
Types and Type Checking

1

Roadmap

Name analysis
– Static scoping
– Tree traversal, with symbol-table

operations (new, insert, lookup)

Today
– Type checking

2

Scanner

Parser
Tokens

Semantic
Analysis

Parse Tree
AST

IR Codegen

Optimizer

MC Codegen

Scanner

Parser

Symbol
table

Lecture Outline

Type Safari
– Type-system concepts
– Type-system vocabulary

b
– Type rules
– How to apply type rules

Data representation
– Moving towards actual code generation
– Brief comments about types in memory

3

Say, What is a Type?

Short for “data type”
– Classification identifying kinds of data
– A set of possible values that a variable can possess
– Operations that can be done on member values
– A representation (perhaps in memory)

4

Type Intuition

The language does not allow you to do the
following:
int a = 0;

int * pointer = &a;

float fraction = 1.2;

a = pointer + fraction;

5

… or does it?

Components of a Type System

Primitive types + operators for building more
complex types
– int, bool, void, class, function, struct

Means of determining if types are compatible
– Can values with different types be combined?
– If so, how?

Rules for inferring the type of an expression
6

Type Rules

For every operator (including assignment)
– What types can the operand have?
– What type is the result?

Examples
double a;
int b;
a = b;
b = a;

7

Legal in Java, C++

Legal in C++, not in Java

Type Coercion

Implicit cast from one data type to another
– Float to int

Narrow form: type promotion
• When the destination type can represent the source type
• float to double

8

Types of Typing I: When do we check?

Static typing
– Type checks are made before execution of the

program (compile-time)

Dynamic typing
– Type checks are made during execution (runtime)

Combination of the two
– Java (downcasting vs cross-casting)

9

Example: Casting

Cross-casting (static check)
Apple a = new Apple();

Orange o = (Orange)a;

Downcasting (dynamic check)
Fruit f = new Apple();

if (…) {
f = new Orange();

}

Apple two = (Apple)f;

10

Fruit

Apple Orange

Static vs. Dynamic Tradeoffs

11

Statically typed
– Compile-time optimization
– Compile-time error checking

Dynamically typed
– Avoid dealing with errors that don’t

matter
– Some added flexibility
– Failures can happen at runtime
• . . . in a fielded product
• Test suites rarely exercise all code under all

different runtime situations

Duck Typing

12

Type is defined by the methods
and properties

class bird:

def quack(): print(“quack!”)

class mechaBird:

def quack(): print(“101011…”)

How do we arrange it?
– (Some languages) “Duck punching”:

Runtime modification of object to
add an additional method

Types of Typing II: What do we check?

Strong vs. weak typing
– Degree to which type checks are performed
– Degree to which type errors are allowed to happen at

runtime
– Continuum without precise definitions

13

Strong vs. Weak

No universal definitions but …
– Statically typed is often considered stronger (fewer

type errors possible)
– The more implicit casts allowed the weaker the type

system
– The fewer checks performed at runtime the weaker

the type system

14

Strong vs. Weak Example

C (weaker)
union either{

int i;
float f;

} u;

u.i = 12;

float val = u.f;

15

StandardML (stronger)
real(2) + 2.0

Fancier types

Dependent types can be used to reason about
computation
• Reverse takes a list of int of length n and

returns a list of int of length n
Resource types can be used to reason about
program complexity
• The program only type-checks if it runs in poly

time
Very hard to reason about, but strong guarantees

16

Type Safety

Type safety
– All successful operations must be allowed by the type

system
– Java was explicitly designed to be type safe
• If you have a variable with some type, it is guaranteed to be of

that type
– C is not
– C++ is a little better

17

Type-Safety Violations

C
– Format specifier

printf(“%s”, 1);

– Memory safety
struct big{

int a[100000];

};

struct big * b = malloc(1);

18

C++
– Unchecked casts
class T1{ char a};
class T2{ int b; };

int main{
T1 * myT1 = new T1();
T2 * myT2 = new T2();
myT1 = (T1*)myT2;

}

Type System of b

19

b

b’s type system

Primitive types
– int, bool, string, void

Type constructors
– struct

Coercion
– bool cannot be used as an int in our language (nor

vice-versa)

20

b Type Errors I

Arithmetic operators must have int operands
Equality operators == and !=
– Operands must have same type
– Can’t be applied to
• Functions (but CAN be applied to function results)
• struct name
• struct variables

Other relational operators must have int operands
Logical operators must have bool operands

21

b Type Errors II

Assignment operator
– Must have operands of the same type
– Can’t be applied to
• Functions (but CAN be applied to function results)
• struct name
• struct variables

For cin >> x;
– x cannot be function, struct name, struct variable

For cout << x;
– x cannot be function, struct name, struct variable

Condition of if, while must be bool

22

b Type Errors III

Invoking (a.k.a. calling) something that is not a
function
Invoking a function with
– Wrong number of arguments
– Wrong types of arguments
• Also will not allow structs or functions as arguments

Returning a value from a void function
Not returning a value in a non-void function
function
Returning wrong type of value in a non-void
function

23

Type Checking

Structurally similar to nameAnalysis
– Sometimes intermingled with nameAnalysis and

done as part of attribute “decoration”
– Don’t do that . . .

Add a typeCheck method to AST nodes
– Recursively walk the AST checking types of sub-

expressions
– Let’s look at a couple of examples

24

Type Checking: Binary Operator

•Get the type of the LHS
•Get the type of the RHS
•Check that the types are

compatible for the
operator
• Set the kind of the node

be a value
• Set the type of the node

to be the type of the
operation’s result

25

PlusNode

(int)

lhs rhs

(int)

(int)

Type “Checking”: Literal

Cannot be wrong
– Just pass the type of

the literal up the tree

26

IntLitNode

(int)

Type Checking: IdNode

Look up the type of the
declaration
– There should be a symbol

“linked” to the node

Pass symbol type up the
tree

27

IdNodemySymbol

(int)

type: int

Type Checking: Others

Other node types follow these same principles
– A call to function f
• Get the type of each actual parameter of f
• Match against the type of the corresponding formal parameter

of f
– use the information in the symbol-table entry for f

• Pass f’s return type up the tree
– Statement s
• Type check the constituents of s
• Nothing to pass up the tree: A statement does not produce a

value, and hence s has no “return type”

28

Type Checking: Errors
Goals
– Report multiple errors
– Don’t report the same error multiple times (i.e., avoid error cascading)

We’d like the compiler to report as many distinct errors as
possible
– It mustn’t give up at the first error
– Internally, it needs to know if an error has already been reported

Introduce an internal error type
– When type incompatibility is discovered
• Report the error
• Pass error up the tree

– When a type check gets error as an operand
• Don’t (re)report an error
• Again, pass error up the tree

29

Error Example
int a;
bool b;

a = true + 1 + 2 + b;

b = 2;

31
BoolLit

true
IntLit

1

Plus IntLit
2

Plus

Plus

IdNode

type: bool
name: b

symbol
AssignExp

IdNode

type: int
name: a

sym
bo
l

AssignStmt AssignStmt

AssignExp

IdNode

sym
bol

IntLit

StmtList

bool int

error int

REPORT

error bool

errorint

error

bool int

errorREPORT

Looking Towards Next Lecture

• Look at how data (and therefore a value of
some type) is represented in the machine

• Start very abstract; won’t talk about an actual
architecture for a while

• Assembly has no intrinsic notion of types.
One would have to add code for checking
types (if runtime checks are needed)

32

