Semantic Analysis
with Emphasis on Name Analysis



Where we are at

So fa [, we’ve on |y Tokens via RegEx table

defined the structure of

a program—a.k.a. the Gl Ll
oyntox e
L Ankaysis
We are now diving into i
the semantics of the . IR Codegen |
pProgram T .
: Optimizer :
. S

oooooooooooooooooooooooooooo



Semantics: The Meaning of a Program

The parser can guarantee that the program is
structurally correct

The parser does not guarantee that the program
makes sense:
— Undeclared variables

— Ill-typed statements
int doubleRainbow;
doubleRainbow = true;



Static Semantic Analysis

Two phases

— Name analysis (a.k.a. name resolution)

* For each scope
— Process declarations, insert them into the symbol table

— Process statements, update IdNodes to point to the appropriate
symbol-table entry

— Type analysis

* Process statements

— Use symbol-table info to determine the type of each expression (and
sub-expression)



Why do we need this phase?

Code generation

— Different operations use different instructions:
e Consistent variable access
* Integer addition vs. floating-point addition
* Operator overloading

Optimization
— Symbol-table entry serves to identify which variable is used

e Can help in removing dead code (with some further analysis)
 NOTE: pointers can make these tasks hard

Error checking



Semantic Error Analysis

For non-trivial programming languages, we run
into fundamental undecidability problems

 Does the program halt?
 (Can the program crash?

Even with simplifying assumptions, sometimes
infeasible in practice, as well

 Combinations of thread interleavings

* Inter-procedural dataflow



Catch Obvious Errors

We cannot guarantee the absence of errors ...

... but we can at least catch some:
— Undeclared identifiers
— Multiply declared identifiers
— Ill-typed terms



Name Analysis

Associating ids with their uses

Need to bind names before we can type uses
— What definitions do we need about identifiers?
* Symbol table
— How do we bind definitions and uses together?

* Scope



Symbol Table

(Structured) dictionary that binds a name to
information that we need

What information do you think we need?

 Kind (struct, variable, function, class)

e Type (int, int x string = bool, struct)

* Nesting level

* Runtime location (where it is stored in memory)



Symbol-Table Operations

— Insert entry

— Lookup name

— Add new sub-table

— Remove/forget a sub-table

When do you think we use these operations?



Scope: The Lifetime of a Name

Block of code in which a name is visible/valid

void func () {

int a;
No scope }
* Assembly / FORTRAN et oo

int ¢ = 2:

}
Static / most-nested scope }

e Should be familiar—C/ Java / C++



MANY DECISIONS RELATED TO
SCOPE!!



Static vs. void main() {

£1();
. £2();
Dynamic Scope }
Static void £1() {
int x = 10;
— Correspondence between a g();
variable use / decl is known }
at compile time void £2() {
: String x = "hello";
Dynamic £3();
— Correspondence g();

}

void £3() {
double x = 30.5;

determined at runtime

}

void g() {
pEINnE(X).;

}



Exercises

class animal {
// methods
void attack(int animal) {
for (int animal=0; animal<10; animal++) {
int attack;
}
}

int attack(int x) {
for (int attack=0; attack<10; attack++) {
int animal;
}
¥

void animal() { }

// fields
double attack;
int attack;
int animal;

What uses and declarations
are OK in this Java code?

14



void main() {

int x = 9;
f1();

g();
f2();

}

void f1() {
int x = 10;
g();

}

void f2() {
int x = 20;
f1();
g();

}

void g() {
print(x);

}

Exercises

What does this print,
assuming dynamic scoping?



