved optimization model. Pre-
ciado-Wolters et al. [10] reveal that this approach is useful
in an attempt to design an integrated cancer radiation deci-
sion support system in which the question of implementing
a given intensity matrix by multileaf collimators is only one
of several other optimization problems that need to be
solved.

Because the problem does not have any constraints, the
rows of the intensity matrix can be treated independently,
that is, the problem is equivalent to m independent problems
of decomposing an intensity row into a positive linear
combination of (0, 1) rows with the consecutive 1’s prop-
erty. We demonstrate that the minimum beam-on time prob-
lem for each row can be transformed into a minimum cost
flow problem in a directed network that has the following
special structures: (1) the network is acyclic (it contains no
cycles); (2) the network is complete [there is an arc (i, j)
whenever i 	 j]; (3) each arc cost is 1; and (4) each arc is
uncapacitated (it has infinite capacity). We show that by
using this special structure, the minimum cost flow problem
can be solved in O(n) time. Because we need to solve m
such problems, the total running time of our algorithm is
O(nm), which is an optimal algorithm to decompose a
given m � n integer matrix into a positive linear combina-
tion of (0, 1) matrices.

2. THE MINIMUM COST FLOW FORMULATION

The minimum beam-on time problem for the ith row of
the intensity matrix can be stated as

minimize zi :� �
k�1

K


xik (4a)

subject to

�
k�1

K


Rkxik � bi (4b)

xik � 0 for all k � 1, 2, . . . , K
. (4c)

Here, bi denotes the ith row of the intensity matrix M, and
{Rk: 1 � k � K
} denotes the set of all possible shape row
vectors. In this formulation, the xiks are decision variables
that denote the time during which the shape row Rk is
exposed to radiation. The following lemma relates the op-
timal solution of (3) with the optimal solution of (4):

Lemma 1. Let zmax � max{zi: 1 � i � m}. Then, z* �
zmax is the optimal objective function value of (3).

Proof. It is evident that each zi is a lower bound on z*,
the optimal objective function value of (3). Therefore, zmax

is a valid lower bound on z*. We will now demonstrate that
we can construct a set of shape matrices for which the
beam-on time equals zmax; hence, zmax is a valid upper
bound on z*. It then follows that zmax � z*.

Let Wi � {Wi1
, Wi2

, . . . , Wip
} denote the shape rows in

an optimal solution for the ith row of the intensity matrix M
with beam-on times as xi1

, xi2
, . . . , xip

, respectively. By
definition, zi � ¥q�1

p xiq
. We will use the following iterative

process to construct optimal shape matrices from these
shape rows. At each iteration, we select a shape row, say
Wij1

, from the set Wi, for each i, 1 � i � m. Putting
together these shape rows gives us a shape matrix S1. We
set the beam-on time, x1, of this shape matrix equal to the
minimum of the beam-on times of the shape rows selected,
that is, x1 � min{ xij1

: 1 � i � m}. We next reduce the
beam-on times of the selected shape matrices by x1, and if
in a shape row, say, Wij1

, the beam-on time becomes zero,
then we delete it from Wi. In the next iteration, we again
select a shape row, Wij2

, from each set Wi, 1 � i � m and
combine these rows to create another shape matrix S2 with
beam-on time x2 as x2 � min{ xij2

: 1 � i � m}. We repeat
this process until each Wi is empty. Because in the kth
iteration we reduce the beam-on time of a shape row in each
Wi by a constant number xk (as long as Wi is nonempty),
and we create a shape matrix with a beam-on time equal to
xk, the sum of the beam-on times of the shape matrices
constructed will be equal to the maximum of all zis, which
is zmax. This completes the proof of the lemma. ■

We will henceforth focus on solving (4). For the sake of
simplicity, we first eliminate the subscript i (representing
the ith row). We will thus refer to xik as xk and to bi as b.
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For reasons that will become clear later on, we also convert
the row vector Rks and b into column vectors by taking their
transpose and, for simplicity’s sake, use the same notation
to represent the corresponding column vectors.

