
Syntax-Directed	Translation

1

CFGs	so	Far

CFGs	for	Language	Definition
– The	CFGs	we’ve	discussed	can	generate/define	languages	
of	valid	strings

– So	far,	we	start by	building	a	parse	tree	and	end with	
some	valid	string

CFGs	for	Language	Recognition
– Start	with	a	string	𝑤,	and	end	with	yes/no	depending	on	
whether	𝑤 ∈ 𝐿(𝐺)

CFGs	in	a	compiler
– Start	with	a	string	𝑤,	and	end	with	a	parse	tree	for	𝑤 if	
𝑤 ∈ 𝐿(𝐺)

2

Generally	an
abstract-syntax	tree	

rather	than	a	parse	tree

CFGs	for	Parsing

Language	Recognition	isn’t	enough	for	a	parser
–We	also	want	to	translate the	sequence

Parsing	is	a	special	case	of	Syntax-Directed	
Translation
– Translate	a	sequence	of	tokens	into	a	sequence	of	
actions

3

Syntax-Directed	Translation	(SDT)

Augment	CFG	rules	with	translation	rules	(at	
least	1	per	production)
–Define	translation	of	LHS	nonterminal	as	function	of

• Constants
• RHS	nonterminal	translations
• RHS	terminal	value

Assign	rules	bottom-up

4

SDT	Example
CFG Rules
B	->	0 B.trans =	0

|	1 B.trans =	1
|	B 0 B.trans =	B2.trans	*	2
|	B 1 B.trans =	B2.trans	*	2	+	1

Input	string
10110

B

B

B

B

B

1

0

1

1

0

1

2

5
11

22

Translation	is	
the	value	of	
the	input

5

SDT	Example	2:	Declarations
CFG Rules

DList →		ε DList.trans =	“”
|			DList Decl DList.trans = DList2.trans	 +	“	“	+	Decl.trans

Decl →		Type id ; Decl.trans =	id.value
Type →			int

|				bool

Input	string
int xx;
bool yy;

DList

DList

DList Decl

Decl

“”

“	xx”

“	xx		yy”

Translation	is	a	
String	of	ids

Type id

ε
boolType id

int

“xx”

“yy”

6

Exercise	Time	
Only	add	declarations	of	type	int to	the	output	String.
Augment	the	previous	grammar:

7

CFG Rules
DList →		ε DList.trans =	“”

|		Decl DList DList.trans = DList2.trans		+	“	“	+	Decl.trans
Decl →		Type id ; Decl.trans =	id.value
Type →			int

|			bool

Different	nonterms can
have	different	types

Rules	can	have	conditionals

SDT	Example	2b:	ints only
CFG Rules

DList →		ε DList.trans =	“”
|			Decl DList DList.trans = DList2.trans		+	“	“	+	Decl.trans

Decl →		Type id ; Decl.trans =	(Type.trans ?	id.value :	“”)
Type →			int Type.trans =	true

|				bool Type.trans =	false

Input	string
int xx;
bool yy;

DList

DList

DList Decl

Decl

“”

“	xx”

“	xx”

Translation	is	a	
String	of	int ids

only

Type id

ε
boolType id

int

“xx”

“”

8

false

true

Different	nonterms can
have	different	types

Rules	can	use	conditional
expressions

SDT	for	Parsing

In	the	previous	examples,	the	SDT	process	
assigned	different	types	to	the	translation:
– Example	1:	tokenized	stream	to	an	integer	value
– Example	2:	tokenized	stream	to	a	(Java)	String

For	parsing,	we’ll	go	from	tokens	to	an	Abstract-
Syntax	Tree	(AST)

9

Abstract	Syntax	Trees
• A	condensed	form	of	the	
parse	tree

• Operators	at	internal	nodes	
(not	leaves)

• Chains	of	productions	are	
collapsed

• Syntactic	details	omitted

10

+

intlit (2)

Expr

Term

Term * Factor

intlit (8)Factor

Expr

Term

Factor

intlit (5)

(

Expr

)

Term

Factor

int
(5)

add

int
(2)

mult

int
(8)

int
(5)

add

int
(2)

mult

int
(8)

Parse	Tree

Example:	(5+2)*8

Exercise	#2
• Show	the	AST	for:

(1	+	2)	*	(3	+	4)	*	5	+	6

11

Expr				->	 Expr	+	Term
| Term	

Term			->	 Term	*	Factor
| Factor

Factor	->		intlit
|				(Expr)

Expr	->	Expr	+	Term								Expr1.trans	=	MkPlusNode(Expr2.trans,	Term.trans)

AST	for	Parsing
In	previous	slides	we	did	the	translation	in	two	steps

– Structure	the	stream	of	tokens	into	a	parse	tree
– Use	the	parse	tree	to	build	an	abstract-syntax	tree;	then	throw	away	

the	parse	tree

In	practice,	we	will	combine	these	into	one	step

Question: Why	do	we	even	need	an	AST?	
– More	of	a	“logical”	view	of	the	program:	the	essential	structure
– Generally	easier	to	work	with	an	AST	(in	the	later	phases	of	name	

analysis	and	type	checking)
• no	cascades	of	exp→ term	→ factor	→ intlit,	which	was	introduced	to	capture	

precedence	and	associativity

12

AST	Implementation

How	do	we	actually	represent	an	AST	in	code?

