CS 536 / Fall 2021

Introduction to programming languages and compilers

Aws Albarghouthl
aws@cs.wisc.edu

mailto:loris-teach@cs.wisc.edu

About me

°hD at University of Toronto
Joined University of Wisconsin in 2015

Part of madPL group

Program verification
Program synthesis

http://pages.cs.wisc.edu/~aws/

http://pages.cs.wisc.edu/~reps/

About the course

We will study compillers

We will understand how they work
We will build a full compiller

We will have fun

Course Mechanics

 HOMe page: http://cs.wisc.edu/~aws/courses/cs536
* Workload:

6 Programs (40% =5% + 7% + 7% + 7% + 7% + 7%)

2 exams (midterm: 30% + final: 30%)

http://cs.wisc.edu/~aws/courses/cs536-f19/

A compller Is a
recognizer of language S

a translator from Sto 7
a program in language H

front end = recognize source code S;
map S to IR

IR = iIntermediate representation

backend =map IRto T

—xecuting the T program produces the same
result as executing the S program??

Phases
of a
compiler

P1

Sequence of characters

P2

Sequence of tokens

syntax analyzer
(parser) P 3

Abstract-syntax tree (AST)
semantic

analyzer P 4; P 5
Augmented, annotated AST

intermediate
code generator

Intermediate code
Il B N =

optimizer

Optimized intermediate code

code P 6

generator

Assembly or machine code

front end

back end

Scanner (P2)

Input: characters from source program
Output: sequence of tokens

Actions:

group chars into lexemes (tokens)
|dentify and ignore whitespace, comments, etc.

Error checking:

bad characters such as
unterminated strings, e.g., “Hello
int literals that are too large

Example
a =2 xb + abs(-71)

ident asgn intlit times ident plus ident Iparens int lit rparens
(@) 2) (b) (abs) minus 1)

scanner

Whitespace (spaces, tabs, and newlines) filtered out

a = 2 kb+
abs (-

71)

The scanner’s output is still the sequence

ident asgn intlit times ident plus ident Iparens int lit rparens
(@) 2) (b) (abs) minus 1)

Parser (P3)

Input: sequence of tokens from the scanner
Output: AST (abstract syntax tree)

Actions:
groups tokens into sentences

Error checking.

syntax errors, e.g., x =y =5
(possibly) static semantic errors, e.g., use of undeclared variables

10

Semantic analyzer (P4,P5)

Input: AS
Output: annotated AST

Actions: does more static semantic checks

Name analysis
process declarations and uses of variables
enforces scope
Type checking
checks types
augments AST w/ types

11

Semantic analyzer (P4,P5)

Scope example:

int 1 = 4;
1++:
}

Out Of SCOPE = 1 = 5

12

Intermediate code
generation

Input: annotated AST (assumes no errors)

Output: intermediate representation (IR)
e.g., 3-address code
instructions have 3 operands at most
easy to generate from AST

1 instr per AST internal node

13

Phases
of a
compiler

P1

Sequence of characters

P2

Sequence of tokens

syntax analyzer
(parser) P 3

Abstract-syntax tree (AST)
semantic

analyzer P 4; P 5
Augmented, annotated AST

intermediate
code generator

Intermediate code
Il B N =

optimizer

Optimized intermediate code

code P 6

generator

Assembly or machine code

front end

back end

14

Example
a=2xDb + abs(-71)

scanner
ident

(a)

parser

asgn

a

int lit

times

assign

ident

(b)

L

plus

caII£

—
times
intlit id id
2 b abs

ident
(abs)

lparens

neg

intlit

71

int lit rparens

15

Example (cont’d)

semantic analyzer

assign

intlit

int 2

int

int b abs

int — int
intlit

71

Int

a
b
abs

Symbol

table

var int
var int
fun int—>int

16

Example (cont’d)

code generation

‘ assign

intlit

Int 2

tmpl = 0 - 71

move tmpl paraml
call abs

move retl tmp2
tmp3 = 2%b

tmpd = tmp3 + tmp2
a = tmp4

INnt

INt

Int b abs

int — int
intlit

71

17

Optimizer

Input: [R

Output: optimized IR

Actions: Improve code

make it run faster; make it smaller
several passes: local and global optimization
more time spent in compilation; less time in execution

18

Code generator (~P6)

Input: [R from optimizer
Output: target code

19

Symbol table (P1)

Compiler keeps track of names in

semantic analyzer — both name analysis and type checking
code generation — offsets into stack
optimizer — def-use Info

P71 Implement symbol table

20

Symbol table

Slock-structured language

Java, C, C++
ldeas:

nested visibility of names (no access to a variable out of scope)
easy to tell which def of a name applies (nearest definition)

lifetime of data is bound to scope

21

Symbol table

int x, y;

void A() {
double x, z;
C(x, y, z)

+
void B() {

C(x, vy, z);

block structure: need
symbol table with nesting

Implement as list of hashtables

22

