Dataflow Analysis
and
Dataflow-Analysis Frameworks

Roadmap

Last time:

— Data structures (and data) used to determine when it is
safe (i.e., sound) to perform an optimizing transformation

e Review dominators
e SSA form
* Dataflow analysis

This time:

— More dataflow analysis
» Dataflow equations
* Solving dataflow equations

— Dataflow-analysis frameworks

Dataflow-Analysis Example 1

Reaching definitions

Transfer function:
AS.(S —{<p,x>HU{<p2 x>}

Before p1: @ Lxe1.
After pl: {<pl, x>} pLx=24

Before p2: {<pl, x>, ...} -
After p2: {<p2, x>, ...} p2:x =2,

Before p3: {<p2, x>, ...} o
After p3: {<p2, x>, <p3, y>, ...} p3:y =x;

i Data: sets of <program-point, variable> pairs

Note: for expository purposes, it is convenient to assume we have a
statement-level CFG rather than a basic-block-level CFG.

—

Dataflow-Analysis Example 1

Reaching definitions

Meet operation: Union of sets (of <program-
point, variable> pairs)

Before p1: @

After pl: {<pl, x>} pl:x=1;

Before p2: {<p1, x>, ...}

Before p4: @
After p2: {<p2, x>, ...}

p2:x=2 7.
» After pd: {<p4, x>}

pd: x =

Before p3: {<p2, x>, <p4,x>, ...}). i_ .
After p3: {<p2, x>, <p3, y>, <p4x>,..} P> ¥=%

Dataflow-Analysis Example 1

Reaching definitions: Why is it useful?

Answers the question “Where could this variable have
been defined?”

Before p1: @

After pl: {<pl, x>} pl:x=1;

Before p2: {<p1, x>, ...}

Sy = Before p4: @
After p2: {<p2, x>, ...} P2:X=2; P

pa:x =7, After p4: {<p4, x>}

Before p3: {<p2, x>, <p4,x>] ...} UM
After p3: {<p2, x>, <p3, y>, <p4x>,...} P> ¥=%

Dataflow-Analysis Example 2

Live Variables

Before pl:
After p1:

Before p2:
After p2: {x,y}
Before p3: {x,y}
After p3:

Before p4:
After p4:
Before p5:
After p5:
Before p6:
After p6:

Transfer function:
25.(S —{z) U {x,y)

1) Cy 1.
pl: x=1;
{x}
if (...){
ix} p2:y=0;

{g pa: x = 2; Data: sets of variables]
ix} : ; z is not live after p5, and

P thus p5 is a useless
p p6: cout <<X; | assignment (= dead code)

Dataflow-Analysis Direction

Forward analysis

— Start at the beginning of a function’s CFG, work along
the control edges (e.g., reaching definitions)

Backward analysis

— Start at the end of a function’s CFG, work against the
control edges (e.g., live variables)

Narning 2: There is another concept called “live variables.” \

* When variable x is “not live,” a convenient shorthand is
“Variable x is dead.”

* When x is dead just after a statement s, that does not imply
that s is dead code. (E.g., suppose s assigns to y.)

There| °© Whensisa useless assignment to x t for
) « Statement s is dead code (because dead = useless or
Progr« unreachable)
— Easy * xisnot live just after s (“Variable x is dead just after s”) toin
state * Because variable x is dead, s is a useless assignment, and

thus statement s is dead code.

edefined

* In SSA form, from “X== Il uses of x,, e.g., “... =f(..., x;, ...);”
— Easy to see when an assignment is useless

* We have “x, = ...;” and there are no uses of x, in any expression or
assignment RHS

* “x.=..;" is a useless assignment”
e “x.=..; is dead code”

In other words, some
least easily rec

rmation is pre-computed, or at

Warning 1: Dead code = useless assignments + unreachable code]

8

Dataflow-Analysis Example 3

Reachable uses

Transfer function:
AS.(S —{<p,x>HU{<p2z>}

Before p1:{...}

After pl1: {<p3, z>, <p2, z>, ...} pl:z=1;

