Static Single-Assignment Form
and
Dataflow Analysis

Roadmap

Last time:
— Optimization overview

e Soundness and completeness
— Simple optimizations

* Peephole

e LICM

This time:
— Data structures (and data) used to determine when it is
safe (i.e., sound) to perform an optimizing transformation

* Dominators
e SSA form
e Dataflow analysis

DOMINATOR REVIEW

Dominator terms

Domination (A dominates B):

— to reach block B, you must have gone through block A
Strict Domination (A strictly dominates B)

— A dominates B and Ais not B

Immediate Domination (A immediately

dominates B)

— A immediately dominates B if A dominates B and has
no intervening dominators

Dominator Example

Dominance Frontier

Definition: For a block X,
the set of nodes Y such
that X dominates an
immediate predecessor of
Y but does not strictly
dominate Y

STATIC SINGLE ASSIGNMENT FORM
(SSA FORM)

Goal of SSA Form

Build an intermediate representation of the
program in which each variable is assignhed a
value in at most 1 program point:

X

x=1 X=y x=1 1=0;
z=2 z=Yy X=2 while(i<10){
y=3 W=z y=3 k=i+1;

that assigns to k
Dynamically: k can be assigned to multiple times

}
[Statically: There is at most one assignment statement

Conversion

We make new variables to carry over the effect
of the original program

el

X1=1
Xy = X1
Y1=X3

< X X
n mnn
X X B

Benefits of SSA Form

There are some obvious advantages to this format for
program analysis

— Easy to see the live range of a given variable x assigned to in
statement s
 The region from “x = ...;” until the last use(s) of x before x is redefined
* In SSA form, from “x, = ...;” to all uses of x;, e.g., “... = (..., x;, ...);”

— Easy to see when an assignment is useless

* We have “x; = ...;” and there are no uses of x; in any expression or
assignment RHS

oy

e “x;=..; is a useless assignment”
e “x;=..;) is dead code”

In other words, some
least easily rec

rmation is pre-computed, or at

Warning 1: Dead code = useless assignments + unreachable code]

10

At “if (b <4)”, b is only reached by “b = 2;”
Therefore, the else branch is unreachable I—I e ‘ pS
(dead), and can be removed

Optim

Dead-Code Eli on
TITC~a——7./% int a; = 9;
~int b —2; int by = 2;
g T2 if (g1 < 12){
He S a, = 1;
FeTsT } else {
o AN L if (b < 4){
B — dsz = 2;
} —=tse—{— } else {
S B a; = 3;
o }
=+ ds = ¢(a3r ag) ;
. S }
return 2; ag ¢ (a,, as);

return 2;

Optimizations Where SSA Helps

Constant-propagation/constant-folding

12

What About Conditionals?

!

x=5
x=x—-1
Xx<3

W=X-Yy
Z=X+Yy

|

X1=5
X2=X1—1
X, <3

N

y1=% *
(W1=V1

2

Y2=X3-

3

N

Which y to use?

(N
)

w, v x
Z=X+Yy

13

Phi Functions (¢)

We introduce a special
symbol @ at such points of
confluence

®’s arguments are all the
instances of variable y that
might be the most
recently assigned variant
of y

Returns the “correct” one

Do we need a @ for x?
— No!

)

X1=5
X2=X1—1
X, <3

N

y1=% *
(W1=V1

2
Y2=X;-3

)

W2 =Y3—=X3
Z; =X tYs3

v

14

Computing Phi-Function Placement

Intuitively, we want to
figure out cases where
there are multiple
assignments that can
reach a node

To be safe, we can place a
® function for each

assignment at every node
in the dominance frontier

{

X1=5
X2=X1—1

X, <3

N

—_ £ 3
Y1=X;
W1 =Y1

2
Y2=X;-3

\/

y3 = O(y1,Y,)
W3 =Y3-X

Z1 =X tY3

v

15

Pruned Phi Functions

This criterion causes a bunch of useless @
functions to be inserted

— Cases where the result is never used “downstream”
(useless)

Pruned SSA is a version where useless @ nodes
are suppressed

Other Advantages of SSA Form

v = 3*x W = X y = 7*x z = w¥x

Flow dependences
4X4 edges

Other Benefits of SSA Form

Xs = P(X1, X2, X3, Xa)

v = 3%xg W = Xg y =7%xs Z=W*Xg

Multiplicative representation — Additive representation
4x4 edges - 4 + 4 edges

DATAFLOW ANALYSIS

Dataflow-Analysis Example 1

Reaching definitions

Transfer function:
AS. (S —{<p;,x>HU{<p2 x>}

Before p1: @ o
After pl: {<pl, x>} plix=1;

Before p2: {<pl, x>, ...}
After p2: {<p2, x>, ...}

Before p3: {<p2, x>, ...} o
After p3: {<p2, x>, <p3, y>, ...} p3:y =X,

i Data: sets of <program-point, variable> pairs

Note: for expository purposes, it is convenient to assume we have a
statement-level CFG rather than a basic-block-level CFG.

—/

20

Dataflow-Analysis Example 1

Reaching definitions

Meet operation: Union of sets (of <program-
point, variable> pairs)

Before p1: @

After p1: {<pl, x>} pl:x=1;

Before p2: {<pl, x>, ...}

Before p4: @
After p2: {<p2, x>, ...}

p2:x=2 R
pa:x =17, After p4: {<p4, x>}

Before p3: {<p2, x>, <p4,x>, ...} N i_ |
After p3: {<p2, x>, <p3, y>, <pdx>,..} P> Y=%

Note: for expository purposes, it is convenient to assume we have a

statement-level CFG rather than a basic-block-level CFG. .

Dataflow-Analysis Example 1

Reaching definitions: Why is it useful?

Answers the question “Where could this variable have
been defined?”

Before p1: @

After p1: {<p1, x>} plix=1;
Before p2: {<p1, x>, ...} 02: X = 2; ~__ Beforep4: 9
After p2: {<p2, x>, ...} PAX=T7; After p4: {<p4, x>}

Before p3: {<p2, x>, <p4,x>| ...} 3. i_ :
After p3: {<p2, x>, <p3, y>, <pdx>,..} P> Y=%

22

Dataflow-Analysis Example 2

Transfer function:
AS.(S —{zh u{x,y}

Live Variables

Before pl: @

pl: x=1;
After p1: {x}

if (...) {
Before p2: {x} :

After p2: {x,y}
Before p3: {x,y}
Afterp3: 0

Before p4: @

After pd: {x} Data: sets of variables]

Before p5: {x} 05:7 = 3;
After p5: {x

Before p6: {x} 06: cout << X; L
After p6: 0

z is not live after p5, and
thus p5 is a useless
assignment (= dead code)

23