Each (column) vector Rk is a 0-1 vector and corresponds
to a feasible (nonzero) exposure provided by a pair of left
and right leaves. The feasibility of the exposure requires that
all the 1’s in each Rk consists of a (possibly null) sequence
of 0s, followed by a sequence of 1’s, followed by another
(possibility null) sequence of 0s. We will henceforth refer to
the vector Rk as Ruv if, in the vector Rk, row u is the least
index row with element 1 and v � 1 is the highest index row
with element 1. Let {Ruv: (u, v) � A} denote the set of all
possible column vectors with nonzero exposure. Because
each column vector Ruv corresponds to a feasible pair of left
and right leaves, and because the left leaf can take the
positions u � 1, 2, 3, . . . , n, and the right leaf can take the
positions v � u � 1, u � 2, . . . , n � 1, it follows that
A � {(u, v): 1 � u � n, u � 1 � v � n � 1}. Observe
that �A� � n � (n � 1) � (n � 2) � . . . � 1 � n(n
� 1)/ 2. We can now restate (4) as:

minimize z0 :� �
�u,v��A

xuv (5a)

subject to

�
�u,v��A

Ruvxuv � b (5b)

xuv � 0, for all �u, v� � A. (5c)

We illustrate the formulation (5) using a numerical ex-
ample. Suppose that n � 3. In this case, A � {(1, 2), (1,
3), (1, 4), (2, 3), (2, 4), (3, 4)} and the formulation (5)
becomes:

minimize z0 :� x12 � x13 � x14 � x23 � x24 � x34 (6a)

subject to

�
1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 1
0 0 0 0 0 0

��
x12

x13

x14

x23

x24

x34

� � �
b1

b2

b3

0
� (6b)

x12, x13, x14, x23, x24, x34 � 0. (6c)

Here, we have added a redundant zero row (0x � 0) to
the constraints (6b), which will be used later to transform
(6) to a network flow problem. Now, observe that each
column Ruv has consecutive 1’s in the rows u, u � 1, . . . ,
v � 1. A linear program in which each column vector is a
vector of 0s and 1’s and all the 1’s are consecutive is called

a linear program (LP) with consecutive 1’s in columns and
can be transformed into a minimum cost flow problem
(Ahuja et al. [1], Section 9.2). This transformation entails
adding a row of zeros (n � 1th row) to the constraint matrix
(as we have done above) and subtracting each row u from
the row (u � 1) for each u � n, n � 1, . . . , 1, in this
stated order. These row operations provide an equivalent LP
where each new column R
uv has one �1 in the uth row, one
�1 in the vth row, and all other values are zero. Now,

minimize z0 :� �
�u,v��A

xuv (7a)

subject to

�
�u,v��A

R
uvxuv � b
 (7b)

xuv � 0, for all �u, v� � A (7c)

is the modified linear program. For example, if we apply
these row operations to (6), we get the following equivalent
system:

�
1 1 1 0 0 0

�1 0 0 1 1 0
0 �1 0 �1 0 1
0 0 �1 0 �1 �1

��
x12

x13

x14

x23

x24

x34

� � �
b1

b2 � b1

b3 � b2

�b3

�
(8)

Evidently, R
uv has �1 in the uth row and �1 in the vth
row. The following properties easily follow because bi � 0
for all i, 1 � i � n � 1; and b
i � bi � bi�1 for all i, 2
� i � n � 1.

Property 1. ¥i�1
n�1b
i � 0.

Property 2. ¥i�1
j b
i � 0 for all j, 1 � j � n � 1.

It is well known that a linear programming problem in
which each column has one �1 and one �1, with the rest of
the elements zero is a minimum cost flow problem (see, e.g.,
Ahuja et al. [1], Section 1.2). The minimum cost flow
problem is one of the fundamental network flow problems
and can be solved efficiently. Its feasibility is guaranteed by
Property 1. Let G � (N, A) denote the underlying network
where N � {1, 2, 3, . . . , n � 1} denotes the node set and
A � {(u, v): u � 1, 2, . . . , n, and v � u � 1, u
� 2, . . . , n � 1} denotes the arc set. In the minimum cost
flow problem, the cost of the flow of each arc equals 1. For
example, the LP (8) is a minimum cost flow problem in the
network shown in Figure 4. In this figure, the number next
to each node indicates the supply/demand of the node, and
the number next to each arc denotes its cost.
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The minimum cost flow problem (7) has a very special
structure allowing a very efficient procedure based on the
following properties:

Property 3.

1. the network is acyclic;
2. the network is complete (that is, it contains an arc (i, j)

for every i 	 j);
3. each arc cost is 1; and
4. each arc is uncapacitated (that is, it has no capacity

restriction).

