
Implementation and Improvements of Interactive Image
Segmentation Techniques

Akshay Uttamani
University of

Wisconsin-Madison
auttamani@cs.wisc.edu

Ankit Aggarwal
University of

Wisconsin-Madison
ankit@cs.wisc.edu

Vaibhav D Patel
University of

Wisconsin-Madison
vpatel26@wisc.edu

ABSTRACT
The problem of efficient, interactive foreground/background
segmentation in still images is of great practical importance
in image editing. In this paper, we re-implement the two fa-
mous interactive image segmentation methods - GrabCut [1]
and Lazy Snapping [3]. GrabCut is an approach based on
optimization by graph-cut which combines both types of in-
formation i.e. color and contrast. It is an iterative version
of the optimization that is used to simplify substantially the
user interaction needed for a given quality. Lazy Snapping,
is another interactive image cutout tool that separates coarse
and fine scale processing, making object specification and
detailed adjustment easy. Moreover, it provides instant vi-
sual feedback, snapping the cutout contour to the true ob-
ject boundary efficiently despite the presence of ambiguous or
low contrast edges. Also, some improvements are suggested
to these algorithms and results are compared and explained at
the end.

INTRODUCTION
Segmentation is generally the first stage in any attempt to
analyse or interpret an image automatically. Segmentation
bridges the gap between low-level image processing and
high-level image processing. Some kinds of segmentation
techniques are found in any application involving the detec-
tion, recognition, and measurement of objects in images. The
role of segmentation is crucial in most tasks requiring image
analysis. The success or failure of the task is often a direct
consequence of the success or failure of segmentation.

Applications of Segmentation

• Optical character recognition (OCR)

• Tracking of objects in a sequence of images

• Classification of terrains visible in satellite images

• Detection and measurement of bone, tissue, etc. in medical
images

WHY THIS PROBLEM?
The previous image segmentation tools used either texture
(color) information or edge (contrast) information. Here we
address the problem of efficient, interactive extraction of a
foreground object in a complex environment whose back-
ground can not be trivially subtracted. The resulting fore-
ground object reflects the proportion of foreground and back-
ground. The aim is to achieve high performance at the cost
of only modest interactive effort on the part of the user. High
performance in this task includes: accurate segmentation of
object from background; clean foreground color, free of color
bleeding from the source background. In general, degrees
of interactive effort range from editing individual pixels, at
the labour-intensive extreme, to merely touching foreground
and/or background in a few locations.

RELATED WORK
After reviewing the literature we found that there are two
main methods that improve on standard pixel-level selection
tools: boundary-based and region based. Each of these meth-
ods takes features of the image that the computer can detect
and uses them to help automate or guide the foreground speci-
fication process. There were two main disadvantages in using
them individually:

• They demanded a large amount of attention from the user
i.e. the user must control the curve carefully for accurate
results.

• There are often cases where the features used by the re-
gion detection algorithms do not match up with the de-
sired foreground or background. For eg, areas in shadow,
low-contrast edges, and other ambiguous areas can be ex-
tremely tedious to hint.

Some of the modern approaches to image segmentation in-
clude Fast Marching Method which is a numerical method for
solving boundary value problems; other graphical partition-
ing methods like Normalized Cuts, Min Cuts which model
the impact of neighbourhood pixels on a given cluster of pix-
els. Trainable segmentation using Neural Networks have also
been used recently for image segmentation which relies on
processing small areas of an image using an artificial neural
networks.

OVERVIEW
The first approach, Lazy Snapping consists of two steps: a
quick object marking step and a simple boundary editing step.
The first step, object marking, works at a coarse scale, which

1

specifies the object of interest by a few marking lines. The
second step, boundary editing, works at a finer scale or on
the zoomed-in image, which allows the user to edit the ob-
ject boundary by simply clicking and dragging polygon ver-
tices. This system inherits the advantages of region-based and
boundary-based methods in two steps. The first step is intu-
itive and quick for object context specification, while the sec-
ond step is easy and efficient for accurate boundary control.
Furthermore, at the object marking step, an efficient graph cut
algorithm can be implemented by employing pre-computed
over-segmentation so that the marking UI can provide instant
visual feedback to the user. At the boundary editing step,
a simple polygon editing UI is introduced, and the polygon
locations are used as soft constraints to improve snapping re-
sults around ambiguous or low contrast edges.

