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Ravindra K. Ahuja1 and Horst W. Hamacher2 

 

Abstract 

In this paper, we study the modulation of intensity matrices arising in cancer radiation therapy 
using multileaf collimators. This problem can be formulated as decomposing a given m×n integer 
matrix into a positive linear combination of (0,1) matrices with the strict consecutive 1’s property 
in rows. We consider a special case when the rows of the intensity matrix can be independently 
decomposed, in which case the problem is equivalent to m independent problems of decomposing 
an intensity row into a positive linear combination of (0, 1) rows with the consecutive 1’s 
property. We show that this problem can be transformed into a minimum cost flow problem in a 
directed network which has the following special structures: (i) the network is a complete acyclic 
graph (that is, there is an arc (i, j) whenever i < j); (ii) each arc cost is 1; and (iii) each arc is 
uncapacitated (that is, has infinite capacity). We show that using this special structure, the 
minimum cost flow problem can be solved in O(n) time. Since we need to solve m such 
problems, the total running time of our algorithm is O(nm) time, which is an optimal algorithm to 
decompose a given m×n integer matrix into a positive linear combination of (0,1) matrices. 
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1. Introduction 

In this paper, we study the modulation of intensity matrix arising in cancer radiation 
therapy using multileaf collimators. Using other techniques, we will determine gantry angles and 
the intensity function at each gantry angles. The radiation head at any gantry angle is assumed to 
be a rectangle which is partitioned into mxn equidistant cells, called bixels. At each stop of the 
gantry, the intensity function can be represented as a two-dimensional mxn array I representing 
the amount of time uniform radiation needs to be sent off in each bixel in the gantry. We assume 
that I is an integer valued matrix. For example, if we choose to discretize the beam head into a 
5x6 grid, then one possible intensity matrix is:  

 

 I = {Iij} =                                                                                                                                     (1)    

 

 
In order to generate I, we can use multileaf collimator. Each row of I, called a channel, 

has an associated pair of leaves – a left leaf and a right leaf and the radiation can pass in between 
left and right leaves. If I has n columns 1, 2, ..., n, then for each row i, there are n+1 positions, 1, 
2, … , n, n+1, at which the left and right leaves can be positioned. If the left leaf is at position k 
and the right leaf is at position l, then the radiation will pass through the bixels numbered k, k+1, 
…, l-1. (See, for example, Figure 1.)   

 

 Each choice of the left and right leaves in all rows in characterized by a 0-1 matrix; this 
matrix is called a shape matrix. If S1, S2, ... SK are shape matrices and x1, x2, ..., xk is the time the 
linear accelerator is opened to release the radiation for the corresponding shape matrix, 
respectively, then an intensity of K

k=1 k kS x∑  is released. For example, if I is given by (1), then I = 
3S1 + 1S2 + 2 S3, where 

 

 

 4 4 3 0  
 1 6 3 0  
 3 4 1 0  
 4 4 3 0  
 3 6 4 3  

1 2 3 4 n-2 n-1 nbixels 

leaf 
positions 1 2 3 4 5 n-2 n-1 n n+1 

Figure 1: Each channel (row) of the multileaf collimeter.  



 3

 

                (2) 

 

 

We want to select the shape matrices Sk’s and the times xk’s are so that the beam-on time 
given by K

k=1 kx∑ plus the time needed to setup the leaves is minimum. We can define three 
optimization problems for the intensity modulation.  

1. Minimize beam-on time. This problem minimizes the time during which radiation is 
released and ignores the setup time needed to go from one shape matrix to another shape 
matrix. This problem can be formulated as the following mathematical program:  

Minimize z* = K
k=1 kx∑    (3a) 

subject to 

    K
k=1 k kS x∑  =   I    (3b) 

              xk ≥ 0     for all k = 1, 2, …, K. (3c) 

2. Minimize the sum of beam-on time and constant set-up time: In this problem, we 
minimize the sum of the beam-on time and the set-up time, assuming that the set-up time 
needed to go from one shape matrix to another shape matrix is constant. This problem 
can be formulated as the following mathematical program:  

Minimize z* = K
k=1 kx∑    (4a) 

subject to (3b) and (3c).    (4b) 

3. Minimize the sum of beam-on time and variable set-up time: This problem is a 
generalization of the problem in (4) where we do not assume the set-up time to be 
constant but allow it to depend upon the shape matrices. This problem can be formulated 
as:  

Minimize z* = K
k=1 kx∑  +  K-1

k=1 k k+1c(S ,S )∑  (5a) 

subject to (3b) and (3c),    (5b) 

where k k+1c(S ,S )  is the time it takes to go from the shape matrix Sk to the shape matrix 
Sk+1.  

