
Semantic Analysis 
with Emphasis on Name Analysis 

You’ll need this for P4 

1



Where we are at

So far, we’ve only 
defined the structure of 
a program—a.k.a. the 
syntax
We are now diving into 
the semantics of the 
program 

2



Semantics: The Meaning of a Program 

The parser can guarantee that the program is 
structurally correct 
The parser does not guarantee that the program 
makes sense: 
– Undeclared variables 
– Ill-typed statements 

int doubleRainbow;                               
doubleRainbow = true; 

3



Static Semantic Analysis 

Two phases
– Name analysis (a.k.a. name resolution)
• For each scope
– Process declarations, insert them into the symbol table
– Process statements, update IdNodes to point to the appropriate 

symbol-table entry

– Type analysis
• Process statements
– Use symbol-table info to determine the type of each expression (and 

sub-expression)

4



Why do we need this phase?

Code generation
– Different operations use different instructions:
• Consistent variable access
• Integer addition vs. floating-point addition
• Operator overloading

Optimization
– Symbol-table entry serves to identify which variable is used
• Can help in removing dead code (with some further analysis)
• NOTE: pointers can make these tasks hard

Error checking

5



Semantic Error Analysis 

For non-trivial programming languages, we run 
into fundamental undecidability problems 
• Does the program halt? 
• Can the program crash? 
Even with simplifying assumptions, sometimes 
infeasible in practice, as well 
• Combinations of thread interleavings
• Inter-procedural dataflow 

6



Catch Obvious Errors 

We cannot guarantee the absence of errors …

… but we can at least catch some:
– Undeclared identifiers
–Multiply declared identifiers
– Ill-typed terms

7



Name Analysis

Associating ids with their uses 
Need to bind names before we can type uses 
–What definitions do we need about identifiers?
• Symbol table

– How do we bind definitions and uses together?
• Scope

8



Symbol Table

(Structured) dictionary that binds a name to 
information that we need 

What information do you think we need?  
• Kind (struct, variable, function, class) 
• Type (int, int × string → bool, struct)
• Nesting level
• Runtime location (where it is stored in memory) 

9



Symbol-Table Operations

– Insert entry
– Lookup name
– Add new sub-table
– Remove/forget a sub-table

When do you think we use these operations? 

10



Scope: The Lifetime of a Name 

Block of code in which a name is visible/valid 

No scope
• Assembly / FORTRAN 

Static / most-nested scope 
• Should be familiar – C / Java / C++ 

11



MANY DECISIONS RELATED TO 
SCOPE!!

12



Static vs.
Dynamic Scope 
Static
– Correspondence between a 

variable use / decl is known 
at compile time 

Dynamic
– Correspondence 

determined at runtime 

13



Exercises

14

What uses and declarations 
are OK in this Java code?



Exercises

15

void main() {
int x = 0;
f1();
g();
f2();

}

void f1() {
int x = 10;
g();

}

void f2() {
int x = 20;
f1();
g();

}

void g() {
print(x);

}

What does this print, 
assuming dynamic scoping?



Variable Shadowing

Do we allow names to be 
reused in nesting 
relations? 

What about when the 
kinds are different? 

16



Overloading

Same name; different type

17



Forward References

Use of a name before it is added to symbol table
How do we implement it?

Requires two passes over the program
– 1 to fill symbol table, 1 to use it

18



Example

19

int k=10, x=20;

void foo(int k) {
int a = x;
int x = k;
int b = x;
while (...) {

int x;
if (x == k) {

int k, y;
k = y = x;

}
if (x == k) {

int x = y;
}

}
}

Determine which uses 
correspond to which declarations



Example

20

int (1)k=10, (2)x=20;

void (3)foo(int (4)k) {
int (5)a = x(2);
int (6)x = k(4);
int (7)b = x(6);
while (...) {

int  (8)x;
if (x(8) == k(4)) {

int (9)k, (10)y;
k(9) = y(10) = x(8);

}
if (x(8) == k(4)) {

int (11)x = y(ERROR);
}

}
}

Determine which uses 
correspond to which declarations



Name Analysis for b

Time to make some decisions
–What scoping rules will we allow?
–What info does a b compiler need in its symbol 

table?
– Relevant for P4

21



b: A Statically Scoped Language

b is designed for ease of 
symbol-table use
– global scope + nested 

scopes 
– all declarations are made at 

the top of a scope 
– declarations can always be 

removed from table at end 
of scope 

22



b: Nesting

Like Java or C, we’ll use 
most deeply nested scope 
to determine binding 
– Shadowing
• Variable shadowing allowed

23



b: Symbol-Table Implementation

We want a symbol-table implementation for 
which we can
– add an entry efficiently when we need to
– remove an entry when we are done with it 

We will use a list of hashmaps
– sensible because we expect to remove a lot of 

names from a scope at once
– you did most of this in P1

24



Example

25

}



b: Symbol Kinds

Symbol kinds (= types of identifiers)
– Variable
• Carries a name, primitive type

– Function declaration
• Carries a name, return type, list of parameter types

– Struct definition
• Carries a name, list of fields (types with names), size

26



b: Implementation of Class Sym

There are many ways to implement your symbols 
Here’s one suggestion
– Sym class for variable definitions 
– FnSym subclass for function declarations 
– StructDefSym for struct type definitions
• Contains it’s OWN symbol table for its field definitions 

– StructSym for when you want an instance of a struct

27



Implementing Name Analysis with an AST

At this point, we are done with the parse tree (which 
never existed to begin with J)
– All subsequent processing done on the AST + symbol table 

Walk the AST, much like the unparse() method 
– Augment AST nodes where names are used (both 

declarations and uses) with a link to the relevant object in 
the symbol table 

– Put new entries into the symbol table when a declaration 
is encountered 

28



29

int a;
int f(bool r){

struct b{
int q;

};
cout << r;

}

DeclListNode

VarDeclNode

VarDeclNode StructDeclNode

FnDeclNode

IntNode

DeclListNode

VarDeclNode

IntNode

IntNode IdNode

IdNodeIdNode

IdNodeIdNode

BoolNode

FnNodeBodyFormalsListNode

WriteStmtNode

Sym
Name: r

Type: bool
StructDefSym

Name: b
Fields:

Sym
Name: q
Type: int

Sym
Name: a
Type: int

FnSym
Name: f

RetType: int
List<Type>: [bool]

SymbolTable

IdNode


