
CS 536 / Fall 2021
Introduction to programming languages and compilers

Aws Albarghouthi
aws@cs.wisc.edu

mailto:loris-teach@cs.wisc.edu

About me

PhD at University of Toronto

Joined University of Wisconsin in 2015

Part of madPL group
Program verification

Program synthesis

http://pages.cs.wisc.edu/~aws/

2

http://pages.cs.wisc.edu/~reps/

About the course

We will study compilers

We will understand how they work

We will build a full compiler

We will have fun

3

Course Mechanics

• Home page: http://cs.wisc.edu/~aws/courses/cs536

• Workload:

• 6 Programs (40% = 5% + 7% + 7% + 7% + 7% + 7%)

• 2 exams (midterm: 30% + final: 30%)

http://cs.wisc.edu/~aws/courses/cs536-f19/

5

A compiler is a
recognizer of language S
a translator from S to T
a program in language H

6

front end = recognize source code S;

map S to IR

IR = intermediate representation

back end = map IR to T

Executing the T program produces the same

result as executing the S program?

Phases
of a
compiler

7

front end

back end

Symbol
table

P1

P2

P3

P4, P5

P6

Scanner (P2)

Input: characters from source program

Output: sequence of tokens

Actions:
group chars into lexemes (tokens)
Identify and ignore whitespace, comments, etc.

Error checking:
bad characters such as ^
unterminated strings, e.g., “Hello
int literals that are too large

8

Example

9

a = 2 * b + abs(-71)scanner
ident

(a)
asgn int lit

(2)
times ident

(b)
plus ident

(abs)
lparens

minus
int lit
(71)

rparens

a = 2 *b+
abs (-

71)

ident
(a)

asgn int lit
(2)

times ident
(b)

plus ident
(abs)

lparens
minus

int lit
(71)

rparens

Whitespace (spaces, tabs, and newlines) filtered out

The scanner’s output is still the sequence

Parser (P3)

Input: sequence of tokens from the scanner

Output: AST (abstract syntax tree)

Actions:
groups tokens into sentences

Error checking:
syntax errors, e.g., x = y *= 5

(possibly) static semantic errors, e.g., use of undeclared variables

10

Semantic analyzer (P4,P5)

Input: AST

Output: annotated AST

Actions: does more static semantic checks
Name analysis

process declarations and uses of variables

enforces scope

Type checking

checks types

augments AST w/ types

11

Semantic analyzer (P4,P5)

Scope example:

12

…

{
int i = 4;

i++;

}
i = 5;out of scope

Intermediate code
generation

Input: annotated AST (assumes no errors)

Output: intermediate representation (IR)

e.g., 3-address code

instructions have 3 operands at most

easy to generate from AST

1 instr per AST internal node

13

Phases
of a
compiler

14

front end

back end

Symbol
table

P1

P2

P3

P6

P4, P5

Example

15

a = 2 * b + abs(-71)scanner

parser

ident
(a)

asgn int lit
(2)

times ident
(b)

plus ident
(abs)

lparens
minus

int lit
(71)

rparens

Example (cont’d)

16

semantic analyzer
Symbol

table

a var int
b var int
abs fun int->int

Example (cont’d)

17

code generation tmp1 = 0 - 71
move tmp1 param1
call abs
move ret1 tmp2
tmp3 = 2*b
tmp4 = tmp3 + tmp2
a = tmp4

Optimizer

Input: IR
Output: optimized IR

Actions: Improve code
make it run faster; make it smaller

several passes: local and global optimization

more time spent in compilation; less time in execution

18

Code generator (~P6)

Input: IR from optimizer

Output: target code

19

Symbol table (P1)

Compiler keeps track of names in
semantic analyzer — both name analysis and type checking

code generation — offsets into stack

optimizer — def-use info

P1: implement symbol table

20

Symbol table

Block-structured language
Java, C, C++

Ideas:

nested visibility of names (no access to a variable out of scope)

easy to tell which def of a name applies (nearest definition)

lifetime of data is bound to scope

21

Symbol table

int x, y;
void A() {
double x, z;
C(x, y, z)

}
void B() {
C(x, y, z);

}

22

block structure: need
symbol table with nesting

implement as list of hashtables

