Context-free grammars (CFGs)

Roadmap

Last time
— Regkxp == DFA
— Jlex: a tool for generating (Java code for) a lexer/scanner
e Mainly a collection of (regexp, action) pairs

This time
— CFGs, the underlying abstraction for parsers

Next week

— Java CUP: a tool for generating (Java code for) a parser
* Mainly a collection of (CFG-rule, action) pairs

regexp : JLex :: CFG : Java CUP

Regkxps Are Great!

Perfect for tokenizing a language

However, they have some limitations

— Can only define a limited family of languages

e Cannot use a RegExp to specify all the programming
constructs we need

— No notion of structure

Let’s explore both of these issues

Limitations of RegExps

Cannot handle “matching”

E.g., language of balanced parentheses
Ly={(")" where n> 0}
No DFA exists for this language

Intuition: A given FSM only has a fixed, finite amount
of memory
— For an FSM, memory = the states

— With a fixed, finite amount of memory, how could an
FSM remember how many “(“ characters it has seen?

Theorem: No RegExp/DFA can describe
the language L

Proof by contradiction:

Suppose that there exists a DFA A for L;and A has
N states

A has to accept the string (N)N with some path
Qod1---Ane--C2an+1

By the pigeonhole principle some state has to
repeat: g; = g; for some i<j<N

Therefore the run qod;...q;0j,1---Ay---don+1 1S 2lSO
accepting

A accepts the string (VU)NEL,, which is
contradiction!

Limitations of RegExps: No Structure

Our Enhanced-RegExp scanner can emit a stream
of tokens:

X = Y + /
ID ASSIGN ID PLUS ID

... but this doesn’t really enforce any order of
operations

The Chomsky Hierarchy

LANGUAGE CLASS:

™~ Recursively enumerable

Context-Sensitive

Turing machine

Context-Free

Happy medium?
Regular

FSM

power

A

efficiency

Noam
Chomsky

Context Free Grammars (CFGs)

A set of (recursive) rewriting rules to generate
patterns of strings

Can envision a “parse tree” that keeps structure

CFG: Intuition

S>> 1(151)1
\ /
|

A rule that says that you
can rewrite S to be an S surrounded by
a single set of parenthesis

Before applying rule After applying rule

S S

Context Free Grammars (CFGs)

A CFG is a 4-tuple (N,2,P,S)

N is a set of non-terminals, e.g., A, B, S, ...
2 is the set of terminals
P is a set of production rules

SEN is the initial non-terminal symbol (“start
symbol”)

Context Free Grammars (CFGs)

Placeholder / interior nodes

A CFG is a 4-tuple (N,2,P,S) inthe parse tree
 Nis asetof non-terminals, e.g., A, B, S... <~/

* 2isthesetofterminals < U fiencrom
* Pis a set of production rules — e

 S(in N)is the initial non-terminal symm

Rules for deriving strings

If not otherwise specified, use the
non-terminal that appears on the LHS
of the first production as the start

Production Syntax

LHS - RHS

/ Expression: Sequence of

Single nonterminal symbol terminals and nonterminals

Examples:
S 9 I(l S I)I
S—>¢

Production Shorthand

Nonterm — expression 5S> (‘S Y
Nonterm— € S—> ¢
equivalently:
Nonterm — expression S (‘S Y
| € | €
equivalently:
S2>(SY) | €

Nonterm —> expression | €

Derivations

To derive a string:

» Start by setting “Current Sequence” to the start
symbol

* Repeatedly,
— Find a Nonterminal X in the Current Sequence
— Find a production of the form X—>a

— “Apply” the production: create a new “current
sequence” in which a replaces X

e Stop when there are no more non-terminals
* This process derives a string of terminal symbols

Derivation Syntax

 We’ll use the symbol “=" for “derives”

+
 We’ll use the symbol “=" for “derives in one or
more steps” (also written as “=7%")

E 3
 We’ll use the symbol “=" for “derives in zero or
more steps” (also written as “="")

An Example Grammar

An

Terminals
begin

end
semicolon
assign

id

plus

Example Grammar

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

An Example Grammar

For readability, bold and lowercase

Terminals

begin Program
end boundary
semicolon

assign

id

plus

An Example Grammar

For readability, bold and lowercase

Terminals

begin Program

end boundary

semicolon Represents ;"

assign Separates statements
id

plus

An Example Grammar

For readability, bold and lowercase

Terminals

begin Program

end boundary

semicolon Represents ;"

assign Separates statements

Represents “=“ in an assignment statement

plus

An Example Grammar

For readability, bold and lowercase

Terminals

begin Program

end boundary

semicolon Represents ;"

assign Separates statements

olu S\Represents “="in an assignment statement

Identifier / variable name

An Example Grammar

For readability, bold and lowercase

Terminals

begin Program

end boundary

semicolon Represents ;"

assign Separates statements

Identifier / variable name

olu S\Represents “="in an assignment statement

Represents “+“ operator in an expression

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

Nonterminals
Prog

Stmts

Stmt

Expr

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

For readability, Italics and UpperCamelCase
Nonterminals
Prog
Stmts
Stmt
Expr

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

For readability, Italics and UpperCamelCase
Nonterminals
Prog Root of the parse tree
Stmts
Stmt
Expr

