
Code Generation

1

Roadmap

Last time, we learned about variable access
– Local vs. global variables
– Static vs. dynamic scopes

Today
– We’ll start getting into the details of MIPS
– Code generation

2

Roadmap

3

Scanner

Parser
Tokens

Static-Semantic
Analysis

Parse Tree
AST

IR Codegen

Optimizer

MC Codegen

Scanner

Parser

Annotated AST
Symbol Table

Backend

The Compiler Back End

Unlike in the front end, we can skip phases
without sacrificing correctness
Actually have a couple of options:
– What phases do we do?
– How do we order our phases?

4

Outline

Possible compiler designs
– Generate IR code or machine-code code directly?
– Generate during SDT or as another phase?

5

Frontend

IR
Codegen

Optimizer

MC
Codegen

MC
Codegen

or

How Many Passes Do We Want?

Fewer passes
– Faster compiling
– Less storage required
– May increase burden on programmer

More passes
– Heavyweight
– Can lead to better modularity

6

To Generate IR Code or Not?

Generate Intermediate Representation:
– More amenable to optimization
– More flexible output options
– Can reduce the complexity of code generation

Go straight to machine code:
– Much faster to generate code (skip 1 pass, at least)
– Less engineering in the compiler

7

What Might the IR Do?

Provide illusion of infinitely many registers
“Flatten out” expressions
– Does not allow building up complex expressions

3AC (Three-Address Code)
– Instruction set for a fictional machine
– Every operator has at most 3 operands

8

3AC Example

9

if (x + y * z > x * y + z)
a = 0;

b = 2;

tmp1 = y * z
tmp2 = x+tmp1
tmp3 = x*y
tmp4 = tmp3+z
if (tmp2 <= tmp4) goto L

a = 0
L: b = 2

3AC Instruction Set
Assignment
– x = y op z
– x = op y
– x = y
Jumps
– if (x op y) goto L
Indirection
– x = y[z]
– y[z] = x
– x = &y
– x = *y
– *y = x

Call/Return
– param x,k
– retval x
– call p
– enter p
– leave p
– return
– retrieve x
Type Conversion
– x = AtoB y
Labeling
– label L
Basic Math
– times, plus, etc.

10

3AC Representation

11

Each instruction represented using a structure
called a “quad”
– Space for the operator
– Space for each operand
– Pointer to auxilary info
• Label, succesor quad, etc.

Chain of quads sent to an architecture-specific
machine-code-generation phase

b: Skip Building a Separate IR

Generate code (of a very simple kind) by
traversing the AST
– Add codeGen methods to the AST nodes
– Directly emit corresponding code into file

13

Correctness/Efficiency Tradeoffs

Two high-level goals
1. Generate correct code
2. Generate efficient code

It can be difficult to achieve both of these at the
same time
– Why?

14

A Simplified Strategy

Make sure we don’t have to worry about running
out of registers
– For each operation (built-in, like plus, or user-defined,

like a call on a user-define function), we’ll put all
arguments on the stack

– We’ll make liberal use of the stack for computation
– We’ll make use of only two registers
• Only use $t1 and $t0 for computation

15

The CodeGen Pass

We’ll now go through a high-level idea of how
the topmost nodes in the program are generated

16

The Responsibility of Different Nodes

Many nodes simply “direct traffic”
– ProgramNode.codeGen
• call codeGen on the child

– List-node types
• call codeGen on each element in turn

– DeclNode
• StructDeclNode – no code to generate!
• FnDeclNode – generate function body
• VarDeclNode – varies on context! Globals vs. locals

17

Generating a Global-Variable Declaration

Source code:
int name;
struct MyStruct instance;

In varDeclNode
Generate:

.data

.align 2 #Align on word boundaries
_name: .space N #(N is the size of variable)

18

Generating a Global-Variable Declaration

.data

.align 2 #Align on word boundaries

_name: .space N #(N is the size of variable)

How do we know the size?
– For scalars, well-defined: int, bool (4 bytes)
– structs, 4 * size of the struct

We can calculate this during name analysis

19

Generating Function Definitions

Need to generate
– Preamble
• Sort of like the function signature

– Prologue
• Set up the function’s AR

– Body
• Code to perform the computation

– Epilogue
• Tear down the function’s AR

20

MIPS Crash Course

Registers

21

Also $LO and $HI, special-purpose
registers used by multiplication and

division instructions

Program Structure

Data
– Label: .data
– Variable names & size; heap storage

Code
– Label: .text
– Program instructions
– Starting location: main
– Ending location

22

For the main function, generate:
.text
.globl main

main:

For all other functions, generate:
.text

_<functionName>:

Data

name: type value(s)
– E.g.
• v1: .word 10
• a1: .byte ‘a’ , ’b’
• a2: .space 40
– 40 here is allocated space – no value is initialized

23

Memory Instructions

lw register_destination, RAM_source
– copy word (4 bytes) at source RAM location to destination

register.

lb register_destination, RAM_source
– copy byte at source RAM location to low-order byte of

destination register

li register_destination, value
– load immediate value into destination register

24

Memory Instructions

sw register_source, RAM_dest
– store word in source register into RAM destination

sb register_source, RAM_dest
– store byte in source register into RAM destination

25

Arithmetic Instructions

26

Stores result in $LO

Stores result in $LO and
Remainder in $HI
Move from $HI to $t0
Move from $LO to $t1

Control Instructions

27

Jump to sub_label, and store the return address in $ra

Unconditional branch to target
• Specified as a relative transfer of control

to target (i.e., target = IP + delta)
• IP implicit; delta is a 16-bit immediate

operand (a signed 16-bit number)

Unconditional jump to target
• Specified as an absolute

transfer of control to target
• Target limited to 26 bits

Indirect jump
• Specified as an absolute transfer

of control to address in $t3

TODO

MIPS tutorial
– https://minnie.tuhs.org/CompArch/Resources/mips_

quick_tutorial.html

28

https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html

Roadmap

Today
– Talked about compiler back-end design points
– Decided to go directly from AST to machine code for

our compiler

Next time:
– Run through what the actual codegen pass looks like

29

