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Roadmap

Last	time:
– CodeGen for	the	remainder	of	AST	nodes
– Introduced	the	control-flow	graph

This	time:
– Optimization	Overview
– Discuss	a	couple	of	optimizations
• Review	CFGs
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OPTIMIZATION	OVERVIEW



Optimization	Goals

What	are	we	trying	to	
accomplish?
– Traditionally,	speed
– Lower	power
– Smaller	footprint
– Bug	resilience?

The	fewer	instructions	the	
better
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Optimization	Guarantees

Informally:	Don’t	change	the	program’s	output
– We	may	relax	this	to	“Don’t	change	the	program’s	
output	on	good	input”

– This	can	actually	be	really	hard	to	do
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Optimization	Difficulties

There’s	no	perfect	way	to	check	equivalence	of	
two	arbitrary	programs
– If	there	was	we	could	use	it	to	solve	the	halting	
problem

– We’ll	attempt	to	perform	behavior-preserving	
transformations
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Program	Analysis

A	perspective	on	optimization
– Recognize	some	behavior	in	a	program
– Replace	it	with	a	“better”	version

Constantly	plagued	by	the	halting	problem
– We	can	only	use	approximate	algorithms	to	recognize	
behavior
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Program	Behavior

Two	properties	of	program-analysis/behavior-
detection	algorithms:
– Soundness:	All	results	that	are	output	are	valid
– Completeness:	All	results	that	are	valid	are	output

Analysis	algorithms	with	these	properties	are	
necessarily	mutually	exclusive
– If	an	algorithm	was	sound	and	complete,	it	would	either:

1. Solve	the	halting	program
2. Detect	a	trivial	property
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Back	to	Optimization

We	want	our	optimizations	to	be	sound	
transformations
– In	other	words,	they	are	always	valid,	but	will	miss	
some	opportunities	for	applying	a	transformation

9



You	May	Be	Thinking	…

I’m	sad	because	this	makes	optimization	seem	
pretty	limited
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Cheer	up!	Our	optimization	techniques	can	
detect	many	practical instances	of	the	behavior



Now	You	May	Be	Thinking	…

I’m	happy	because	I’m	guaranteed	that	my	
optimization	won’t	do	any	harm
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Settle	down!	Our	optimization	still	needs	to	be	
efficient



Or	Maybe	You	Are	Thinking	…

I	don’t	know	how	to	feel	about	any	of	this	
without	understanding	how	often	it	comes	up
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What	Can	We	Do?

We	can	pick	some	low-hanging	fruit
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EXAMPLE	OPTIMIZATIONS



Peephole	Optimization

A	naïve	code	generator	tends	to	emit	some	silly	
code
– Errs	on	the	side	of	correctness	over	efficiency

Use	pattern-matching	to	find	the	most	obvious	
problems
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CFG	for	Program	Analysis

Consider	the	following	sequence	of	instructions:

We’d	like	to	remove	this	sequence…
– Is	it	sound	to	do	so?
– Maybe	not!
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sw $t0 0($sp)
subu $sp $sp 4
lw $t0 4($sp)
addu $sp $sp 4

push

pop

sw $t0 -12($sp)



Review:	The	CFG

Program	as	a	flowchart
Nodes	are	“basic	blocks”
Edges	are	control	transfers
– Fall-through
– Jump
– Maybe function	calls
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Entry: li  $t0 3
lw $t1 0($sp)
beq $t0 $t1 Exit

True: sw $t2 val
nop

Exit: li  $v0 10
syscall

fallthrough

fallthrough

jump



CFG	for	Optimization

We	can	limit	our	peephole	optimizations	to	intra-
block analysis
– This	approach	ensures,	by	definition,	that	no	jumps	
will	intrude	on	the	sequence

We	will	assume	for	the	rest	of	our	peephole	
optimizations	that	instruction	sequences	are	in	
one	block
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Peephole	Examples

Called	“peephole”	
optimization	because	we	
are	conceptually	sliding	a	
small	window	over	the	
code,	looking	for	small	
patterns
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Outline

Four	different	
optimizations
– Peephole	optimization
– Loop-Invariant	Code	Motion
– For-loop	strength	reduction
– Copy	propagation
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Peephole	Optimization	1

Remove	no-op	sequences
– Push	followed	by	pop

– Add/sub	0

– Mul/div	1
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sw $t0 0($sp)
subu $sp $sp 4
lw $t0 4($sp)
addu $sp $sp 4

push

pop

addu $t1 $t1 0

mul $t2 $t2 1



Peephole	Optimization	2

Simplify	sequences
– Ex.	Store	then	load
– Strength	reduction
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sw $t0 -8($fp)
lw $t0 -8($fp)

