
RegExps & DFAs
CS 536

Pre-class warm up

Write the regexp for Fortran real literals
An optional sign (‘+’ or ‘-‘)

An integer or:

1 or more digits followed by a ‘.’ followed by 0 or more digits

or: A ‘.’ followed by one or more digits

(‘+’|’-’|ε) (digit+(‘.’|ε) | (digit*’.’digit+))

2

Last time

Explored NFAs
for every NFA there is an equivalent DFA

epsilon edges add no expressive power

Introduce regular languages / expressions

3

Today

Convert regexps to DFAs

From language recognizers to tokenizers

4

Regexp to NFAs

Literals/epsilon correspond to simple DFAs

Operators correspond to methods of joining
DFAs

5

x^n, where n is even or divisible by 3

Regexp to NFA rules

Rules for operands

6

Regexp to NFA rules
Rules for alternation A|B

7

Make new start state q’ and new final state f’

Make original final states non-final

Add to δ:
q’,ε → qA

q’,ε → qB

Fa,ε→f’
Fb,ε→f’

Regexp to NFA rules
Rule for catenation A.B

8

Make new start state q’ and new final state f’

Make original final states non-final

Add to δ:
q’,ε → qA

fA,ε → qB

fb,ε→f’

Regexp to NFA rules
Rule for iteration A*

9

Make new start state q’ and new final state f’

Make original final states non-final

Add to δ:
q’,ε → qA
q’,ε→f’
f’,ε→qA

Regexp operator
precedence

10

Operator Precedence Analogous
math operator

| low addition

. medium multiplication

* high exponentiation

Tree representation of a
regexp

11

Operator Precedence

| low

. medium

* high

Bottom-up conversion

12

Bottom-up conversion

13

Bottom-up conversion

14

Bottom-up conversion

15

Bottom-up conversion

16

Bottom-up conversion

17

Bottom-up conversion

18

Bottom-up conversion

19

Bottom-up conversion

20

Regexp to DFAs

We now have an NFA

We need to go to DFA

21

But what’s so great about DFAs?

Table-driven DFAs

Recall that δ can be expressed as a table

This leads to a very efficient array representation

22

s = start state
while (more input){
c = read char
s = table[s][c]

}
if s is final, accept

FSMs for tokenization

FSMs only check for language membership of a
string

the scanner needs to recognize a stream of many different
tokens using the longest match

the scanner needs to know what was matched

Idea: imbue states with actions that will fire
when state is reached

23

A first cut at actions

Consider the language of Pascal identifiers

24

BAD: not longest match

Accounting for longest matches

BAD: maybe we needed that
character

A second take at actions

Give our FSMs ability to put chars back

25

Our first scanner

Consider a language with two statements
assignments: ID = expr
increments: ID += expr

where expr is of the form
ID + ID
ID ^ ID
ID < ID
ID <= ID

Identifiers ID follow C conventions

26

Combined DFA

27

29

do{
read char
perform action / update state

if (action was to return a token){
start again in start state

}
} (while not EOF or stuck);

Lexical analyzer generators

aka scanner generators

The transformation from regexp to scanner is
formally defined

Can write tools to synthesize a lexer
automatically

Lex: unix scanner generator

Flex: fast lex

JLex: Java version of Lex

30

JLex

Declarative specification
tell it what you want scanned, it will figure out the rest

Input: set of regexps + associated actions
xyz.jlex file

Output: Java source code for a scanner
xyz.jlex.java source code of scanner

31

jlex format

3 sections separated by %%
user code section

directives

regular expressions + actions

32

33

Rules section

Format is <regex>{code} where regex is a regular expression for a single
token

can use macros from the directive sections in regex, surround with curly braces

Conventions
chars represent themselves (except special characters)

chars inside “” represent themselves (except \)

Regexp operators
| * + ? () .

Character class operators
- range

^ not

\ escape

34

35