Before p2: {<p3, z>, <p2, z>, ...} Lo
After p2: {<p3, x>, <p3, z>, ...} p2:x =2,

i Data: sets of <program-point, variable> pairs]
Before p3: {<p3, x>, <p3, z>}

After p3: @ P31y = X+7;

Dataflow-Analysis Example 3

Meet operation: Union of sets (of
ReaCha ble uses <program-point, variable> pairs)

Before pl: {<p3, z>, <p2, z>, <p4, z>,
After pl: {<p3, z>, <p2, z>, <p4, 7>,

Before p4: {<p3, z>, <p4, z>}

p4: x = 3*z;
Before p2: {<p3, z>, <p2, z>, ...} . After p4: {<p3, x>, <p3, >}

After p2: {<p3, x>, <p3, 2>, ...

Before p3: {<p3, x>, <p3, 2>} 3y = xiz
Afterp3: ¢ P> Y~ Xz

10

Dataflow-Analysis Example 3

Reachable uses: Why is it useful?

Answers the question “What could this variable definition reach?”
p0:z=5;

After p0: {<p3, z>, <p2, z>, <p4, z>] ...

}
Before p1: {<p3, z>, <p2, z>, <p4, z>, ...}
After pl: {<p3, z>, <p2, z>, <p4, z>, ...}

04: X = 3%2; Before p4: {<p3, z>, <p4, z>}
Before p2: {<p3, z>,<p2, 2>, ..} _ " After p4: {<p3, x>, <p3, z>}
After p2: {<p3, x>, <p3, z>, ...} p2:x =17
Before p3: {<p3, x>, <p3, z>} /

After p3: @ P31y = X+7;

11

Dataflow-Analysis Example 3

Reachable uses: Why is it useful?

Answers the question “What could this variable definition reach?”

0:z=5;
After p0: {<p3, z>, <p2, z>, <p4, z>, ... PL: 2

}
Before p1: {<p3, z>, <p2, z>, <p4, z>, ...}
After pl: {<p3, z>, <p2, z>, <p4, z>, ...}

04: X = 3*%2; Before p4: {<p3, z>, <p4, z>}
Before p2: {<p3, z>,<p2, 2>, ..} _ " After p4: {<p3, x>, <p3, z>}
After p2: {<p3, x>, <p3, z>, ...} P2:x=1z
Before p3: {<p3, x>, <p3, z>} A/V N

After p3: @ P3:Y=X+Z | Reaching definitions versus reachable
uses: really just an indexing question.
At which end of the edges do you
want to collect the information?

_/

12

Obtaining a Dataflow-Analysis Solution

Successive approximation:

— Assign to each node in the CFG a (dataflow-problem-specific)
default value

* Typically either @ or the universe of the sets you are working with, e.g.,
{all variables in the procedure}

— Assign a special value to the entry node
— Propagate values until quiescence, as follows:

Repeatedly

* Picka node

e Find input values from predecessors
* Apply transfer function

Until no change is possible

Example: Reaching Definitions

Before p5: {<p2,min>, <p3,x>}
After p5: {<p2,min>, <p3,x>}

Before p1: @ .
After p1: @ 1: start
Before p2: @ 5. .\L_
After p2: {<p2,min>} : m'ri‘ +00
Before p3: {<p2,min>} 3 read
After p3: {<p2,min>, <p3,x>} |7 rej (x)
Before p4: {<p2,min>, <p3,x>}[:
After p4: {<p2,min>, < 4: Whie x>0
5: if x<min
6: min = X
8: write(min) 7: read(x)

\ 4
9: end

Before p7: {<p2,min>, <p6,min>, <p3,x>}
After p7: {<p2,min>, <p6,min>, <p7,x>}

Before p6: {<p2,min>, <p3,x>}
After p6: {<p6,min>, <p3,x>}

14

Example: Reaching Definitions

Before p1: @ .
After p1: @ 1: start
Before p2: @ . ,\L_
After p2: {<p2,min>} 2: m'ri' +00
Before p3: {<p2,min>} 3 q
After p3: {<p2,min>, <p3,x>} ' rej (x)
Before pa: {<pBefbEe A A<phenior @I b . Lae oo
After p4: {<p2,ifber pB, Xz pdbmmos <pd, x>} L \L
5. if xemin | BEORIBSPEp SRR RInR;, <pSprnd, <p7,
: AfFEEPD SPRAPI IR <58 R, <P7,x>}
6: min = Berbarpsplap s, Mappxy, <pSint, <p7,x>)
%/'m'” = X | Afteep® 6:rBop6spRin> <313)

