
Dataflow Analysis
and

Dataflow-Analysis Frameworks

1

Roadmap

Last time:
– Data structures (and data) used to determine when it is

safe (i.e., sound) to perform an optimizing transformation
• Review dominators
• SSA form
• Dataflow analysis

This time:
– More dataflow analysis

• Dataflow equations
• Solving dataflow equations

– Dataflow-analysis frameworks

2

3

Dataflow-Analysis Example 1

Reaching definitions

p1: x = 1;

. . .

p2: x = 2;

. . .

p3: y = x;

Before p1:
After p1: {<p1, x>}

Before p2: {<p1, x>, …}
After p2: {<p2, x>, …}

Before p3: {<p2, x>, …}
After p3: {<p2, x>, <p3, y>, …}

Note: for expository purposes, it is convenient to assume we have a
statement-level CFG rather than a basic-block-level CFG.

Data: sets of <program-point, variable> pairs

Transfer function:
௜

4

Dataflow-Analysis Example 1

Reaching definitions

p1: x = 1;

. . .

p2: x = 2;

. . .

p3: y = x;

Before p1:
After p1: {<p1, x>}

Before p2: {<p1, x>, …}
After p2: {<p2, x>, …}

Before p3: {<p2, x>, <p4,x>, …}
After p3: {<p2, x>, <p3, y>, <p4,x>,…}

p4: x = 7;
Before p4:
After p4: {<p4, x>}

Meet operation: Union of sets (of <program-
point, variable> pairs)

5

Dataflow-Analysis Example 1
Reaching definitions: Why is it useful?
Answers the question “Where could this variable have
been defined?”

p1: x = 1;

. . .

p2: x = 2;

. . .

p3: y = x;

Before p1:
After p1: {<p1, x>}

Before p2: {<p1, x>, …}
After p2: {<p2, x>, …}

Before p3: {<p2, x>, <p4,x>, …}
After p3: {<p2, x>, <p3, y>, <p4,x>,…}

p4: x = 7;
Before p4:
After p4: {<p4, x>}

6

Dataflow-Analysis Example 2

Live Variables
p1: x = 1;

if (…) {
p2: y = 0;

p3: z = x + y;
}

p4: x = 2;

p5: z = 3;

p6: cout << x;

Before p1:
After p1: {x}

Before p2: {x}
After p2: {x,y}

Before p3: {x,y}
After p3:

Before p4:
After p4: {x}

Before p5: {x}
After p5: {x}

Before p6: {x}
After p6:

Data: sets of variables

Transfer function:

z is not live after p5, and
thus p5 is a useless
assignment (= dead code)

7

Dataflow-Analysis Direction

Forward analysis
– Start at the beginning of a function’s CFG, work along

the control edges (e.g., reaching definitions)

Backward analysis
– Start at the end of a function’s CFG, work against the

control edges (e.g., live variables)

8

Benefits of SSA Form

There are some obvious advantages to this format for
program analysis
– Easy to see the live range of a given variable x assigned to in

statement s
• The region from “x = …;” until the last use(s) of x before x is redefined
• In SSA form, from “xi = …;” to all uses of xi, e.g., “… = f(…, xi, …);”

– Easy to see when an assignment is useless
• We have “xi = …;” and there are no uses of xi in any expression or

assignment RHS
• “‘xi = …;’ is a useless assignment”
• “‘xi = …;’ is dead code”

In other words, some useful information is pre-computed, or at
least easily recoverable from SSA form

Warning 2: There is another concept called “live variables.”
• When variable x is “not live,” a convenient shorthand is

“Variable x is dead.”
• When x is dead just after a statement s, that does not imply

that s is dead code. (E.g., suppose s assigns to y.)
• When s is a useless assignment to x

• Statement s is dead code (because dead = useless or
unreachable)

• x is not live just after s (“Variable x is dead just after s”)
• Because variable x is dead, s is a useless assignment, and

thus statement s is dead code.

Warning 1: Dead code = useless assignments + unreachable code

9

Dataflow-Analysis Example 3

Reachable uses

p1: z = 1;

. . .

p2: x = z;

. . .

p3: y = x+z;

Before p1: {…}
After p1: {<p3, z>, <p2, z>, …}

Before p2: {<p3, z>, <p2, z>, …}
After p2: {<p3, x>, <p3, z>, …}

Before p3: {<p3, x>, <p3, z>}
After p3:

Data: sets of <program-point, variable> pairs

Transfer function:
௜

10

Dataflow-Analysis Example 3

Reachable uses

p1: if (…)

. . .

p2: x = z;

. . .

p3: y = x+z;

Before p1: {<p3, z>, <p2, z>, <p4, z>, …}
After p1: {<p3, z>, <p2, z>, <p4, z>, …}