The second approach is segmentation using GrabCut. The
image segmentation using GrabCut can be done by first divid-
ing the image into foreground and background classes by se-
lecting rectangle around the object of interest and then mod-
eling it as Gaussian Mixture Models (GMMs) using Orchard-
Bouman clustering algorithm, and lastly applying graph-cut
on the built graph.

TECHNICAL APPROACH

Object Segmentation using Graph-Cut
In order to explain how the GrabCut and Lazy Snapping algo-
rithm works, we need to briefly describe the graph cuts energy
minimization. The graph cuts interactive algorithm addresses
the segmentation given an initial trimap T that consists of:

• TB (Set of Background pixels)

• TF (Set of Foreground pixels)

• TU (Unlabeled pixels)

Figure 1. an example of a trimap overlaid on a photo, where background
pixels are in blue, foreground pixels in red and unlabelled pixels in green

Briefly there are three steps in graph-cut:

• The image is defined as an array of grey values
z=(z1,...,zn,...,zN) and the segmentation of the image is ex-
pressed as an array α=(α1,...,αn,...,αN), which gives to ev-
ery pixel a value in a range from 0 to 1 (where 0 means
background and 1 means foreground)

• The histograms are built from labelled pixels from the re-
spective trimap regions TB, TF and are normalized to sum
to 1 over the grey level range.

• The segmentation is estimated as a global minimum of an
energy function and is computed by a standard minimum
cut algorithm.

Lazy Snapping
Lazy Snapping is an interactive image segmentation tech-
nique which separates coarse and fine scale processing,
making object specification and detailed adjustments easy.
Moreover, Lazy Snapping provides instant visual feedback,
snapping the cutout contour to the true object boundary
efficiently despite the presence of ambiguous or low con-
trast edges. Instant feedback is made possible by a image
segmentation algorithm which combines graph cut with
pre-computed over-segmentation. In this project, we im-
plemented this algorithm and made some modifications to
improve its efficiency.

Details of the two steps of Lazy snapping:

Step 1 - Object Marking: The previous approaches required
the user to trace the object boundary which incurred human
errors and high user effort. Our system allows users to use
lines and curves to specify the extent of the object of interest.
To specify an object, a user marks few lines on the image
by dragging the mouse cursor while holding a button. We
used two different colors to display the foreground marker or
background marker. The segmentation process is triggered
once the user releases the mouse button after each marking
line is drawn. The user inspects the segmentation result and
decides if he wants to mark more lines or not. To keep this
interaction smooth we tried to keep the response time of our
tool to be as low as possible.

One of the ways of making it faster is to use the concept of
Graph Cut Image Segmentation. An image cutout problem
can be posed as a binary labelling problem. Suppose that the
image is a graph G(V,E) , where V is the set of all nodes and
E is the set of all arcs connecting adjacent nodes. Usually, the
nodes are pixels on the image and the arcs are adjacency rela-
tionships with four or eight connections between neighboring
pixels. The labelling problem is to assign a unique label xi
for each node i V, i.e. xi foreground(= 1), background(=0).
The solution X = xi can be obtained by minimizing a Gibbs
energy:

E(X) =
∑

i∈V E1(xi) + λ
∑

i,j∈E E2(xi, xj)

where E1(xi) is the likelihood energy, encoding the cost when
the label of node i is xi, and E2(xi, xj) is the prior energy,
denoting the cost when the labels of adjacent nodes i and j
are xi and xj respectively. Once the user marks the image,
two sets of pixels intersecting with the foreground and back-
ground markers are defined as foreground seeds F and back-
ground seeds B respectively. To compute E1, first the colors in
seeds F and B are clustered by the K-means method. E2 to is
used to represent the energy due to the gradient along the ob-
ject boundary(calculated mathematically using L2-Norm of
the RGB color difference of two pixels). To minimize the

2

energy E(X) in the main equation, we use the max-flow algo-
rithm.

Step 2 - Boundary Editing: The object marking step pre-
serves the object boundary as accurately as possible but there
still exist some errors. To overcome those, we use a poly-
gon editing UI for the user to refine the object boundary. The
rough object boundary produced in the previous step is con-
verted into an editable polygons. The polygon is constructed
in an iterative way: the initial polygon has only one vertex,
which is the point with the highest curvature on the boundary.
At each step, the distance of each point on the boundary to the
polygon in the previous step is computed. The farthest point
is inserted to generate a new polygon. The iteration stops
when the largest distance is less than a pre-defined threshold.
Once the user releases the mouse button after each polygon
editing operation, the system will optimize the object bound-
ary using the graph cut segmentation algorithm again. The
optimized boundary automatically snaps to the object bound-
ary even though the polygon vertices may not be on it.