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

For readability, Italics and UpperCamelCase
Nonterminals

Prog Root of the parse tree
Stmts List of statements
Stmt

Expr

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

For readability, Italics and UpperCamelCase
Nonterminals

Prog Root of the parse tree
Stmts List of statements
Stmt A single statement

Expr

An Example Grammar

For readability, bold and lowercase
Terminals
begin
end
semicolon
assign
id
plus

For readability, Italics and UpperCamelCase
Nonterminals

Prog Root of the parse tree
Stmts List of statements
Stmt A single statement
Expr

A mathematical expression

An Example Grammar

For readability, bold and lowercase

Terminals ; h £ logal
begin Defines the syntax of legal programs
end Productions
semicolon Proa = begin Stmts end
assign rog egin Stmts en
id Stmts - Stmts semicolon Stmt
lus
P | Stmt
Stmt = id assign Expr
Expr- id
For readability, Italics and UpperCamelCase | Expr plus id
Nonterminals
Prog
Stmts
Stmt

Expr

An Example Grammar

For readability, bold and lowercase

Terminals

begin Program

end boundary

semicolon Represents ;"

assign Separates statements

plus\Represents =“ statement
\ Identifier / variable name
Represents “+“ expression

For readability, Italics and UpperCamelCase
Nonterminals

Prog Root of the parse tree
Stmts List of statements
Stmt A single statement
Expr

An expression

Defines the syntax of legal programs

Productions

Prog - begin Stmts end
Stmts - Stmts semicolon Stmt
| Stmt
Stmt = id assign Expr
Expr - id
| Expr plus id

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Parse Tree

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Parse Tree

Key

terminal

Nonterminal

Rule
used

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence
Prog

Parse Tree

Prog

Key

terminal

Nonterminal

Rule
used

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Prog = begin Stmts end 0

Parse Tree

Prog

Key

terminal

Nonterminal

Rule
used

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Prog = begin Stmts end 0

Parse Tree

Key

terminal

Nonterminal

Rule
used

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Prog = begin Stmts end 0

= begin Stmts semicolon Stmt end

Parse Tree

begin Stmts end

Stmts semicolon Stmt

Key

terminal

Nonterminal

Rule
used

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Derivation Sequence

Prog = begin Stmts end 0

= begin Stmts semicolon Stmt end

= begin Stmt semicolon Stmt end

Parse Tree

begin Stmts end

Stmts semicolon Stmt
Stmt
Key
terminal

Nonterminal

Rule
used

Productions

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt

1

2

3

4. Stmt -> id assign Expr
5. Expr - id

6

| Expr plus id

Parse Tree

begin Stmts end

Stmts semicolon Stmt

Stmt

Derivation Sequence

assign || Expr

= begin Stmts semicolon Stmt end

id
Prog = begin Stmts end 0 e
O

= begin Stmt semicolon Stmt end

= begin id assign Expr semicolon Stmt end

Key

terminal

Nonterminal

Rule
used

Productions Parse Tree

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt begin Stmts end

Stmts semicolon

Expr - id

1
2
3
4. Stmt -> id assign Expr
5
6

| Expr plus id Stmt

Derivation Sequence idﬁign\Expr

assign || Expr

Prog = begin Stmts end

= begin Stmts semicolon Stmt end

= begin Stmt semicolon Stmt end 0 e Key
= begin id assign Expr semicolon Stmt end terminal
= begin id assign Expr semicolon id assign Expr end Nonterminal

Rule
used

Productions Parse Tree

Prog - begin Stmts end
Stmts = Stmts semicolon Stmt

| Stmt begin Stmts end

Stmts semicolon

Expr - id

1
2
3
4. Stmt -> id assign Expr
5
6

| Expr plus id Stmt

Derivation Sequence idﬁign\Expr

assign || Expr

Prog = begin Stmts end

= begin Stmts semicolon Stmt end

= begin Stmt semicolon Stmt end 0 Key
= begin id assign Expr semicolon Stmt end terminal
= begin id assign Expr semicolon id assign Expr end Nonterminal

