
Runtime Access to Variables

1

Roadmap

Last Time
– Parameter-passing conventions

This time
– How do we deal with variables and scope?
– How do we organize activation records?
– How do we retrieve values of variables from

activation records?

2

Scope

We mostly worry about 3 flavors
– Local
• Declared and used in the same function
• Further divided into “block” scope in b

– Global
• Declared at the outermost level of the program

– Non-local (i.e., from nested scopes)
• For static scope: variables declared in an outer scope
• For dynamic scope: variables declared in the calling context

3

Local Variables: Examples

What are the local variables here?

int fun(int a, int b){
int c;
c = 1;
if (a == 0){

int d;
d = 4;

}
}

4

How Do We Access the Stack?

Need a little MIPS knowledge
– Full tutorial next week
– General anatomy of a MIPS instruction

opcode Operand1 Operand2

5

How Do We Access the Stack?

Use “load” and
“store”instructions
– Recall that every memory

cell has an address
– Calculate that memory

address, then move data
from/to that address

0x350

0x34c

0x344

0x340

0x33c

4 bytes

6

Basic Memory Operations

lw register memoryAddress

sw register memoryAddress

7

register = *memoryAddress;

*memoryAddress = register;

Load-Word Example

lw $t1, -20($fp)

opcode register memoryAddress

Load word
(4 bytes)

General purpose register
(4 bytes)

offset

Address of the
Frame pointer

8

$t1 = *($fp - 20);

Load Word in Action

lw $t1, -12($fp)

6

2

1

3

0x400

0x3fc

0x3f8

0x3f4

0x3f0

4 bytes

12$t1

$fp 0x400

3

9

Store Word in Action

sw $t1, 0($fp)

6

2

1

3

0x400

0x3fc

0x3f8

0x3f4

0x3f0

4 bytes

12$t1

$fp 0x400 12
10

Relative Access for Locals

Why do we access
locals from $fp?
– That’s where the

activation record starts

What if we used $sp
instead?

6

2

1

3

0x400

0x3fc

0x3f8

0x3f4

0x3f0

4 bytes

0x334$sp

$fp 0x400
11

A Simple Memory-Allocation Scheme

Reserve a slot for each
variable in the function

$sp

int test (int x, int y){
int a, b;
if (x){
int s;

} else {
int t, u, v;
u = b + y;

}
}

0x400 (y)

(x)0x3fc

(return addr)0x3f8

(control link)0x3f4

0x3d4

0x3f0 (a)

0x3ec (b)

0x3e8 (s)

0x3e4 (t)

0x3e0 (u)

0x3dc (v)

0x3d4

$fp 0x3f8
12

Simple Memory-Allocation Algorithm

For each function
Set offset = +4
for each parameter

add name to symbol table
offset += size of parameter

offset = -4
offset -= size of callee saved registers
for each local

offset -= size of variable
add name to symbol table

13

Simple Memory-Allocation
Implementation

Add an offset field to each symbol table entry
During name analysis, add the offset along with
the name (Wait until Project 6 to do this)
Walk the AST performing decrements at each
declaration node

14

Algorithm Example

int test (int x, int y){
int a, b;
if (x){
int s;

} else {
int t, u, v;
u = b + y;

}
}

15

Handling Global Variables

In a sense, globals easier to handle than locals
– Space allocated directly at compile time

instead of indirectly via $fp and $sp registers
– Never needs to be deallocated

Place in static data area
– In MIPS, handling with a special storage directive
– Variables referred to by name, not by address

16

Memory-Region Example

.data

_x: .word 10

_y: .byte 1

_z: .asciiz “I am a string”

.text

lw $t0, _x #Load from x into $t0

sw $t0, _x #Store from $to into x

17

Accessing Non-Local Variables

Static scope
– Variable declared in one procedure and accessed in a

nested one

Dynamic scope
– Any variable x used that is not declared locally

resolves to instance of x in the AR closest to the
current AR

18

Example: Static Non-Local Scope

Each function has its own AR
– Inner function accesses the outer AR

19

function main(){
int a = 0;

function subprog(){
a = a + 1;

}
}

Memory Access: Static Non-Local Scope
void procA(){ // level 1
int x, y;
void procB(){ // level 2

void procC(){ //level 3
int z;
void procD(){//level 4
int x;
x = z + y;
procB();