These properties allow us to solve the minimum cost
flow problem in O(n) time using the well-known successive
shortest path problem for the minimum cost flow problem
(see Ahuja et al. [1], Section 9.7, for a description of this
algorithm). The successive shortest path algorithm starts
with a zero flow and, at each iteration, augments flow from
a supply node u (with supply b
u � 0) to a demand node v
(with demand b
v 	 0) along a shortest path in the residual
network until all node supplies/demands are satisfied. The
residual network is defined with respect to a flow x and is
denoted by G( x). To construct the residual network, we
replace each arc (i, j) � A by two arcs, a forward arc (i,
j) and a reverse arc ( j, i). The arc (i, j) has cost cij and
residual capacity rij � uij � xij, and the arc ( j, i) has cost
cji � �cij and residual capacity rji � xij. The residual
network consists only of arcs with positive residual capac-
ity. The special structure of the minimum cost flow problem
(7) allows us to simplify the steps of the successive shortest
path algorithm and turn it into a very simple and efficient
algorithm. We describe the resulting algorithm in Figure 5
followed by its justification.

During the execution of the algorithm, we call a node u
in N an excess node if e(u) � 0, and we call it a deficit node
if e(v) 	 0. Initially, each supply node is an excess node,
and each demand node is a deficit node. The algorithm
always selects node u as the least index excess node and
node v as the least index deficit node. It follows from
Property 2 that u 	 v, and it follows from Property 3 that
arc (u, v) � A. Observe that arc (u, v) is the shortest path
from node u to node v using forward arcs in the residual
network because each forward arc has cost 1 and any path
must contain at least one arc. The backward arcs in the
residual network have cost �1. But each backward arc is an

incoming arc into the supply node from where augmenta-
tions are being performed and such an arc cannot lie on the
shortest path. Hence, when identifying shortest paths, we
can restrict attention to only the forward arcs (that is, arcs in
A) which is what the algorithm described in Figure 5 does.
At any iteration, the algorithm sends � � min{e(u),
�e(v)} units of flow on the arc (u, v), which is a shortest
path from node u to node v. This flow augmentation either
reduces e(u) to zero or e(v) to zero. In the former case we
update u, and in the later case we update v. To update u(or
v), we simply increment u(or v) by 1 repeatedly, and stop
when e(u) � 0 (or e(v) 	 0). The total time taken to
update u and v over the entire algorithm is O(n). The other
steps of the algorithm also require a total of O(n) time.
Therefore, the following theorem is proved.

Theorem 1. The minimum cost flow problem (7) can be
solved in O(n) time. The (unconstrained) minimum beam-on
time problem can therefore be solved in O(nm) time.

3. CONCLUSIONS

We have demonstrated that the (unconstrained) mini-
mum beam-on time problem can be solved in O(nm) time.
This approach is appropriate in situations when this problem
has to be solved numerous times, for instance, as a subrou-
tine in algorithms for more involved multileaf collimator
models. (See, i.e., Preciado-Wolters et al. [10].) In these
methods, to take technical constraints into account, more
involved network flow and integer programming methods
are required. (See, i.e., Boland et al. [5], and Baatar and
Hamacher [3].)

We will address several additional interesting research
problems in the future. Suppose that we want to minimize
the delivery time (the beam-on time plus the sum of the
setup times for the multileaf collimators). It was an open
question for quite some time whether this problem could be
solved in polynomial time. Burkard [7] established that the

FIG. 4. The minimum cost flow formulation of the LP in (8).

FIG. 5. The algorithm for solving the minimum cost problem in (7).
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problem of finding a decomposition of the intensity matrix
into the smallest number of shape matrices is NP-hard, thus
answering this question in the negative (unless P � NP).
His reduction is from the subset sum problem using the
following result:

Theorem 2 (Burkard [7]). Given n numbers a1, . . . , an.
Then the (2 � (2n � 1)) matrix

A � �a1 0 a2 0 a3 · · · an

M M M M M · · · M�
has a decomposition into n shape matrices if and only if
there exists a subset {i1, i2, . . . , ik} of {1, . . . , n} such that
ai1

� . . . � aik
� M.

Baatar et al. [4] strengthened this result by showing that
the problem of decomposing a single-row matrix is NP-hard
in the strong sense. Because the delivery time is important,
both for medical and economical reasons, algorithms for
finding minimum delivery times have to be found, despite
the fact that the problem is NP-hard.
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