Before p8: {<p2,min>, <p3,x>, <p6,Min>, <p7,x>}

8: write(min)

niin>, <p7,x>}

9: end

After p8: {<p2,min>, <p3,x>, <p6,
Before p9: {<p2,min>, <p3,x>,
<p6,min>, <p7,x>}

7: read(x)

Betbare7p{Zp{ap, miBx;, <pHpminzp 503, x>}
After p7: {<p2,min>, <p6,min>, <p7,x>}

15

Obtaining a Dataflow-Analysis Solution
by Successive Approximation

for all nodes n, RdBefore[n] := @ and RdAfter[n] := @
workset := { start}
while (workset #= @) {
select and remove a node n from workset
oldValueAfter := RdAfter[n]
RdBefore[n] := Usp n>epagesRAAter|p]
RdAfter[n] := F,(RdBefore[n])
if oldValueAfter # RdAfter[n] then

for all <n,w> € Edges, insert w into workset

Successive Approximation!?
Does That Always Work?

To find a solution x* = F(x™), perform xj .1 =

Let’s try: x% = 2, using x =

2

Iterate on X411 = —
Xk

Pick any xg # 0,
2 2

X1 = —, X = Xo, X3 = —, X4 = X, failure ®
0 0

Successive Approximation!?

Does That Always Work?
To find a solution x* = F(x*), perform x; .1 = F(xy)
X2 =2 sox =2

X

Addxtobothsides:x+x=x+§ That is, 2x=x+§

1 2
Iterate on X411 = > (xk + —)

Xk
x, = 1.00000
x, = 1.50000
x, = 1.41666
x; = 1.41421
x, = 1.41421

46 ELEMENTARY NUMERICAL ANALYSIS
y=x /
i
§ 1
ATHEMATICS b |
, b !
B |
o !
1 | FU I T - . TS .-
¥ R Dl e i ’/) X6 £ Xe Xo t
ELEMENTARY NUMERICAL ANALYSIS i @) ,
An AlgorithAmic‘Apprda‘ch . .
; 7 y=x
.. . |
Iterative lterative
method I y=g(x) mthOd
converges :r\ diverges
i y=g(x)
;1 Xsl E. "‘1 Xlo ‘Xl:;ﬁ é xo;‘zl
(c) (@)

Fig. 2.3 Fixed-point iteration.

Theorem 2.1 Let g(x) be an iteration function satisfying Assumptions 2.1
and 2.3. Then g(x) has exactly one fixed point £ in I, and starting with
any point x, in 7, the sequence x,, x5, . . . generated by fixed-point iteration
of Algorithm 2.6 converges to £. ;

To prove this theorem, recall that we have already proved the existence
of a fixed point £ for g(x) in I. Now let x; be any point in J. Then, as we
remarked earlier, fixed-point iteration generates a sequence x;, x,, . . . of
points all lyingin I, by Assumption 2.1. Denote the error in the nth iterate by

e, =§&— X, n=012...

Then since ¢ = g(¢) and x, = g(x,-,), we have

ep = £ — X = g(f) - g(xn—l) = g'("ln)en-l. (2-19)

Successive Approximation!?
Does That Always Work?

To find a solution x* = F(x*), perform x; .1 = F(xy)

e Fact: For reaching definitions and live variables, successive
approximation always works

 Why?
* (An approximation to) an answer is two sets per program point
 The sets at each program point are finite and of a priori bounded size

e Each sets always increases in size (€)
e Approximations to answers get bigger and bigger, but cannot grow without

bound Equations?
* Therefore the algorithm must terminate What equations?

When the algorithm terminates, the sets solve the equations

20

Equations? What Equations?