Variable Shadowing

void smoothJazz (int a) {

Do we allow names to be int a;
reused in nesting s

. int a;
relations? if (a){

int a;

}

What about when the \
kinds are different?

void hardRock (int a) {
int hardRock;

}

16



Overloading

Same name; different type

int techno(int a) {

}

bool techno(int a) {

}

bool techno (bool a) {
}

bool techno (bool a, bool b){
}

17



Forward References

Use of a name before it is added to symbol table
How do we implement it?

vold country() {
western () ;

}

void western () {
countrytl);

}

Requires two passes over the program
— 1 to fill symbol table, 1 to use it



Example

int k=10, x=20;

void foo(int k) {
int a = x;
int x = k;

int b = x;
Whlif‘t()’(; ) A Determine which uses |
if (x == k) { correspond to which declarations
int k, y;
k =y = Xx;
}
if (x == k) {
int x = vy;
}
}



Example

int (1)k=10, (2)x=20;

void (3)foo(int (4)k) {
int (5)a x(2);
int (6)x k(4);
int (7)b = x(6);
while (...) {
int (8)x;
if (x(8) == k(4)) {
int (9)k, (10)y;
k(9) = y(10) = x(8);
}
if (x(8) == k(4)) {
int (11)x = y(ERROR);
}
}

Determine which uses
correspond to which declarations



Name Analysis for b

Time to make some decisions
— What scoping rules will we allow?

— What info does a b compiler need in its symbol
table?

— Relevant for P4



b: A Statically Scoped Language

. . 1Nk .a;
b is designed for ease of .
mbol-table use Mot el TR
>YMBO . 1nt b;
— global scope + nested int c:
scopes :
P LOE Al
— all declarations are made at B
b = 0;
the top of a scope ,
. 1T 4B ==0)4
— declarations can always be P
removed from table at end L0 ;
of scope }
c = b;
d = Db + €;



b: Nesting

Like Java or C, we'll use

most deeply nested scope

to determine binding
— Shadowing

e Variable shadowing allowed

ENE a;
vol1d Euni{)1
LRE e
b = 0;
LE (B == U)i
10E b
b =1;

3



b: Symbol-Table Implementation

We want a symbol-table implementation for
which we can

— add an entry efficiently when we need to
— remove an entry when we are done with it

We will use a list of hashmaps

— sensible because we expect to remove a lot of
names from a scope at once

— you did most of this in P1



Example

front of list end of list void f£(int .a, int b)
N\ ¥ double x;
while (...) {
ant X, Vi

\/\/\/ T
/ Declarations made in scopes that }
Declarations enclose S. Each hashtable in the
made in S list corresponds to one scope }
(i.e. contains all declarations for void g() {
that scope) f( ) §

X2 1n€,3 a: int, 2 f: (int,int) -> void, 1
y: int, 3 b int:2

x: double, 2 Global Declarations
Declarations

in the loop Declarations in f



b: Symbol Kinds

Symbol kinds (= types of identifiers)
— Variable
* Carries a name, primitive type
— Function declaration
e Carries a name, return type, list of parameter types

— Struct definition

e Carries a name, list of fields (types with names), size



b: Implementation of Class Sym

There are many ways to implement your symbols
Here’s one suggestion

— Sym class for variable definitions
— FnSym subclass for function declarations

— StructDefSym for struct type definitions
e Contains it’s OWN symbol table for its field definitions

— StructSym for when you want an instance of a struct



Implementing Name Analysis with an AST

At this point, we are done with the parse tree (which
never existed to begin with ©)

— All subsequent processing done on the AST + symbol table

Walk the AST, much like the unparse() method

— Augment AST nodes where names are used (both
declarations and uses) with a link to the relevant object in
the symbol table

— Put new entries into the symbol table when a declaration
is encountered



* —
DeclListNode ) | int a;
mm) | int f(bool r){
mmp| struct b{
) int q;
VarDeclNode FnDecINode b
mm)| cout<<r;
* */ ¥ | !

IntNode IdNode IntNode IdNode | FormalsListNode | FnNodeBody *

VarDeclNode StructDecINode WriteStmtNode

X

BoolNode IdNode IdNode | DeclListNode IdNode

SymbolTable

VarDeclINode

Sym ) IntNode IdNode
Name:r

FnSym Type: bool
Name: f StructDefSym =
RetType: int Name: b =
List<Type>: [b00|] Fields:

29