  1 1 0 0    1 1 1 0    0 0 1 0  
  0 1 1 0    1 1 0 0    0 1 0 0  
S1  =  0 1 0 0  S2 =  1 1 1 0  S3  =  1 0 0 1  

  1 1 1 0    1 1 0 0    0 0 0 0  
  0 1 1 1    1 1 1 0    1 1 0 0  
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The above three problems are well researched problems. It can be shown that Problems 
(2) and (3) are NP-complete (Orlin [2002]); whereas the Problem (1) is polynomially solvable 
(Boland et al. [2002]). Due to the difficulty of the Problems (2) and (3), most of the proposed 
algorithms are heuristic algorithms. Some selected references devoted to this problem are:  
Bortfeld et al. [1994], Dai and Hu [1999], Evans et al. [1997], Galvin et al. [1993], Que [1999], 
Siochi [1999], Webb [1998], Wu and Zhu [2001], Xia and Verhey [1998], Yu et al. [1995a, 
19995b]. The paper by Boland [2002] presents a brief survey of literature devoted to the study of 
these problems and also describes a polynomial time algorithm to solve Problem (1).  

 Our paper is motivated by the research done by Boland et al. [2002]. We consider a 
special case when the rows of the intensity matrix can be independently decomposed, in which 
case the problem is equivalent to m independent problems of decomposing an intensity row into a 
positive linear combination of (0, 1) rows with the consecutive 1’s property. We show that this 
problem can be transformed into a minimum cost flow problem in a directed network which has 
the following special structures (i) the network is a complete acyclic graph (that is, there is an arc 
(i, j) whenever i < j); (ii) each arc cost is 1; and (iii) each arc is uncapacitated (that is, has infinite 
capacity). We show that using this special structure, the minimum cost flow problem can be 
solved in O(n) time. Since we need to solve m such problems, the total running time of our 
algorithm is O(nm) time which is an optimal algorithm to decompose a given m×n integer matrix 
into a positive linear combination of (0,1) matrices. 

2. A Special Case 

Some radiation therapy machines require that the shape matrix must satisfy interleaf 
motion constraints. Interleaf motion constraints state that the left leaf in one row should not be to 
the right of the right leaf in an adjacent row and vice versa; otherwise crashes between the two 
leaves will occur. Hence, adjacent rows in a shape matrix must satisfy some additional constraints 
in order to be a valid shape matrix. However, the more recent and modern radiation therapy 
machines do not require that the shape matrices to satisfy the interleaf motion constraints. We 
will henceforth assume that these are no interleaf motion constraints and will develop methods to 
solve the minimum beam-on time problem (2) in the absence of such constraints. 

In the absence of interleaf motion constraints each row of the shape matrix can be 
determined independently of other rows. Hence, the problem of determining shape matrices of 
size mxn can be decomposed into m independent problems of determining shape rows of size 
1xn. We can determine the minimum beam-on time for each row in the intensity matrix I 
independent of other rows, and then use the row solutions to construct the minimum beam-on 
time solution for the intensity matrix. The minimum beam-on time problem for the ith row of the 
intensity matrix can be stated as:  
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Minimize 0
iz  = K

k=1 ikx′∑    (6a) 

subject to 

    K
k=1 k ikR x′∑  =   bi    (6a) 

              xik ≥ 0     for all k = 1, 2, …, K′. (6c) 

where bi denotes the ith row of the intensity matrix I; Rk, 1 ≤ k ≤ K′ denote the set of all possible 
shape row vectors. In this formulation, xik’s are decision variables and determines the time for 
which the shape row Rk can be exposed for radiation. The following lemma relates the optimal 
solution of (6) with the optimal solution of (3):  

Lemma 1: Let zmax = max{ 0
iz  : 1 ≤ i ≤ m}. Then, z* = zmax  is an optimal solution of (3). 