Improvements: To improve efficiency, we use a graph cut
formulation which is built on a pre-computed image over-
segmentation, instead of image pixels. As proposed in the
paper we use watershed algorithm, which locates boundaries
well, and preserves small differences inside each small re-
gion. Watershed segmentation provides a good super set of
object boundaries and hence this approximation produces rea-
sonable results and improves the speed significantly. On top
of that we tried using the concept of Gaussian Mixture Model
(GMM). We observed that using Gaussian model to fit every
cluster improved the time complexity of our algorithm and
produced more accurate results. Most importantly, our algo-
rithm is able to feedback the cut out results almost instantly.

GrabCut
The proposed approach includes two main steps: 1) Hard
Segmentation using iterative graph cut 2) Border Matting in
which alpha values are computed in a narrow strip around the
hard segmentation boundary

Step 1 - Image Segmentation: This step addresses the seg-
mentation of an image, given an initial trimap T. The image
is an array z = (z1,..., zn,..., zN) of grey values, indexed by the
(single) index n. The segmentation of the image is expressed
as an array of opacity values α= (α1,..., αN) at each pixel.
Generally 0 <αn <1, but for hard segmentation αn = {0,1},
with 0 for background and 1 for foreground. Also, Gaussian
Mixture Model is used to model the pixel color probability
distribution function. An energy function E is defined so that
its minimum should correspond to a good segmentation, in
the sense that it is guided both by the observed foreground
and background grey-level histograms and that the opacity is
coherent, reflecting a tendency to solidity of objects. This is
captured by a Gibbs energy of the form
E(α, θ, z) = U(α, θ, z) + V (α, z)

The data term U evaluates the fit of the opacity distribution α
to the data z, given the histogram model θ , and is defined to
be:

U(α, θ, z)=
∑

n−logh(zn;αn)

The smoothness term can be written as

V (α, z)=γ
∑

m,n∈C dis(m,n)
-1[αn != αm] exp -β(zmzn)

2

where [φ] denotes the indicator function taking values 0,1 for
a predicate φ , C is the set of pairs of neighboring pixels, and
where dis() is the Euclidean distance of neighbouring pixels.
This energy encourages coherence in regions of similar grey-
level.

Step 2(a) - Border Matting: Border matting begins with a
closed contour C, obtained by fitting a polyline to the seg-
mentation boundary from the iterative hard segmentation of
the previous section. A new trimap TB,TU,TF is computed,
in which TU is the set of pixels in a ribbon of width w pixels
either side of C (we use w = 6). The goal is to compute the
map αn, n belongs to TU, and in order to do this robustly, a
strong model is assumed for the shape of the α -profile within
TU with two important additions: regularisation to enhance
the quality of the estimated α -map; and a dynamic program-
ming (DP) algorithm for estimating α throughout TU.

Step 2(b) - Foreground estimation: The aim here is to esti-
mate foreground pixel colors without colors bleeding in from
the background of the source image. Such bleeding can oc-
cur with Bayes matting because of the probabilistic algorithm
used which aims to strip the background component from
mixed pixels but cannot do so precisely. The residue of the
stripping process can show up as color bleeding. Here we
avoid this by stealing pixels from the foreground TF itself.
First the Bayes matte algorithm is applied to obtain an esti-
mate of foreground color fn on a pixel n belongs to TU. Then,
from the neighbourhood Ft(n), the pixel color that is most
similar to fn is stolen to form the foreground color fn.

SHORTCOMINGS OF LAZY SNAPPING AND GRABCUT
GrabCut and LazySnapping apply different clustering algo-
rithms to distinguish the color histograms of the user-selected
foreground and background. Earlier tools aimed at grey scale
images, while these two focus on colored images which has
wider application in real life. Thus they have a lot of advan-
tages over any of the existing tools. To list a few:

• They are much easier to learn than any other related
tools(Photo-shop etc).

• Since both of them use optimization techniques, they pro-
vide better quality cutouts in less time.

• Because of the instant feedback mechanism, they provide
a better user experience.

