Finite-State Machines (FSMs)

CS 536

Some announcements P1 TA office hours

A compiler is a

recognizer of language *S* (Source) a translator from *S* to *T* (Target) a program in language *H* (Host)

For example, gcc: S is C, T is x86, H is C

Why do we need a compiler?

- Processors can execute only binaries (machine-code/assembly programs)
- Writing assembly programs will make you lose your mind
- Write programs in a nice(ish) high-level language like C; compile to binaries

front end = understand source code S

IR = intermediate representation

back end = map IR to T

Source **Program** Sequence of characters lexical analyzer (scanner) Sequence of tokens syntax analyzer P1 (parser) Abstract-syntax tree (AST) **Symbol** semantic P4, P5 analyzer table Augmented, annotated AST intermediate front end code generator Intermediate code back end optimizer Optimized intermediate code code P6 generator Assembly or machine code object program

Special linkage between scanner and parser in most compilers

Conceptual organization

The scanner

Translates sequence of chars into a sequence of tokens (ignoring whitespace)

Each time the scanner is called it should:

- find the longest prefix (lexeme) of the remaining input that corresponds to a token
- return that token

How to create a scanner?

- For every possible lexeme that can occur in source program, return corresponding token
- Inefficient
- Error-prone

Scanner generator

- Generates a scanner
- Inputs:
 - one regular expression for each token
- one regular expressions for each item to ignore (comments, whitespace, etc.)
- Output: scanner program
- How does a scanner generator work?
 - Finite-state machines (FSMs)

FSMs: Finite State Machines

(A.k.a. finite automata, finite-state automata, etc.)

Input: string (sequence of chars)

Output: accept / reject

i.e., input is legal in language

Language defined by an FSM is the set of strings accepted by the FSM

Example 1

Language: single line comments with //

- Nodes are states
- Edges are transitions
- Start state has an arrow (only one start state)
- Final states are double circles (one or more)

Example 1

Language: single line comments with //

- 1. "// this is a comment."
- 2. "/ / this is not."
- 3. "// \n"
- 4. "Not // a comment"

Example 2

Language: Integer literals with an optional + or – (token: int-lit)

FSMs, formally

finite set of

L(M) = set of integer literals

the alphabet (characters)

start state $q \in Q$

transition function

$$\delta: Q \times \Sigma \rightarrow Q$$

	·+'	í _ 1	digit
1	2		

states

FSM example, formally

$$M \equiv (Q, \Sigma, \delta, q, F)$$

What is L(M)?

$$L(M) = \{\varepsilon, ab, abab, ababab, abababab, \}$$

$$A = \{a, b, c\}$$
 $A = \{a, b, c\}$
 $A = \{a, b, c$

$$\delta = s_0, a \rightarrow s_1$$

 $s_1, b \rightarrow s_0$

anything else, machine is stuck

Coding an FSM

```
curr_state = start_state
done = false
while (!done)
ch = nextChar()
next = table[curr_state][ch]
if (next == stuck || ch == E0F)
  done = true
else
  curr_state = next
return final_states.contains(curr_state) &&
       next!=stuck
```

FSM types: DFA & NFA

Deterministic

no state has >1 outgoing edge with same label

Nondeterministic

states may have multiple outgoing edges with same label edges may be labelled with special symbol ε (empty string)

ε-transitions can happen without reading input

NFA Example

Language: Integer literals with an optional + or – (token: int-lit)

A string is accepted by an NFA if *there exists* a sequence of transitions leading to a final state

Why NFA?

Simpler and more intuitive than DFA Language: sequence of 0s and 1s, ending with 00

Extra example

A C/C++ identifier is a sequence of one or more letters, digits, or underscores. It cannot start with a digit.

Extra Example - Part 1

A C/C++ identifier is a sequence of one or more letters, digits, or underscores. It cannot start with a digit.

Extra example

A C/C++ identifier is a sequence of one or more letters, digits, or underscores. It cannot start with a digit.

What if you wanted to add the restriction that it can't end with an underscore?

Extra Example - Part 2

What if you wanted to add the restriction that it can't end with an underscore?

Recap

The scanner reads a stream of characters and tokenizes it (i.e., finds tokens)

Tokens are defined using regular expressions, scanners are implemented using FSMs

FSMs can be non-deterministic

Next time: understand connection between DFA and NFA, regular languages and regular expressions

Play with automata!

automatatutor.com

Loris D'Antoni

