
Optimization

1

Roadmap

Last	time:
– CodeGen for	the	remainder	of	AST	nodes
– Introduced	the	control-flow	graph

This	time:
– Optimization	Overview
– Discuss	a	couple	of	optimizations
• Review	CFGs

2

3

OPTIMIZATION	OVERVIEW

Optimization	Goals

What	are	we	trying	to	
accomplish?
– Traditionally,	speed
– Lower	power
– Smaller	footprint
– Bug	resilience?

The	fewer	instructions	the	
better

4

Optimization	Guarantees

Informally:	Don’t	change	the	program’s	output
– We	may	relax	this	to	“Don’t	change	the	program’s	
output	on	good	input”

– This	can	actually	be	really	hard	to	do

5

Optimization	Difficulties

There’s	no	perfect	way	to	check	equivalence	of	
two	arbitrary	programs
– If	there	was	we	could	use	it	to	solve	the	halting	
problem

– We’ll	attempt	to	perform	behavior-preserving	
transformations

6

Program	Analysis

A	perspective	on	optimization
– Recognize	some	behavior	in	a	program
– Replace	it	with	a	“better”	version

Constantly	plagued	by	the	halting	problem
– We	can	only	use	approximate	algorithms	to	recognize	
behavior

7

Program	Behavior

Two	properties	of	program-analysis/behavior-
detection	algorithms:
– Soundness:	All	results	that	are	output	are	valid
– Completeness:	All	results	that	are	valid	are	output

Analysis	algorithms	with	these	properties	are	
necessarily	mutually	exclusive
– If	an	algorithm	was	sound	and	complete,	it	would	either:

1. Solve	the	halting	program
2. Detect	a	trivial	property

8

Back	to	Optimization

We	want	our	optimizations	to	be	sound	
transformations
– In	other	words,	they	are	always	valid,	but	will	miss	
some	opportunities	for	applying	a	transformation

9

You	May	Be	Thinking	…

I’m	sad	because	this	makes	optimization	seem	
pretty	limited

10

Cheer	up!	Our	optimization	techniques	can	
detect	many	practical instances	of	the	behavior

Now	You	May	Be	Thinking	…

I’m	happy	because	I’m	guaranteed	that	my	
optimization	won’t	do	any	harm

11

Settle	down!	Our	optimization	still	needs	to	be	
efficient

Or	Maybe	You	Are	Thinking	…

I	don’t	know	how	to	feel	about	any	of	this	
without	understanding	how	often	it	comes	up

12

What	Can	We	Do?

We	can	pick	some	low-hanging	fruit

13

14

EXAMPLE	OPTIMIZATIONS

Peephole	Optimization

A	naïve	code	generator	tends	to	emit	some	silly	
code
– Errs	on	the	side	of	correctness	over	efficiency

Use	pattern-matching	to	find	the	most	obvious	
problems

15

CFG	for	Program	Analysis

Consider	the	following	sequence	of	instructions:

We’d	like	to	remove	this	sequence…
– Is	it	sound	to	do	so?
– Maybe	not!

16

sw $t0 0($sp)
subu $sp $sp 4
lw $t0 4($sp)
addu $sp $sp 4

push

pop

sw $t0 -12($sp)

Review:	The	CFG

Program	as	a	flowchart
Nodes	are	“basic	blocks”
Edges	are	control	transfers
– Fall-through
– Jump
– Maybe function	calls

17

Entry: li $t0 3
lw $t1 0($sp)
beq $t0 $t1 Exit

True: sw $t2 val
nop

Exit: li $v0 10
syscall

fallthrough

fallthrough

jump

CFG	for	Optimization

We	can	limit	our	peephole	optimizations	to	intra-
block analysis
– This	approach	ensures,	by	definition,	that	no	jumps	
will	intrude	on	the	sequence

We	will	assume	for	the	rest	of	our	peephole	
optimizations	that	instruction	sequences	are	in	
one	block

18

Peephole	Examples

Called	“peephole”	
optimization	because	we	
are	conceptually	sliding	a	
small	window	over	the	
code,	looking	for	small	
patterns

19

Outline

Four	different	
optimizations
– Peephole	optimization
– Loop-Invariant	Code	Motion
– For-loop	strength	reduction
– Copy	propagation

20

Peephole	Optimization	1

Remove	no-op	sequences
– Push	followed	by	pop

– Add/sub	0

– Mul/div	1

21

sw $t0 0($sp)
subu $sp $sp 4
lw $t0 4($sp)
addu $sp $sp 4

push

pop

addu $t1 $t1 0

mul $t2 $t2 1

Peephole	Optimization	2

Simplify	sequences
– Ex.	Store	then	load
– Strength	reduction

22

sw $t0 -8($fp)
lw $t0 -8($fp)