Although there are lots of advantages of using these tech-
niques, they still have certain shortcomings. After exper-
imenting with different types of images we observed that
they both require subtle user refinements for most cases, un-
less images to be handled have significant appearance dif-
ference between the foreground and background. This was
also pointed out by Kolmogorov and Minka [5] in their paper.
Some other shortcomings include:

3

• They may introduce unacceptable results in the cases of
low contrast between foreground and background colors,
since the algorithms heavily rely on color intensities.

• Every pixel that is marked by users is considered to be the
ground truth for segmentation. In many scenarios, it is in-
convenient for users to purify their inputs.

• Both the algorithms are sensitive to the color discontinu-
ity which may lead to many noisy discontinuity and noise
holes in the result.

• They are not very robust to inaccurate inputs.

IMPROVEMENTS TO GRABCUT
The original GrabCut algorithm uses a fixed number of Gaus-
sians in each GMM, however it is observed by the results that
the number of Gaussians used to model the foreground and
background can have a significant effect on segmentation per-
formance. This is because, for a larger value of the Gaussian
components, over fitting will occur while modelling a color
distribution and for a smaller value, we may not be able to
model the entire color distribution. The modified GrabCut
algorithm analyses the foreground and background regions
prior to segmentation and estimates the optimal number of
Gaussians needed in each GMM in order to best model each
region. In order to predict the optimal number of Gaussians in
GMM model, we use minimum description length minimiza-
tion and choose K which minimizes minimum description
length optimization function for each iteration of the origi-
nal GrabCut algorithm. This improvement removes the vari-
ations that may be induced on the segmentation results due to
the arbitrary setting of the number of components by the user.

GrabCut also utilizes edge information to identify the border
between foreground objects and background. This is done by
analysing the gradient (change in color) between two neigh-
boring pixels. Altering the algorithm to construct the back-
ground GMM using only background pixels in the bound-
ing box in subsequent iterations gives a more accurate model
of background colors around the selected object. This effec-
tively focuses the method on the region of interest by remov-
ing isolated background colors from the GMM that are not
spatially close to the foreground object. In the modified algo-
rithm, after the first iteration, the background is constrained
to only be the pixels in the bounding box marked by the user,
where as the original algorithm considers the entire image.
This provides a more localised modelling of the background
colour distribution, theoretically providing a better segmenta-
tion result. This also reduces the total number of pixels which
are considered in the iterative energy segmentation and pro-
duces improvements in the speed of the energy optimisation
step of the GrabCut algorithm.

With the original GrabCut algorithm, we observed that it
sometimes fails to detect holes present in the foreground ob-
ject and marks them as part of the foreground itself. How-
ever, with these improvements , we were able to address this
issue and produce good segmentation results as displayed in
images below. While the first improvement suggested above
is a generic improvement to the GrabCut algorithm, the sec-
ond one seems to specifically address the hole detection issue.

This is because the color of the hole pixels is more similar to
the background pixels inside the bounding box rather than
the ones outside the bounding box thus modelling the back-
ground color distribution better to catch the holes.

The results of these modifications are compared in Experi-
ments section including both ground truth data and bound-
ing box locations, allowing for consistent benchmarking and
quantitative performance evaluation.

A NEW SEGMENTATION APPROACH
Both lazy snapping and GrabCut model ”color” for segmen-
tation. Experimentally, we have seen that using a single im-
age property like color may not always produce the best re-
sults. Images which have very small difference in the color
distribution of foreground and background are very hard to
segment using these algorithms. To overcome this shortcom-
ing, we tried to use a different image property along with an
optimized segmentation technique. Our method is based on
appearance propagation images which was proposed by Pel-
lacini [4] and is considered to be an excellent choice in mod-
eling users inputs.

Algorithm :

• As in the previous two approaches, users are prompted to
use different colors to paint part of the foreground and part
of the background accordingly. It is not necessary for users
to ensure the precision of their inputs because the system
could identify and tolerate cases in which users acciden-
tally touch the background with foreground strokes. This
is made possible by using the Foreground cropping, where
we use a threshold to determine if the pixel marked by the
user as foreground was correct or not.

• Once we have the input, we apply the normalized appear-
ance propagation to both the users foreground and back-
ground labellings independently. We label the region as
”1” marked by the user as foreground and ”0” for the re-
gion marked as background. This step propagates the fore-
ground region to the whole image by brightening pixels
that have similar textures to those in the ”marked 1” area
subject to geometric constraints. A similar approach is
used for background propagation.

• Once we have labelled the pixels, we apply the standard
Graph cut segmentation approach to separate the fore-
ground from the background.