Useless
instruction

mul $t1 $t1 2

add  $t2 $t2 1
shift-left	$t1

inc $t2



Peephole	Optimization	3

Jump	to	next	instruction

23

j Lab1
Lab1  …

Remove	this	
instruction



Loop	Invariant	Code	Motion	(LICM)

Don’t	duplicate	effort	in	a	loop!
Goal
– Pull	code	out	of	the	loop
– “Loop	hoisting”

Important	due	to	“hot	spots”
– Most	execution	time	due	to	small	regions	of	deeply-
nested	loops
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LICM	Example
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for (i=0; i<100; i++) {
for (j=0; j<100; j++) {

for (k=0; k<100; k++) {
A[i][j][k] = i*j*k

}
}

} Sub-expression	
invariant	with	respect	to
the	innermost	loop

for (i=0; i<100; i++) {
for (j=0; j<100; j++) {

temp = i * j
for (k=0; k<100; k++) {

A[i][j][k] = temp *k
}

}
}



LICM	Example
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for (i=0; i<100; i++) {
for (j=0; j<100; j++) {

temp = i * j
for (k=0; k<100; k++) {

A[i][j][k] = temp *k
}

}
}

Suppose	A	is	on	the	stack.
To	compute	the	address	of	A[i][j][k]:
FP	- <offset	of	&A[0][0][0]>	+	(i*10000*4)	+	(j*100*4)	+	(k*4)

tmp0 = FP - offsetA
for (i=0; i<100; i++){  

tmp1 = tmp0 + i*40000  
for (j=0; j<100; j++){

tmp2 = tmp1 + j*400
temp = i*j      
for (k=0; k<100; k++){

T0 = temp * k
T1 = tmp2 + k*4
store T0, 0(T1)

}  
}

}



LICM:	When	Should	We	Do	It?

In	the	previous	example,	
showed	LICM	on	source	
code
At	IR	level,	more	candidate	
operations
Assembly	might	be	too
low-level
– Need	a	guarantee	that	the	
loop	is	natural
• No	jumps	into	the	loop
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tmp0 = FP - offsetA
for (i=0; i<100; i++){  

tmp1 = tmp0 + i*40000  
for (j=0; j<100; j++){

tmp2 = tmp1 + j*400
temp = i*j      
for (k=0; k<100; k++){

T0 = temp * k
T1 = tmp2 + k*4       
store T0, 0(T1)

}  
}

}



LICM:	How	Should	We	Do	It?

Two	factors,	which	really	apply	to	all	
optimizations	in	general:
– Safety
• Is	the	transformation	semantics-preserving?
– Make	sure	the	operation	is	truly	loop-invariant
– Make	sure	ordering	of	events	is	preserved

– Profitability
• Is	there	any	advantage	to	moving	the	instruction?
– May	end	up	moving	instructions	that	are	never	executed
– May	end	up	performing	more	intermediate	computation	than	

necessary
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Other	Loop	Optimizations

Loop	unrolling
– For	a	loop	with	a	small,	constant	number	of	iterations,	
we	may	actually	save	time	by	just	placing	every	copy	
of	the	loop	body	in	sequence	(no	jumps)

– May	also	consider	doing	multiple	iterations	within	the	
body

Loop	fusion
– Merge	two	sequential,	independent	loops	into	a	
single	loop	body	(fewer	jumps)
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Jump	Optimizations

Jump	around	jump

Jump	to	jump
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beq $t0,$t1,Lab1
j    Lab2

Lab1:  …
…

Lab2:  … 

j  Lab1
…

Lab1:  j  Lab2
…

Lab2:  … 

j  Lab2
…

Lab1:  j  Lab2
…

Lab2:  … 

bne $t0,$t1,Lab2
Lab1:  …

…
Lab2:  … 

Disclaimer:	Require	some	extra	conditions



Intraprocedural	Analysis

The	past	two	optimizations	
had	some	caveats
– There	may	be	a	jump	into	
your	eliminated	code

We’d	like	to	introduce	a	
control-flow	concept	
beyond	basic	blocks:
– Guarantee	that	block1	must	
be	executed	to	get	to	block2
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beq $t0	$t1	Lab1

j	Lab2

Lab1:	…

…

Lab2:	…
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Dominators	and	Post-Dominators

We	say	that	block	A	
dominates	block	B	if	A	
must be	executed	before	B	
is	executed
We	say	that	block	A	
postdominates block	B	if	A	
must be	executed	after	B
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Block	3Block	2

Block	4

Block	1

Control-Flow	Graph



Semantics	Preserving

Do	we	really	need	semantics-preserving	
optimizations?
Are	there	examples	where	we	don’t?
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Summary

Today
• Saw	the	basics	of	optimizations
• Soundness	vs.	completeness
• Peephole	and	simple	optimizations
Next	time
• More	optimizations
• Basics	of	static	analysis
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