= begin id assign id semicolon id assign Expr end
Rule
used

Productions Parse Tree

Prog - begin Stmts end

Stmts = Stmts semicolon Stmt

Stmts

begin

end

| Stmt

Expr - id

Stmts semicolon

1
2
3
4. Stmt -> id assign Expr
5
6

| Expr plus id Stmt

Prog = begin Stmts end

Derivation Sequence idﬁign\Expr

= begin Stmts semicolon Stmt end

= begin Stmt semicolon Stmt end 0
= begin id assign Expr semicolon Stmt end
= begin id assign Expr semicolon id assign Expr end
= begin id assign id semicolon id assign Expr end

= begin id assign id semicolon id assign Expr plus id end

assign || Expr

Expr || plus

id

Key

terminal

Nonterminal

Rule
used

Productions Parse Tree

Prog - begin Stmts end

Stmts = Stmts semicolon Stmt

begin Stmts

end

| Stmt

Expr - id

Stmts semicolon

1
2
3
4. Stmt -> id assign Expr
5
6

| Expr plus id Stmt

assign || Expr

Prog = begin Stmts end

Derivation Sequence idﬁign\Expr

= begin Stmts semicolon Stmt end

= begin Stmt semicolon Stmt end e

= begin id assign Expr semicolon Stmt end

= begin id assign Expr semicolon id assign Expr end e

= begin id assign id semicolon id assign Expr end e
= begin id assign id semicolon id assign Expr plus id end

= begin id assign id semicolon id assign id plus id end

Expr || plus

id

[

id

Key

terminal

Nonterminal

Rule
used

A five minute introduction

MAKEFILE

Makefiles: Motivation

* Typing the series of commands to generate our
code can be tedious

— Multiple steps that depend on each other
— Somewhat complicated commands
— May not need to rebuild everything

e Makefiles solve these issues

— Record a series of commands in a script-like DSL

— Specify dependency rules and Make generates the
results

Makefiles: Basic Structure

<target>: <dependency list>
(tab) <command to satisfy target>

Makefiles: Basic Structure

<target>: <dependency list>
(tab) <command to satisfy target>

Example

Example.class: Example.java IO.class
javac Example.java

IO.class: I0.java
javac IO.java

Makefiles: Basic Structure

<target>: <dependency list>
(tab) <command to satisfy target>

Example.class depends on example.java and 10.class
Example P P e

Example.class: Example.java IO.class
javac Example.java

IO.class: I0.java
javac IO.java

Makefiles: Basic Structure

<target>: <dependency list>
(tab) <command to satisfy target>

Example.class depends on example.java and 10.class
Example P P e

Example.class: Example.java IO.class

Jjavac Example -Java Example.class is generated by

javac Example.java

IO.class: I0.java
javac IO.java

Makefiles: Dependencies

Example.class

N

Example.java 10.class

!

|0.java

Example
Example.class: Example.java IO.class

javac Example.java

IO.class: I0.java
javac IO.java

Makefiles: Dependencies

Internal Dependency graph Example.class
Example.java 10.class
|0.java
Example

Example.class: Example.java IO.class
javac Example.java

IO.class: I0.java
javac IO.java

Makefiles: Dependencies

Internal Dependency graph Example.class
Example.java 10.class A file is rebuilt if one of it’s
\l' dependencies changes
10.java
Example

Example.class: Example.java IO.class
javac Example.java

IO.class: I0.java
javac IO.java

Makefiles: Variables

You can thread common configuration values through
your makefile

Makefiles: Variables

You can thread common configuration values through
your makefile

Example
JC = /s/std/bin/javac
JFLAGS = -g

Makefiles: Variables

You can thread common configuration values through
your makefile

Example
JC = /s/std/bin/javac
JFLAGS =-g Build for debug

Makefiles: Variables

You can thread common configuration values through
your makefile

Example
JC = /s/std/bin/javac
JFLAGS =-g Build for debug

Example.class: Example.java I0.class
$(JC) $(JFLAGS) Example.java

IO.class: IO.java
$(JC) $(JFLAGS) IO.java

Makefiles: Phony Targets

* You can run commands via make

— Write a target with no dependencies
(called phony)

— Will cause it to execute the command
every time

Makefiles: Phony Targets

* You can run commands via make

— Write a target with no dependencies
(called phony)

— Will cause it to execute the command
every time

Example
clean:

rm —f *.class

Makefiles: Phony Targets

* You can run commands via make

— Write a target with no dependencies
(called phony)

— Will cause it to execute the command
every time

Example

clean:
rm —f *.class
Ttest:

java —-cp . Test.class

Recap

 We’'ve defined context-free grammars

— More powerful than regular expressions

e Learned a bit about makefiles

* Next time: we’ll look at grammars in more
detail