Proof: It is easy to see that each 0
iz  is a lower bound on the z*, the optimal objective function 

value of (3). Hence, zmax is a valid lower bound an z*. It can also be shown that we can construct 
a sequence of shape matrices for which the beam-on time will equal zmax; hence, zmax is a valid 
upper bound on z*. It follows that zmax = z*.   ♦ 

We will henceforth focus on solving (6). For the sake of simplicity, we first eliminate the 
subscript i (representing the ith row). We will thus refer to xik by xk and bi by b. We also convert 
the row vector Rk’s and b into column vectors by taking their transpose and, for simplicity, use 
the same notation to represent the corresponding column vectors.  

 Each (column) vector Rk is a 0-1 vector and corresponds to a feasible (non-zero) 
exposure provided by a pair of left and right leaves. The feasibility of the exposure dictates that 
all the 1’s in each Rk consists of a (possibly null) sequence of 0’s, followed by a sequence of 1’s, 
followed by another (possibility null) sequence of 0’s. We will henceforth refer to the vector Rk 
by Ruv if in the vector Rk row u is the least index row with element 1 and v is the highest index 
row with element 1. Let Ruv, (u, v) ∈ A denote the set of all possible column vectors. Since each 
column vector corresponds to a feasible pair of left and right leaves, the left leaf can take the 
positions u = 1, 2, 3, …, n+1, and the right leaf can take the position v =  u+1, u+2, …, n+1, it 
follows that A = {(u, v): 1 ≤ u ≤ n+1, u+1 ≤ v ≤ n+1}. Observe that |A| = n + (n-1) + (n-2) + … + 
1 = n(n+1)/2. We can now restate (6) as: 

Minimize 0z  = (u, v) A uvx∈∑   (7a) 

subject to 

    (u,v) A uv uvR x∈∑  =   bi    (7b) 

              xuv ≥ 0,    for all (u, v) ∈ A (7c) 
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 We illustrate (7) using a numerical example. Suppose that n = 4. In this case, A =  
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} and the formulation (7) becomes:  

  Minimize x12 + x13 + x14 + x23 + x24 + x34        (8a)  

 subject to  

  

 

 

   x12, x13, x14, x23, x24, x34 ≥ 0,    

where we have added a zero row (0x = 0) to the constraints (8b). Now observe that each column 
Ruv has consecutive 1’s in the rows u, u+1, ... , v. A linear program where each column vectors is 
a vector of 0’s and 1’s, and all the 1’s are consecutive is called a linear program (LP) with 
consecutive 1’s in columns. This transformation consists of adding a row of zeros (n+1th row) to 
the constraint matrix and subtracting each row u from the row (u+1) for each u = n, n-1, .., 1, in 
this stated order. These row operations give us an equivalent LP where each column Ruv has one 
+1 in the uth row, one -1 in the (v+1)th row, and all other values are zero. Let  

Minimize 0z  = (u, v) A uvx∈∑   (9a) 

subject to 

    (u,v) A uv uvR x∈ ′∑  =   ib′    (9b) 

              xuv ≥ 0,    for all (u, v) ∈ A (9c) 

denote the modified linear program. For example, if we apply these row operations to (8), we get 
the following matrix:  

  

 

 

Next observe that the right-hand side b′ is related to b in the following manner:   

Property 1: 1b′  = 1b  and ib′  = i i-1b - b  for all 2 ≤  i ≤ n+1. 

 1 1 1 0 0 0  
 0 1 1 1 1 0  
 0 0 1 0 1 1  
 0 0 0 0 0 0  

 x12  
 x13  
 x14  
 x23  
 x24  
 x34  

  b1   
=  b2  (8b)
  b3   
  0   

 1 1 1 0 0 0  
 -1 0 0 1 1 0  
 0 -1 0 -1 0 1  
 0 0 -1 0 -1 -1  

 x12  
 x13  
 x14  
 x23  
 x24  
 x34  

  b1   
=  b2 – b1  (10)
  b3 – b2   
  -b3   
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 This property implies that n+1
i=1 ib′∑ = 0. It is well known that a linear programming 

problem where each column has one +1 and one -1 and rest of the elements as zero is a minimum 
cost flow problem. The minimum cost flow problem is one of the fundamental network flow 
problem and can be solved efficiently (see, for example, Ahja, Magnanti and Orlin [1993]). The 
minimum cost flow problem (9) is feasible only if  n+1

i=1 ib′∑ = 0. This condition obviously holds 

for our formulation. Let G = (N, A) denote the underlying network where N = {1, 2, 3, …, n+1}, 
denotes the node set and A = {(u, v): u = 1, 2, …, n+1, and v = u+1, u+2, …, n+1} denotes the 
arc set. In the minimum cost flow problem, the cost of flow on each arc equals 1. For example, 
The LP shown in (9) is a minimum cost flow problem in the network shown in Figure 2, where 
the number next to each node indicates the supply/demand of the node.  