Before p2: {<p3, z>, <p2, z>, …}
After p2: {<p3, x>, <p3, z>, …}

Before p3: {<p3, x>, <p3, z>}
After p3:

Meet operation: Union of sets (of
<program-point, variable> pairs)

p4: x = 3*z; Before p4: {<p3, z>, <p4, z>}
After p4: {<p3, x>, <p3, z>}

11

Dataflow-Analysis Example 3

p1: if (…)

. . .

p2: x = z;

. . .

p3: y = x+z;

Before p1: {<p3, z>, <p2, z>, <p4, z>, …}
After p1: {<p3, z>, <p2, z>, <p4, z>, …}

Before p2: {<p3, z>, <p2, z>, …}
After p2: {<p3, x>, <p3, z>, …}

Before p3: {<p3, x>, <p3, z>}
After p3:

p4: x = 3*z; Before p4: {<p3, z>, <p4, z>}
After p4: {<p3, x>, <p3, z>}

Reachable uses: Why is it useful?
Answers the question “What could this variable definition reach?”

p0: z = 5;
After p0: {<p3, z>, <p2, z>, <p4, z>, …}

12

Dataflow-Analysis Example 3

p1: if (…)

. . .

p2: x = z;

. . .

p3: y = x+z;

Before p1: {<p3, z>, <p2, z>, <p4, z>, …}
After p1: {<p3, z>, <p2, z>, <p4, z>, …}

Before p2: {<p3, z>, <p2, z>, …}
After p2: {<p3, x>, <p3, z>, …}

Before p3: {<p3, x>, <p3, z>}
After p3:

p4: x = 3*z; Before p4: {<p3, z>, <p4, z>}
After p4: {<p3, x>, <p3, z>}

Reachable uses: Why is it useful?
Answers the question “What could this variable definition reach?”

p0: z = 5;
After p0: {<p3, z>, <p2, z>, <p4, z>, …}

Reaching definitions versus reachable
uses: really just an indexing question.
At which end of the edges do you
want to collect the information?

13

Obtaining a Dataflow-Analysis Solution
Successive approximation:
– Assign to each node in the CFG a (dataflow-problem-specific)

default value
• Typically either or the universe of the sets you are working with, e.g.,

{all variables in the procedure}

– Assign a special value to the entry node
– Propagate values until quiescence, as follows:

Repeatedly
• Pick a node
• Find input values from predecessors
• Apply transfer function

Until no change is possible

Example: Reaching Definitions

14

1: start

2: min = +

3: read(x)

7: read(x)

6: min = x

4: while x>0

5: if x<min

8: write(min)

9: end

Before p1: ∅
After p1: ∅

Before p2: ∅
After p2: {<p2,min>}

Before p3: {<p2,min>}
After p3: {<p2,min>, <p3,x>}

Before p4: {<p2,min>, <p3,x>}
After p4: {<p2,min>, <p3,x>}

Before p5: {<p2,min>, <p3,x>}
After p5: {<p2,min>, <p3,x>}

Before p6: {<p2,min>, <p3,x>}
After p6: {<p6,min>, <p3,x>}

Before p7: {<p2,min>, <p6,min>, <p3,x>}
After p7: {<p2,min>, <p6,min>, <p7,x>}

15

1: start

2: min = +

3: read(x)

7: read(x)

6: min = x

4: while x>0

5: if x<min

8: write(min)

9: end

Before p1: ∅
After p1: ∅

Before p2: ∅
After p2: {<p2,min>}

Before p3: {<p2,min>}
After p3: {<p2,min>, <p3,x>}

Before p4: {<p2,min>, <p3,x>}
After p4: {<p2,min>, <p3,x>}

Before p5: {<p2,min>, <p3,x>}
After p5: {<p2,min>, <p3,x>}

Before p6: {<p2,min>, <p3,x>}
After p6: {<p6,min>, <p3,x>}

Before p7: {<p2,min>, <p6,min>, <p3,x>}
After p7: {<p2,min>, <p6,min>, <p7,x>}

Before p4: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}
After p4: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}

Before p5: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}
After p5: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}

Before p6: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}
After p6: {<p3,x>, <p6,min>, <p7,x>}

Before p7: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}
Before p8: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}

Before p9: {<p2,min>, <p3,x>,
<p6,min>, <p7,x>}

After p8: {<p2,min>, <p3,x>, <p6,min>, <p7,x>}

Example: Reaching Definitions

16

Obtaining a Dataflow-Analysis Solution
by Successive Approximation

for all nodes n, RdBefore[n] := and RdAfter[n] :=
workset := { start}
while (workset) {

select and remove a node n from workset
oldValueAfter := RdAfter[n]
RdBefore[n] := RdAfter[p]

RdAfter[n] := (RdBefore[n])
if oldValueAfter RdAfter[n] then

for all < > , insert into workset
}

Successive Approximation!?
Does That Always Work?

