
Code Generation
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Roadmap

Last time, we learned about variable access
– Local vs. global variables
– Static vs. dynamic scopes

Today
– We’ll start getting into the details of MIPS
– Code generation
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Roadmap
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The Compiler Back End

Unlike in the front end, we can skip phases 
without sacrificing correctness
Actually have a couple of options:
– What phases do we do?
– How do we order our phases?
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Outline

Possible compiler designs
– Generate IR code or machine-code code directly?
– Generate during SDT or as another phase?
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How Many Passes Do We Want?

Fewer passes
– Faster compiling
– Less storage required
– May increase burden on programmer

More passes
– Heavyweight
– Can lead to better modularity
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To Generate IR Code or Not?

Generate Intermediate Representation:
– More amenable to optimization
– More flexible output options
– Can reduce the complexity of code generation

Go straight to machine code:
– Much faster to generate code (skip 1 pass, at least)
– Less engineering in the compiler
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What Might the IR Do?

Provide illusion of infinitely many registers
“Flatten out” expressions
– Does not allow building up complex expressions

3AC (Three-Address Code)
– Instruction set for a fictional machine
– Every operator has at most 3 operands
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3AC Example
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if  (x + y * z > x * y + z)
a = 0;

b = 2;

tmp1 = y * z
tmp2 = x+tmp1
tmp3 = x*y
tmp4 = tmp3+z
if (tmp2 <= tmp4) goto L

a = 0
L: b = 2



3AC Instruction Set
Assignment
– x = y op z
– x = op y
– x = y
Jumps
– if ( x op y) goto L
Indirection
– x = y[z]
– y[z] = x
– x = &y
– x = *y
– *y = x

Call/Return
– param x,k
– retval x
– call p
– enter p
– leave p
– return 
– retrieve x
Type Conversion
– x = AtoB y
Labeling
– label L
Basic Math
– times, plus, etc.
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3AC Representation
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Each instruction represented using a structure 
called a “quad”
– Space for the operator
– Space for each operand
– Pointer to auxilary info
• Label, succesor quad, etc.

Chain of quads sent to an architecture-specific 
machine-code-generation phase



b: Skip Building a Separate IR

Generate code (of a very simple kind) by 
traversing the AST
– Add codeGen methods to the AST nodes
– Directly emit corresponding code into file
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Correctness/Efficiency Tradeoffs

Two high-level goals
1. Generate correct code
2. Generate efficient code

It can be difficult to achieve both of these at the 
same time
– Why?
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A Simplified Strategy

Make sure we don’t have to worry about running 
out of registers
– For each operation (built-in, like plus, or user-defined, 

like a call on a user-define function), we’ll put all 
arguments on the stack

– We’ll make liberal use of the stack for computation
– We’ll make use of only two registers
• Only use $t1 and $t0 for computation
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The CodeGen Pass

We’ll now go through a high-level idea of how 
the topmost nodes in the program are generated
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The Responsibility of Different Nodes

Many nodes simply “direct traffic”
– ProgramNode.codeGen
• call codeGen on the child

– List-node types
• call codeGen on each element in turn

– DeclNode
• StructDeclNode – no code to generate!
• FnDeclNode – generate function body
• VarDeclNode – varies on context! Globals vs. locals
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Generating a Global-Variable Declaration

Source code:
int name;
struct MyStruct instance;

In varDeclNode
Generate:

.data

.align 2  #Align on word boundaries
_name: .space N  #(N is the size of variable)
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Generating a Global-Variable Declaration

.data

.align 2  #Align on word boundaries

_name: .space N  #(N is the size of variable)

How do we know the size?
– For scalars, well-defined: int, bool (4 bytes)
– structs, 4 * size of the struct

We can calculate this during name analysis

19



Generating Function Definitions

Need to generate
– Preamble 
• Sort of like the function signature

– Prologue
• Set up the function’s AR

– Body
• Code to perform the computation

– Epilogue
• Tear down the function’s AR
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MIPS Crash Course

Registers
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Also $LO and $HI, special-purpose 
registers used by multiplication and 

division instructions



Program Structure

Data
– Label: .data
– Variable names & size; heap storage

Code
– Label: .text
– Program instructions
– Starting location: main
– Ending location
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For the main function, generate:
.text
.globl main

main:

For all other functions, generate:
.text

_<functionName>: 



Data

name: type value(s)
– E.g.
• v1:    .word 10
• a1:    .byte    ‘a’ , ’b’
• a2:    .space   40
– 40 here is allocated space – no value is initialized
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Memory Instructions

lw register_destination, RAM_source
– copy word (4 bytes) at source RAM location to destination 

register.

lb register_destination, RAM_source
– copy byte at source RAM location to low-order byte of 

destination register

li register_destination, value
– load immediate value into destination register
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Memory Instructions

sw register_source, RAM_dest
– store word in source register into RAM destination

sb register_source, RAM_dest
– store byte in source register into RAM destination
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Arithmetic Instructions
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Stores result in $LO

Stores result in $LO and 
Remainder in $HI
Move from $HI to $t0
Move from $LO to $t1



Control Instructions
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Jump to sub_label, and store the return address in $ra

Unconditional branch to target
• Specified as a relative transfer of control 

to target (i.e., target = IP + delta)
• IP implicit; delta is a 16-bit immediate 

operand (a signed 16-bit number)

Unconditional jump to target
• Specified as an absolute

transfer of control to target
• Target limited to 26 bits

Indirect jump
• Specified as an absolute transfer 

of control to address in $t3



TODO 

MIPS tutorial
– https://minnie.tuhs.org/CompArch/Resources/mips_

quick_tutorial.html

28

https://minnie.tuhs.org/CompArch/Resources/mips_quick_tutorial.html


Roadmap

Today
– Talked about compiler back-end design points
– Decided to go directly from AST to machine code for 

our compiler

Next time:
– Run through what the actual codegen pass looks like
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