Two equations for each node n:
RdBefore[n] = U<y nserages RdAfter[p]
RdAfter[n] = F,,(RdBefore[n])
Successive approximation:
RdBefore,,,[n] = Ucy nsepages RAATter, [p]
RdAfter,,,[n] = F,(RdBefore,[n])
In iterative algorithm:
RdBefore[n] := Uspy n>erages RAAfter|p]
RdAfter[n] := F,,(RdBefore[n])

Equations? What Equations?

Equations:

X=3y+4z
y=2W+ 2
Z=7W—X
w=17

=)

Equation
dependence graph:

Dataflow
equations

=)

Control-flow
graph

22

DATAFLOW-ANALYSIS FRAMEWORKS

What is a Dataflow Framework?

Many analyses can be formulated in terms of how data is
transformed over the control flow graph

— Propagate information from:
» After (before) some node, to
» Before (after) some other node

— Put information together when control flow merges (or
diverges)

A framework captures these uniformities

— |In object-oriented-program terms: like an abstract class AC

— To use the framework

* You define certain data and methods (required by AC)

* AC supplies other methods (already implemented, so you don’t have to
worry about implementing them yourself)

Dataflow Framework: What You Supply

The type of data (a.k.a. dataflow facts)

— A collection of values with an order, such as €
— (Sometimes called a “meet semi-lattice”)

— Default value and value to use at entry (or exit)
Transfer functions

— Specify how data is propagated across a node
A meet operation (M)

— The operation for combining values that come across
multiple edges

Direction (forward or backward)

Dataflow Framework Instantiated for

Reaching-Definitions Analysis

The type of data (a.k.a. dataflow facts):
Sets of <program-point, variable> pairs
Transfer functions:
For “p:id = exp;,” and “p: read id”
AS.(§ —{<p;,id >} U{<p,id >}
For “if exp ...” and “write exp
AS.S

The meet operation (for combining values that come across
multiple edges):

Set union (V)
Direction:

Forward

26

Dataflow Framework Instantiated for

Live-Variable Analysis

The type of data (a.k.a. dataflow facts):
Sets of variables
Transfer functions:
For “id = exp,”
AS.(§ —{id}) U {x € exp}
For “if exp”, and “write exp”
AS.S U {x € exp}
For “read id”

AS.(S — {id})
The meet operation (for combining values that come across
multiple edges):
Set union (V)
Direction:

Backward

27

Obtaining a Dataflow-Analysis Solution
by Successive Approximation

for all nodes n, ValBefore[n] := T and ValAfter[n] :=T
workset := {start}
while (workset #= @) {
select and remove a node n from workset
oldValueAfter := ValAfter[n]
ValBefore[n] := M<p n>epages ValAfter|p]
ValAfter[n] := E,(ValBefore[n])
if oldValueAfter # ValAfter[n] then
for all <n,w> € Edges, insert w into workset

Obtaining a Dataflow-Analysis Solution
by Successive Approximation

for all nodes n, ValAfter[n] := T and ValBefore[n] :==T
workset := { end}
while (workset #= @) {
select and remove a node n from workset
oldValueBefore := ValBefore[n]
ValAfter[n] := M<p p>epagesValBefore[p]
ValBefore[n] := F,(ValAfter[n])
if oldValueBefore # ValBefore[n] then
for all <w,n> € Edges, insert w into workset

Dataflow-Analysis Example 3

Available-expressions analysis

Whether an expression that has been previously computed may be
reused

Forward dataflow problem: from expression to points of re-use

Meet semi-lattice:
True

False
Meet operation:
* AND of all predecessors

At the beginning of each block, everything is True
* This causes some problems for loops

Dataflow-Analysis Example 4

Very-Busy-Expression analysis

— An expression is very busy at a point p if it is guaranteed
that it will be computed at some time in the future

— Backwards dataflow problem: from computation to use
— Meet Lattice:

True

False

— Meet operation: AND

The end: oris it?

Covered a broad range of topics
— Some formal concepts
— Some practical concepts

What we skipped

— Linking and loading

— Interpreters

— Register allocation

— Performance analysis / Proofs