To find a solution , perform

Let’s try: , using

Iterate on
ೖ

Pick any ,

బ
, ,

బ
, , failure 

17

Successive Approximation!?
Does That Always Work?

To find a solution , perform

, so

Add to both sides: That is,

Iterate on
ೖ

18

Iterative
method

converges

Iterative
method
diverges

Successive Approximation!?
Does That Always Work?

To find a solution , perform

• Fact: For reaching definitions and live variables, successive
approximation always works

• Why?
• (An approximation to) an answer is two sets per program point
• The sets at each program point are finite and of a priori bounded size
• Each sets always increases in size ()
• Approximations to answers get bigger and bigger, but cannot grow without

bound
• Therefore the algorithm must terminate
• When the algorithm terminates, the sets solve the equations

20

Equations?
What equations?

Equations? What Equations?

Two equations for each node n:
RdBefore[n] = RdAfter[p]

RdAfter[n] = (RdBefore[n])
Successive approximation:

RdBeforek+1[n] = RdAfterk[p]
RdAfterk+1[n] = (RdBeforek[n])

In iterative algorithm:
RdBefore[n] := RdAfter[p]

RdAfter[n] := (RdBefore[n])

21

Equations? What Equations?

22

Equations:
x = 3y + 4z
y = 2w + 2
z = 7w – x
w = 17

Dataflow
equations

x

w

y

z

Equation
dependence graph:

Control-flow
graph

23

DATAFLOW-ANALYSIS FRAMEWORKS

24

What is a Dataflow Framework?

Many analyses can be formulated in terms of how data is
transformed over the control flow graph
– Propagate information from:

• After (before) some node, to
• Before (after) some other node

– Put information together when control flow merges (or
diverges)

A framework captures these uniformities
– In object-oriented-program terms: like an abstract class AC
– To use the framework

• You define certain data and methods (required by AC)
• AC supplies other methods (already implemented, so you don’t have to

worry about implementing them yourself)

25

Dataflow Framework: What You Supply

The type of data (a.k.a. dataflow facts)
– A collection of values with an order, such as
– (Sometimes called a “meet semi-lattice”)
– Default value and value to use at entry (or exit)
Transfer functions
– Specify how data is propagated across a node
A meet operation ()
– The operation for combining values that come across

multiple edges
Direction (forward or backward)

26

Dataflow Framework Instantiated for
Reaching-Definitions Analysis

The type of data (a.k.a. dataflow facts):
Sets of <program-point, variable> pairs

Transfer functions:
For “p: ;” and “p: read ”

௜

For “if …” and “write

The meet operation (for combining values that come across
multiple edges):

Set union ()
Direction:

Forward

27

Dataflow Framework Instantiated for
Live-Variable Analysis

The type of data (a.k.a. dataflow facts):
Sets of variables

Transfer functions:
For “ = ;”

For “if ”, and “write ”

For “read ”

The meet operation (for combining values that come across
multiple edges):

Set union ()
Direction:

Backward

28

Obtaining a Dataflow-Analysis Solution
by Successive Approximation

for all nodes n, ValBefore[n] := and ValAfter[n] :=
workset := {start}
while (workset) {

select and remove a node n from workset
oldValueAfter := ValAfter[n]
ValBefore[n] := ValAfter[p]

ValAfter[n] := (ValBefore[n])
if oldValueAfter ValAfter[n] then

for all < > , insert into workset
}

29

Obtaining a Dataflow-Analysis Solution
by Successive Approximation

for all nodes n, ValAfter[n] := and ValBefore[n] :=
workset := { end}
while (workset) {

select and remove a node n from workset
oldValueBefore := ValBefore[n]
ValAfter[n] := ValBefore[p]

ValBefore[n] := (ValAfter[n])
if oldValueBefore ValBefore[n] then

for all < > , insert into workset
}

30

Dataflow-Analysis Example 3
Available-expressions analysis
– Whether an expression that has been previously computed may be

reused
– Forward dataflow problem: from expression to points of re-use
– Meet semi-lattice:

– Meet operation:
• AND of all predecessors

– At the beginning of each block, everything is True
* This causes some problems for loops

True

False

31

Dataflow-Analysis Example 4

Very-Busy-Expression analysis
– An expression is very busy at a point p if it is guaranteed

that it will be computed at some time in the future

– Backwards dataflow problem: from computation to use
– Meet Lattice:

– Meet operation: AND

True

False

The end: or is it?

Covered a broad range of topics
– Some formal concepts
– Some practical concepts

What we skipped
– Linking and loading
– Interpreters
– Register allocation
– Performance analysis / Proofs

32

