RegExps & DFAs CS 536

Pre-class warm up

Write the regexp for Fortran real literals

An optional sign ('+' or '-')

An integer or:

1 or more digits followed by a '.' followed by 0 or more digits

or: A '.' followed by one or more digits

('+'|'-'|ε) (digit+('.'|ε) | (digit*'.'digit+))

Last time

Explored NFAs

for every NFA there is an equivalent DFA

epsilon edges add no expressive power

Introduce regular languages / expressions

Today

Convert regexps to DFAs

From language recognizers to tokenizers

Regexp to NFAs

Literals/epsilon correspond to simple DFAs

Operators correspond to methods of joining DFAs x^n, where n is even **or** divisible by 3

Rules for operands

Rules for alternation A|B

Make new start state q' and new final state f'

Make original final states non-final

Add to δ :

$$\begin{array}{l} q', \varepsilon \to q_{A} \\ q', \varepsilon \to q_{B} \\ F_{a}, \varepsilon \to f' \\ F_{b}, \varepsilon \to f' \end{array}$$

Rule for catenation A.B

Make new start state q' and new final state f'

Make original final states non-final

Add to δ :

$$\begin{array}{l} q', \varepsilon \to q_{A} \\ f_{A}, \varepsilon \to q_{B} \\ f_{b}, \varepsilon \to f' \end{array}$$

Rule for iteration A*

Make new start state q' and new final state f'

Make original final states non-final

Add to δ : $q', \varepsilon \rightarrow q_A$ $q', \varepsilon \rightarrow f'$ $f', \varepsilon \rightarrow q_A$

Regexp operator precedence

Operator	Precedence	Analogous math operator		
	low	addition		
·	medium	multiplication		
*	high	exponentiation		

Tree representation of a regexp (letter | '_')(letter | '_' | digit)* В С Ε Α D * Operator Precedence 1 1 letter low В Α letter medium С digit * high Ε D

Regexp to DFAs

We now have an NFA

We need to go to DFA

But what's so great about DFAs?

Table-driven DFAs

Recall that δ can be expressed as a table

This leads to a very efficient array representation


```
s = start state
while (more input){
    c = read char
    s = table[s][c]
}
if s is final, accept
```

FSMs for tokenization

FSMs only check for language membership of a string

the scanner needs to recognize a stream of many different tokens using the longest match

the scanner needs to know what was matched

Idea: imbue states with actions that will fire when state is reached

A first cut at actions

Consider the language of Pascal identifiers

State	Actions
s ₂	return ID

BAD: not longest match

Accounting for longest matches

A second take at actions

Give our FSMs ability to put chars back

State	Actions
s ₃	Put 1 char back, return ID

Our first scanner

Consider a language with two statements	
---	--

assignments: ID = expr

increments: ID += expr

where expr is of the form

ID + ID

 $ID \land ID$

ID < ID

ID <= ID

Token name	Regular Expression
ASSIGN	"="
INC	"+="
PLUS	"+"
EXP	"∧"
LT	"<"
LEQ	"<="
ID	(letter _)(letter digit _)*

Identifiers ID follow C conventions

Combined DFA

Token name	Regular Expression
ASSIGN	"="
INC	"+="
PLUS	"+"
EXP	"^"
LT	"<"
LEQ	"<="
ID	<pre>(letter _)(letter digit _)*</pre>

State	Action
S1	return ASSIGN
S2	return EXP
S3	return INC
S4	put back 1 char, return PLUS
S5	Return LEQ
S6	put back 1 char, return LT
S7	put back 1 char, return ID

	=	+	۸	<	_	letter	digit	EOF	none
S ₀	Ret ASSIGN	S _A	Ret EXP	S _B	S _C	S _C		Ret EOF	
S _A	Ret INC	Back 1, Ret PLUS	Back 1, Ret PLUS						
S _B	Ret LEQ	Back 1, Ret LT	Back1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT
S _C	Back 1, Ret ID	Back 1 Ret ID	Back 1, Ret ID	Back 1, Ret ID	S _C	S _C	S _C	Back 1, Ret ID	Back 1, Ret ID

	=	+	^	<	_	letter	digit	EOF	none
S ₀	Ret ASSIGN	S _A	Ret EXP	S _B	S _C	S _C		Ret EOF	
S _A	Ret INC	Back 1, Ret PLUS	Back 1, Ret PLUS						
S _B	Ret LEQ	Back 1, Ret LT	Back1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT	Back 1, Ret LT
S _C	Back 1, Ret ID	Back 1 Ret ID	Back 1, Ret ID	Back 1, Ret ID	S _C	S _C	S _C	Back 1, Ret ID	Back 1, Ret ID

```
do{
   read char
   perform action / update state
   if (action was to return a token){
        start again in start state
   }
} (while not EOF or stuck);
```

Lexical analyzer generators

aka scanner generators

The transformation from regexp to scanner is formally defined

Can write tools to synthesize a lexer automatically

Lex: unix scanner generator

Flex: fast lex

JLex: Java version of Lex

JLex

Declarative specification

tell it what you want scanned, it will figure out the rest

Input: set of regexps + associated actions xyz.jlex file

Output: Java source code for a scanner xyz.jlex.java source code of scanner

jlex format

3 sections separated by %%

user code section

directives

regular expressions + actions

```
//User Code Section (uninterpreted java code)
```

%

//Directives Section

DIGIT = [0-9]LETTER = [a-zA-Z]WHITESPACE = $[\040\t\n]$ Macro definitions

%state SPECIALINTSTATE — State declaration

```
//Configure for use with java CUP (Parser generator)
%implements java_cup.runtime.Scanner
%function next_token
%type java cup.runtime.Symbol
```

```
//End of file behavior
%eofval{
System.out.println("All done");
return null;
%eofval}
```

```
//Turn on line counting
%line
```

°|∘

//Regular Expression rules

Rules section

Format is <regex>{code} where regex is a regular expression for a single token

can use macros from the directive sections in regex, surround with curly braces

Conventions

chars represent themselves (except special characters)

chars inside "" represent themselves (except $\)$

Regexp operators

| * + ? () .

Character class operators

- range

^ not

\ escape

"=" { System.out.println(yyline + 1 + ": ASSIGN"); } **``+**″ { System.out.println(yyline + 1 + ": PLUS"); } **`` ^ //** { System.out.println(yyline + 1 + ": EXP"); } { System.out.println(yyline + 1 + ": LT"); } ``<'' { System.out.println(yyline + 1 + ": INC"); } **"+=**" { System.out.println(yyline + 1 + ": LEQ"); } **``<=″ {WHITESPACE}** { } ({LETTER}|"_")({DIGIT}|{LETTER}|"_")* { System.out.println(yyline+1 + ": ID " + yytext())); { System.out.println(yyline + 1 + ": badchar"); }