This algorithm can further be optimized by using a Normal-
ization or an optimization step before the appearance propa-
gation step. We intend to do this in our future work.

Results

We show in Fig.2 and Fig.3 the difference of results generated
from GrabCut and from our approach. As previously men-
tioned, we believe that these images are usually considered
hard for interactive segmentation due to similar color tones in
their foregrounds and backgrounds. Even if the user attempts
to provide accurate inputs it would be hard for GrabCut to
generate correct result, since it relies only on color. With our
approach, even with a small input from user, he might cover

4

Figure 2. (a)Original image, (b)user inputs

Figure 3. (c)output from our approach and (d)output from GrabCut

more textures and structure information during the interaction
and hence the result generated is more accurate.

EXPERIMENTS AND EVALUATION
We ran our implementations on a set of images from the
Berkley Image Segmentation data-set. We selected a set of
images from the data-set and divided them into three sets
namely Easy, Medium and Tough images in terms of number
of foreground objects, color similarity in foreground and
background regions, different colors present in the image(as
GrabCut and Lazy Snapping rely only on the color property
of the image). Then, we manually marked the foreground
object boundaries in all the test images. The data-set also
contains human marked boundaries for all the images,
but they address general image segmentation and not the
foreground-background object segmentation.

Lazy Snapping:
Figure 5 shows the results of the implementation of Lazy
Snapping method. For each example set, the first row rep-
resents the original images, the remaining rows represent the
results with user inputs. In the images, the red markings show
the user input for background points and blue markings for
the foreground points. After each input given by the user, the
system recalculates the boundary points and marks them with
green.

From figure 5, we can see that our implementation works best
for easy images such as horse.jpg and relatively bad for tough
images such as cricket.jpg, while not that bad for eskimo.jpg
type medium images. This is due to the fact that the differ-
ence between the foreground and background color separa-
tion for horse.jpg is relatively larger than the other two sets of
images.

In the lions.jpg image, the results of the second row are much
better than the first row, since the second row has more strokes
for both the foreground and background as compared to the
first row. As the user marks more and more foreground and

Figure 4. Examples showing the segmentation result on running Lazy
Snapping algorithm (a) horse.jpg (b) eskimo.jpg

Figure 5. Examples showing the segmentation result on running Lazy
Snapping algorithm (c) lions.jpg (d) cricket.jpg

background pixels, the model gets more information about
the colors in both regions, which leads to a more accurate
Gaussian mixture model to approximate the probability of the
image pixels belonging to foreground and background and
thus results in better segmentation.

In the second row of the eskimo.jpg image, dogs are mistak-
enly segmented as the background, because of its great sim-
ilarity in color with the color of the ice and sky which are
marked as background by the user. It can also be observed
in other images (second row in horse image) that foreground

5

regions that are similar to the background in color are quite
possibly classified as background.

The performance on cricket.jpg image is worse, because of
the great similarity between much of the background regions
and the foreground. Even marking many pixels in foreground
and background doesn’t help much.

Figure 6. The segmentation result using Lazy Snapping approach on an
Image having color discontinuity

Figure 6 shows that the Lazy Snapping creates noisy holes
in the image when there is some color discontinuity in the
image.

In conclusion, what really matters in the lazy snapping is the
size of the samples and the distinction of foreground from
background in color. In order to get good results, the user
must make sure that the strokes are rich enough, inclusive
of different color patches in foreground and background. For
those images with low contrast between foreground and back-
ground, more strokes are required to get good segmented im-
age.

GrabCut:
The figure 8 shows the results of the implementation of Grab-
Cut. In the example set, the first row represents the images
with marked area of interest by the user, second row onwards
are the segmented results with user inputs. In the images, the
red markings show the user input for background points and
blue markings for the foreground points. The user is given a
feature to ask the system to segment the image after entering
inputs.

On applying the algorithm to the easy set of images
(horse.jpg), we can see that just after making the rectangle
around our area of interest, the system is able to segment
out the foreground object efficiently. While on the other
side, for correctly segmenting medium images (eskimo.jpg,
cricket.jpg), more user input is required by the system other
than the rectangle.

The third and fourth column of images in figure 8 show the
effect of varying user input on the segmentation results. In the
third column, the user marks all the incorrectly segmented
portion of image compared to the image on fourth column
where user marks few of them. As we can see, the system
segments out the foreground objects perfectly compared to
the result on fourth column.