Useless
instruction

mul $t1 $t1 2

add $t2 $t2 1
shift-left	$t1

inc $t2

Peephole	Optimization	3

Jump	to	next	instruction

23

j Lab1
Lab1 …

Remove	this	
instruction

Loop	Invariant	Code	Motion	(LICM)

Don’t	duplicate	effort	in	a	loop!
Goal
– Pull	code	out	of	the	loop
– “Loop	hoisting”

Important	due	to	“hot	spots”
– Most	execution	time	due	to	small	regions	of	deeply-
nested	loops

24

LICM	Example

25

for (i=0; i<100; i++) {
for (j=0; j<100; j++) {

for (k=0; k<100; k++) {
A[i][j][k] = i*j*k

}
}

} Sub-expression	
invariant	with	respect	to
the	innermost	loop

for (i=0; i<100; i++) {
for (j=0; j<100; j++) {

temp = i * j
for (k=0; k<100; k++) {

A[i][j][k] = temp *k
}

}
}

LICM	Example

26

for (i=0; i<100; i++) {
for (j=0; j<100; j++) {

temp = i * j
for (k=0; k<100; k++) {

A[i][j][k] = temp *k
}

}
}

Suppose	A	is	on	the	stack.
To	compute	the	address	of	A[i][j][k]:
FP	- <offset	of	&A[0][0][0]>	+	(i*10000*4)	+	(j*100*4)	+	(k*4)

tmp0 = FP - offsetA
for (i=0; i<100; i++){

tmp1 = tmp0 + i*40000
for (j=0; j<100; j++){

tmp2 = tmp1 + j*400
temp = i*j
for (k=0; k<100; k++){

T0 = temp * k
T1 = tmp2 + k*4
store T0, 0(T1)

}
}

}

LICM:	When	Should	We	Do	It?

In	the	previous	example,	
showed	LICM	on	source	
code
At	IR	level,	more	candidate	
operations
Assembly	might	be	too
low-level
– Need	a	guarantee	that	the	
loop	is	natural
• No	jumps	into	the	loop

27

tmp0 = FP - offsetA
for (i=0; i<100; i++){

tmp1 = tmp0 + i*40000
for (j=0; j<100; j++){

tmp2 = tmp1 + j*400
temp = i*j
for (k=0; k<100; k++){

T0 = temp * k
T1 = tmp2 + k*4
store T0, 0(T1)

}
}

}

LICM:	How	Should	We	Do	It?

Two	factors,	which	really	apply	to	all	
optimizations	in	general:
– Safety
• Is	the	transformation	semantics-preserving?
– Make	sure	the	operation	is	truly	loop-invariant
– Make	sure	ordering	of	events	is	preserved

– Profitability
• Is	there	any	advantage	to	moving	the	instruction?
– May	end	up	moving	instructions	that	are	never	executed
– May	end	up	performing	more	intermediate	computation	than	

necessary

28

Other	Loop	Optimizations

Loop	unrolling
– For	a	loop	with	a	small,	constant	number	of	iterations,	
we	may	actually	save	time	by	just	placing	every	copy	
of	the	loop	body	in	sequence	(no	jumps)

– May	also	consider	doing	multiple	iterations	within	the	
body

Loop	fusion
– Merge	two	sequential,	independent	loops	into	a	
single	loop	body	(fewer	jumps)

29

Jump	Optimizations

Jump	around	jump

Jump	to	jump

30

beq $t0,$t1,Lab1
j Lab2

Lab1: …
…

Lab2: …

j Lab1
…

Lab1: j Lab2
…

Lab2: …

j Lab2
…

Lab1: j Lab2
…

Lab2: …

bne $t0,$t1,Lab2
Lab1: …

…
Lab2: …

Disclaimer:	Require	some	extra	conditions

Intraprocedural	Analysis

The	past	two	optimizations	
had	some	caveats
– There	may	be	a	jump	into	
your	eliminated	code

We’d	like	to	introduce	a	
control-flow	concept	
beyond	basic	blocks:
– Guarantee	that	block1	must	
be	executed	to	get	to	block2

31

beq $t0	$t1	Lab1

j	Lab2

Lab1:	…

…

Lab2:	…

32

Dominators	and	Post-Dominators

We	say	that	block	A	
dominates	block	B	if	A	
must be	executed	before	B	
is	executed
We	say	that	block	A	
postdominates block	B	if	A	
must be	executed	after	B

33

Block	3Block	2

Block	4

Block	1

Control-Flow	Graph

Semantics	Preserving

Do	we	really	need	semantics-preserving	
optimizations?
Are	there	examples	where	we	don’t?

34

Summary

Today
• Saw	the	basics	of	optimizations
• Soundness	vs.	completeness
• Peephole	and	simple	optimizations
Next	time
• More	optimizations
• Basics	of	static	analysis

35