Figure 2. The minimum cost flow formulation of the LP in (10).  
The number besides each arc (node) represents its cost (supply/demand). 

The minimum cost flow problem (9) has a very special structure and this structure allows 
us to solve the minimum cost flow problem very efficiently. The minimum cost flow problem (9) 
has the following properties:  

(i) the network is acyclic; 
(ii) the network is complete (that is, it contains an arc (i, j) for ever i < j); 
(iii) each arc cost is 1; and 
(iv) each arc is uncapacitated (that is, it has no capacity restriction). 

These properties allow us to solve the minimum cost flow problem in O(n) time using the 
well known successive shortest path problem for the minimum cost flow problem (see, Ahuja, 
Magnanti, and Orlin [1993] for a description of this algorithm). The successive shortest path 
algorithm starts with a zero flow and at each iteration augments flow from a supply node u (for 
which ub′ > 0) to a demand node v (for which vb′  < 0) along a shortest path until all node 
supplies/demands are satisfied. In fact, the algorithm always augments flow along the arc (u, v) 
(which is a path comprising of a single arc form node to node) where u is a supply node, and v is 
a demand node, and u < v. There is always such a single arc path because in our network there is 
an uncapacitated arc from every node u to every node v if u < v. Further, this single arc path (u, v) 

1 2 3 4

b1 b2-b1 b3-b2 -b3
1 1 1 

1 1 

1 
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is a shortest path from node u to node v because this path has cost 1 and a shorter path cannot 
exist (as each arc cost is 1 and a path must have at least one arc). This result gives us the highly 
simplified algorithm to solve (9), which we state in Figure 3. 

algorithm min-cost-flow; 
begin 
 e(u) :=  ub′  for all u ∈ N; 
 u := min{r : e(r) > 0}; 
 v := min{r : e(r) < 0}; 
 while u and v exist do 
 begin 
  δ := min{e(u), -e(v)}; 
  xuv :=  δ; 
  e(u) := e(u) - δ; 
  e(v) := e(v) + δ; 
  if e(u) = 0 then update u; 
  if e(v) = 0 then update v; 
 end; 
 return the solution x; 
end; 

Figure 3. Algorithm for solving the minimum cost problem in (9). 

During the execution of the algorithm, we call a node u in G to be an excess node if e(u) 
> 0 and a deficit node if e(v) < 0. Initially, each supply node is an excess node and each demand 
node is a deficit node. The algorithm always selects node u as the least index excess node and 
node v as the least excess deficit node. (We need to show that u < v.) Since arc (u, v) is present in 
the network and is uncapacitated, we send δ = min{e(u), -e(v)} units of flow on the arc (u, v), 
which is a shortest path from node u to node v. This flow augmentation either reduces e(u) to zero 
or e(v) to zero. In the former case, we update u and in the later case we update v. To update u (or 
v) we simplify increment u (or v) by 1 repeatedly, and stop when e(u) > 0 (or e(v) < 0). The total 
time taken to update u and v over the entire algorithm is O(n). The other steps of the algorithm 
also take O(n) time. Hence, the following theorem:  

Theorem 1. The minimum cost flow problem (9) can be solved in O(n) time.   
 

3. Some Open Problems 

These are several open problems that need to be investigated in the future.  

Open Problem 1: We have shown that if the network G is a complete acyclic graph, then we can 
solve the minimum cost flow problem in it in O(n) time. Suppose that G is not a complete acyclic 
graph. We are given a set of arcs A′ ⊂ A, and we want to solve the minimum cost flow problem 
in G′ = (N, A′). This problem corresponds to a situation where not all the settings of a pair of left 
and right leaves are available. We are given only a specified set of leaf settings and we are 
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allowed to use only those settings to obtain the desired column of intensities. These are two open 
problems:  

(a) Does G′ have feasible flow? What is the fastest algorithm to determine a feasible flow if 
it exists? 