Figure 9 shows the segmentation result when applying the
GrabCut algorithm on foreground objects having holes in
them. Here the original GrabCut algorithm marks the area
in between the pillars(i.e. holes) as the foreground in part b

Figure 7. Example images showing the segmentation result on running
GrabCut algorithm (a) horse.jpg (b) eskimo.jpg

Figure 8. Example images showing the segmentation result on run-
ning GrabCut algorithm (c) cricket.jpg Image with more user input (d)
cricket.jpg Image with lesser user input

which ideally should be marked as background. This is be-
cause the color of hole pixels is dark blue while the color
of the background is bright blue. When the user selects the
bounding box and marks the area outside of it as the back-
ground; that initial background color distribution does not
model the color distribution of the hole region correctly. In-
stead the color of pixels close to the foreground object inside
the bounding box is more similar to the color distribution of
the holes. Hence, the improved GrabCut algorithm rectifies

6

Figure 9. Example that shows the comparison of segmentation result on
running the improved GrabCut algorithm compared to original Grab-
Cut approach (a) Original Image (b) GrabCut result (c) Improved Grab-
Cut result

this issue by negating the effect of background pixels out-
side the bounding box on the background color distribution.
The results of modified algorithm is displayed above in part
c where the hole region is correctly segmented out as back-
ground.

To evaluate the two algorithms and compare with our ap-
proach we intentionally picked images that had complex
lighting conditions. We ran all the three algorithms on almost
the entire data set and found that our approach outperformed
both GrabCut and Lazy Snapping.

CONCLUSION
In this project, we implemented the two most popular in-
teractive image segmentation techniques- GrabCut and Lazy
Snapping. After experimenting with various images and go-
ing through the related literature we found the advantages and
the shortcomings in the two methods. We demonstrated a dif-
ferent interactive segmentation system that uses texture and
appearance propagation as its central feature. After running
our experiment on various types of images, we observed that
our approach is capable of handling a wider range of images
relying only on coarse user strokes. This we believe is be-
cause of the fact that most of the real life images do not have
a clear difference of color distribution in their foreground and
background. The main advantages of this approach is its ro-
bustness to user error, the embedded appearance propagation
process and better segmentation results on intricate images.
Also, some improvements were made specifically to Grab-
Cutś iterative algorithm through which we were able to pro-
duce better results when the foreground object in the image
has holes.

FUTURE WORK
Through our experiments we observed that relying on a single
image property like color or texture may not be enough for the
desired segmentation. Thus as our future work we intend to
extend our approach of using appearance propagation mod-
eled on a combination of color and texture (or using a com-
bination of various image properties). We believe that adding
an optimization step before the appearance propagation step
can speed up the process. In this project we focused more
on improving accuracy than on improving run-time complex-
ity. As a part of future we also intend to reduce the run-time

complexity by experimenting with various optimization tech-
niques.

REFERENCES
[1] C. Rother, V. Kolmogorov, A. Blake. GrabCut: Interactive
Foreground Extraction using Iterated Graph Cuts. In ACM
Transactions on Graphics (SIGGRAPH), 2004

[2] Blake, A., Rother, C., Brown, M., Perez, P., and Torr,
P. 2004. Interactive Image Segmentation using an adaptive
GMMRF model. In Proc. European Conf. Computer Vision

[3] Y Li, J Sun, CK Tang, HY Shum - Lazy Snapping. In
ACM Transactions on Graphics (ToG), 2004

[4] AN X., PELLACINI F.: AppProp: all-pairs appearance-
space edit propagation. In International Conference on Com-
puter Graphics and Interactive Techniques (2008), ACM New
York, NY, USA.

[5] ROTHER C., KOLMOGOROV V., MINKA T., BLAKE
A.: Cosegmentation of Image Pairs by Histogram Matching-
Incorporating a Global Constraint into MRFs.In Proc. CVPR
(2004)

PROJECT WEBSITE
http://pages.cs.wisc.edu/ auttamani/

7

	Introduction
	Why this problem?
	Related Work
	Overview
	Technical Approach
	Object Segmentation using Graph-Cut
	Lazy Snapping
	GrabCut

	Shortcomings of Lazy snapping and GrabCut
	Improvements to GrabCut
	A new Segmentation Approach
	Experiments and Evaluation
	Lazy Snapping:
	GrabCut:

	Conclusion
	Future Work
	References
	Project Website