}
x = 4;
z = 2;
procB();
procD();

}
x = 3;
y = 5;

} 20

Access Links

Add an additional field in
the AR
– Points to the locals area of

the outer function
– Sometimes called the static

link (since it refers to the
static nesting)

21

Level 3
AR

Level 2
AR

Level 1
AR

NULL

⋮

⋮

Access Link

Access Link

Access Link

How Access Links Work

We know how many levels
to traverse statically
– Example: When current

scope is at nesting level 3
and the variable that we
want to access is at nesting
level 1: go back 2 access
links

(3 – 1) 2 levels

22

Level 3
AR

Level 2
AR

Level 1
AR

NULL

⋮

⋮

Access Link

Access Link

Access Link

Traversing Stack Using Access Links

Using 1 access link
lw $t0, 0($fp)
lw $t0, -20($t0)

Where $fp is the location of the
access link, and the variable in the
outer scope is at offset 20 in its
AR

Using 2 access links
lw $t0, 0($fp)
lw $t0, ($t0)
lw $t0, -20($t0)

23

Level 3
AR

Level 2
AR

Level 1
AR

NULL

⋮

⋮

Access Link

Access Link

Access Link

Thinking About Access Links

We know the variable we want to access
statically.
Why don’t we just index into the parent’s AR
using a large positive offset from $fp?

24

lw $t0 380($fp)

Level 3
AR

Level 2
AR

Level 1
AR

⋮

⋮

Displays

High-level idea:
– Keep the transitive effects of

multiple access-link traversals
– Uses a side-table with this info

Tradeoffs vs. Access Links?
– Faster to call far up the hierarchy
– Takes extra space
• At most the maximum nesting

depth in the entire program
• Therefore, the display can be an

array (a stack no bigger than a
known maximum size)

25

Save Display

Save Display

Save Display

Displays (Example)

26

program Main;
var x: integer;

procedure P;
write(x);

procedure Q;
var y: integer = x;

procedure R;
x = x + 1;
y = y + x;
if y<6 call R;
call P

call R;
call P;
if x < 5 call Q;

x = 2;
call P;
call Q;

Level (1)

Level (2)

Level (2)

Level (3)

With access links With a display

P

Main
x:

P

Main
x:

Displays (Example)

27

program Main;
var x: integer;

procedure P;
write(x);

procedure Q;
var y: integer = x;

procedure R;
x = x + 1;
y = y + x;
if y<6 call R;
call P

call R;
call P;
if x < 5 call Q;

x = 2;
call P;
call Q;

Level (1)

Level (2)

Level (2)

Level (3)

With access links With a display

P

R

Q

Main

y:

x:

P

R

Q

Main

y:

x:

Displays (Example)

28

program Main;
var x: integer;

procedure P;
write(x);

procedure Q;
var y: integer = x;

procedure R;
x = x + 1;
y = y + x;
if y<6 call R;
call P

call R;
call P;
if x < 5 call Q;

x = 2;
call P;
call Q;

Level (1)

Level (2)

Level (2)

Level (3)

Main

Before R calls P

R

Q

Main

y:

x:

saveDisplay:

With a display

P

R

Q y:

x:

Questions about Static Scope?

29

Example: Dynamic Non-Local Scope
function main(){

int a = 0;
fun1();
fun2();

}
function fun2(){

int a = 27;
fun1();

}

function fun1(){
a = a + 1;

}

30

Dynamic Scope Storage

Key point
– We don’t know which non-local variable we are

referring to

Two ways to set up dynamic access
1. Deep Access – somewhat similar to Access

links
2. Shallow Access – somewhat similar to displays

31

Deep Access

If the variable isn’t local
– Follow the control link to the caller’s AR
– Check to see if it defines the variable
– If not, follow the next control link down the stack

Note that we somehow need to know if a
variable is defined with that name in an AR
– Usually means we’ll have to associate a name with

a stack slot

32

Shallow Access

Keep a table with an entry for each variable
declaration
– Compile a direct reference to that entry
– At a function call on entry to function F
• F saves, in its own AR, the current values of all of the

variables that F declares itself
• F restores those values when it finishes

33

Roadmap

We learned about variable access
– Local vs. global variables
– Static vs. dynamic scopes

Next time
– We’ll start getting into the details of MIPS
– Code generation

34