(b) If G′ admits a feasible flow, determine a minimum cost flow. What is the fastest 
algorithm to determine a minimum cost flow?  

Open Problem 2: We have assumed in our models so far that all arc costs are 1. This 
corresponds to the situation when all settings of leaf pairs are equally desirable. Suppose this is 
not a true and we assign a weight with each pair of leaf settings and we minimize the weighted 
beam-on time. This results in a variation of the minimum cost flow problem where each arc (u, v) 
∈ A has a cost cuv and we minimize the objective function (u, v) A uv uvc x .∈∑  These are two open 

problems:  

(a) What is the fastest algorithm to solve the minimum cost flow problem in G = (N, A) 
when each arc (i, j) ∈ A has cost cij? 

(b) Suppose that we are given a subset of arcs A′ ⊂ A. What is fastest algorithm to solve the 
minimum cost flow problem G’ = (N, A′) when each arc (u, v) ∈ A has a cost cuv? 

 

References: 
 
Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. 1993. Network Flows: theory, algorithms, and 

applications. Prentice-Hall, Englewood Cliffs, New Jersey. 

Boland, N., H. W. Hamacher, and F. Lenzen. 2002. Minimizing beam-on time in cancer radiation 
treatment using multileaf collimators. To appear in Networks.  

Bortfeld, T.R., D.L. Kahler, T.J. Waldron and A.L. Boyer. 1994. X-ray field compensation with 
multileaf collimators, Int. J. Radiation Oncology Biol. Phys. 28, 723–730. 

Dai, J.-R., and Y.-M. Hu. 1999. Intensity-modulation radiotherapy using independent collimators: 
An algorithmic study. Medical Physics 26, 2562-2570. 

Evans, P.M., V.N. Hansen, W. Swindell. 1997. The optimum intensities for multiple static 
multileaf collimator field compensation, Medical Physics 24, 1147–1156. 

Galvin, J.M., X.G. Chen, R.M. Smith. 1993. Combining multileaf fields to modulate fluence 
distributions, Int. J. Radiation Oncology Biol. Phys. 27, 697–705. 

Lee, E., T. Fox, and I. Crocker. 2000. Optimization of radiosurgery treatment planning via mixed 
integer programming. Medical Physics 27, 995-1004. 



 10

Lenzen, F. 2000. An integer programming approach to the multileaf collimator problem. Master’s 
Thesis, Department of Mathematics, University of Kaiserslautern, Germany. 

Orlin, J.B. 2002. Private communications. 

Que. W. 1999. Comparison of algorithms for multileaf collimator field segmentation, Med. Phys., 
26, 2390–2396. 

Shepard, D.M., M.C. Ferris, G.H. Olivera, and T.R.Mackie. 1999. Optimizing the delivery of 
radiation therapy to cancer patients. SIAM Review 41, 721-744. 

Siochi, R.A.C. 1999. Minimizing static intensity modulation delivery time using an intensity solid 
paradigm, Int. J. Radiation Oncology Biol. Phys., 43, 671 – 689. 

Webb, S. 1998. Configuration options for intensity-modulated radiation therapy using multiple 
static fields shaped by a multileaf collimator, Physics in Medicine and Biology 43, 214–
260. 

Wu, X., and Y. Zhu. 2001. An optimization method for importance factors and beam weights 
based on genetic algorithms for radiotherapy treatment planning. Physics in Medicine and 
Biology 46, 1085-1099. 

Xia, P., L.J. Verhey. 1998. Multileaf collimator leaf sequencing algorithm for intensity modulated 
beams with multiple static segments, Medical Physics 25, 1424–1434 

Yu, C., M. Symons, M. Du, A. Martinez, and J. Wong. 1995a. A method for implementing 
dynamic photon beam intensity modulation using independent jaws and a multileaf 
collimator. Physics in Medicine and Biology 40, 769-787.  

Yu, C., D. Yan, M. Du, S. Zhou, and L. Verhey. 1995b. Optimization of leaf-positions when 
shaping a radiation field with a multileaf collimators. Physics in Medicine and Biology 40, 
305-308.  

 