13

ASTs	in	Code
Note	that	we’ve	assumed	a	field-like	structure	in	our	SDT	actions:
Expr	->	Expr	+	Term								Expr1.trans	=	MkPlusNode(Expr2.trans,	Term.trans)

In	our	parser,	we’ll	define	a	class	for	each	kind	of	ADT	node,	and	
create	a	new	node	object	in	some	rules

– In	the	above	rule	we	would	represent	the	Expr1.trans	value	via	the	class

– For	ASTs:	when	we	execute	an	SDT	rule
• we	construct	a	new	node	object,	which	becomes	the	value	of	LHS.trans
• populate	the	node’s	fields	with	the	translations	of	the	RHS	nonterminals

14

public class PlusNode extends ExpNode {
public ExpNode left;
public ExpNode right;

}

How	to	implement	ASTs
Consider	the	AST	for	a	simple	language	of	Expressions

15

Input
1	+	2

Tokenization
intlit plus	intlit

Parse	Tree

Expr

intlit
1

plus

AST

+

1 2

Naïve AST	Implementation

class PlusNode
IntNode left;
IntNode right;

}

Expr Term

Term

Factor intlit
2

Factor

class IntNode{
int value;

}

How	to	implement	ASTs
Consider	AST	node	classes

– We’d	like	the	classes	to	have	a	common	inheritance	tree

16

AST

+

1 2

Naïve AST	Implementation

class PlusNode
{ IntNode left;

IntNode right;
}

class IntNode
{ int value;
}

PlusNode
IntNode left:	
IntNode right:		

Naïve Java AST

IntNode
int
value:

IntNode
int
value:	1 2

How	to	implement	ASTs
Consider	AST	node	classes

– We’d	like	the	classes	to	have	a	common	inheritance	tree

17

AST

+

1 2

Naïve	AST	Implementation

class PlusNode
{ IntNode left;

IntNode right;
}

class IntNode
{ int value;
}

PlusNode
ExpNode left:	
ExpNode right:		

Better	Java	AST

Make	these	extend	
ExpNode

IntNode
int
value:

IntNode
int
value:	1 2

Make	these	fields
be	of	class	ExpNode

Implementing	ASTs	for	Expressions

18

PlusNode
ExpNode left:	
ExpNode right:		

IntNode
value:

IntNode
value:	1 2

CFG
Expr ->	 Expr +	Term

| Term	
Term			->	 Term	*	Factor

| Factor
Factor	->		intlit

|				(Expr)

Example:	1	+	2

Expr

intlit
1

plusExpr Term

Term

Factor intlit
2

Factor

Translation	Rules
Expr1.trans	=	new	PlusNode(Expr2.trans,	Term.trans)
Expr.trans =	Term.trans
Term1.trans	=	new	TimesNode(Term2.trans,	Factor.trans)
Term.trans =	Factor.trans
Factor.trans =	new	IntNode(intlit.value)
Factor.trans =	Expr.trans

An	AST	for	an	code	snippet

19

void foo(int x, int y){
if (x == y){

return;
}
while (x < y){

cout << “hello”;
x = x + 1;

}
}

FuncBody

if while return

==

x y

return <

x y

print

“hello”

=

x +

x 1

Summary	(1	of	2)

Today	we	learned	about
– Syntax-Directed	Translation	(SDT)

• Consumes	a	parse	tree	with	actions
• Actions	yield	some	result

– Abstract	Syntax	Trees	(ASTs)
• The	result	of	an	SDT	performed	during	parsing	in	a	compiler
• Some	practical	examples	of	ASTs

20

Summary	(2	of	2)

21

Scanner

Language	abstraction:	RegExp
Output:	Token	Stream
Tool:	JLex
Implementation:	Interpret	DFA	using	table	(for	𝛿),	recording

most_recent_accepted_position and	most_recent_token

Parser

Language	abstraction:	CFG
Output:	AST	by	way	of	a	syntax-directed	translation
Tool:	Java	CUP
Implementation:	??? Next	week

Next	week

