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ABSTRACT
We introduce dataset multiplicity, a way to study how inaccuracies,
uncertainty, and social bias in training datasets impact test-time
predictions. The dataset multiplicity framework asks a counterfac-
tual question of what the set of resultant models (and associated
test-time predictions) would be if we could somehow access all
hypothetical, unbiased versions of the dataset. We discuss how to
use this framework to encapsulate various sources of uncertainty in
datasets’ factualness, including systemic social bias, data collection
practices, and noisy labels or features. We show how to exactly
analyze the impacts of dataset multiplicity for a specific model
architecture and type of uncertainty: linear models with label er-
rors. Our empirical analysis shows that real-world datasets, under
reasonable assumptions, contain many test samples whose predic-
tions are affected by dataset multiplicity. Furthermore, the choice
of domain-specific dataset multiplicity definition determines what
samples are affected, and whether different demographic groups
are disparately impacted. Finally, we discuss implications of dataset
multiplicity for machine learning practice and research, including
considerations for when model outcomes should not be trusted.

CCS CONCEPTS
• Computing methodologies→ Machine learning approaches;
• General and reference → Evaluation; • Social and profes-
sional topics→ Computing / technology policy; • Theory of
computation→Machine learning theory.
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1 INTRODUCTION
Datasets that power machine learning algorithms are supposed to
be accurate and fully representative of the world, but in practice,
this level of precision and representativeness is impossible [27, 44].
Datasets display inaccuracies — which we use as a catch-all term for
both errors and nonrepresentativeness — due to sampling bias [10],
human errors in label or feature transcription [39, 63], and some-
times deliberate poisoning attacks [3, 52]. Datasets can also reflect
undesirable societal inequities. But more broadly, datasets never
reflect objective truths because the worldview of their creators is
imbued in the data collection and postprocessing [27, 42, 44]. Addi-
tionally, seemingly-trivial decisions in the data collection or annota-
tion process influence exactly what data is included, or not [42, 45].
In psychology, these minute decisions have been termed ‘researcher
degrees of freedom,’ i.e., choices that can inadvertently influence
conclusions that one ultimately draws from the data analysis [55].
In this paper, we study how unreliable data of all kinds impacts
the predictions of the models trained on such data and frame this
analysis as a ‘multiplicity problem.’

Multiplicity occurs when there are multiple explanations for
the same phenomenon. Many recent works in machine learning
have studied predictive multiplicity, which occurs when multiple
models have equivalent accuracy, but still give different predictions
to individual samples [14, 33, 51]. A consequence of predictive mul-
tiplicity is procedural unfairness concerns; namely, defending the
choice of model may be challenging when there are alternatives
that give more favorable predictions to some individuals [6]. But
model selection is just one source of multiplicity. In this paper, we
argue that it makes sense to consider training datasets through a
multiplicity lens, as well. To do so, we will consider a set of datasets.
Intuitively, this set captures all datasets that could have been col-
lected if the world was slightly different, i.e., if we could correct the
unknown inaccuracies in the data. We illustrate this idea through
the following example.

Example dataset multiplicity use case. Suppose a company wants
to deploy a machine learning model to decide what to pay new
employees. They have access to current employees’ backgrounds,
qualifications, and salaries. However, they are aware that in various
societies, including the United States, there is a gender wage gap,
i.e., systematic disparities in the average pay between men and
women [65]. Economists believe that while some of the gap is at-
tributable to factors like choice of job industry, overt discrimination
also plays a role [7]. But even though we know that discrimination
exists, it is very difficult to adjudicate whether specific compensa-
tion decisions are affected by discrimination.

The original dataset is shown, along with the best-fit model 𝑓 ,
in Figure 1(a). Note that under 𝑓 , the proposed salary for a new
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employee x is $73,000. But an alternate possibility of the ‘ground-
truth,’ debiased dataset is shown in Figure 1(b). In the world that
produced this dataset, perhaps there is no gender discrimination, so,
ideally, we would learn from this dataset and yield model 𝑔, which
places x’s salary at $78,000.

The modified dataset in Figure 1(b) is just one example of how
different data collection practices — in this case, collecting data from
an alternate universe where there is no gender-based discrimination
in salaries — can lead to various datasets that produce models that
make conflicting predictions for individual test samples.

But what if we could consider the entire range of candidate
‘ground-truth’ datasets? For example, all datasets where eachwoman’s
salary may be increased by up to $10,000 to account for the im-
pacts of potential gender discrimination. Figure 1(c) shows what
we could hypothetically do if that set of datasets were available —
and we had unlimited computing power. Rather than outputting
a single model, we bound the range of models (the highlighted
region) obtainable from alternate-universe training datasets. We
could then use this set of models to obtain a confidence interval for
x’s prediction - in this case, $68,000-$83,000. This range corresponds
to the dataset multiplicity robustness of x, that is, the sensitivity of
the model’s prediction on x given specific types of changes in the
training dataset.

Work in algorithmic stability, robust statistics, and distributional
robustness has attempted to quantify how varying the training
data impacts downstream predictions. However, as illustrated by
the example, we aim to find the pointwise impact of uncertainty in
training data rather than studying robustness purely in aggregate,
and we want our analysis to encompass the worst-case (i.e., adver-
sarial) reasonable alternate models, unlike the purely statistical
approaches.

Our vision for dataset multiplicity in machine learning. The pro-
posed solution in the above example suffers from a number of
drawbacks. First, is the solution solving the right problem? That is,
is dataset multiplicity a better choice for reasoning about unreliable
data than existing learning theory techniques? Second, how do we
define what is a reasonable alternate-universe dataset to include
in the set of datasets? Third, even if we had a set of datasets en-
compassing all alternate universes, how would we compute the
graph in Figure 1(c)? And finally, what are the implications for
fair and trustworthy machine learning? How can, and should, we
incorporate dataset multiplicity into machine learning research,
development and deployment?

We address all of these concerns in this paper through the fol-
lowing contributions:

Conceptual Contribution 1 We formally define the dataset
multiplicity problem and give several example use cases
to provide intuition of how to define the set of reasonable
alternate-universe datasets (Section 2)

Theoretical Contribution Wepresent a novel technique that,
for linear models with label errors, can exactly characterize
the range of a test sample’s prediction. We also show how
to over-approximate the range of models (i.e., Figure 1(c))
(Section 3)

Experimental Contribution We use our approaches to eval-
uate the effects of dataset multiplicity on real-world datasets

with a particular eye towards how demographic subgroups
are differently affected (Section 4)

Conceptual Contribution 2 We explore the implications of
dataset multiplicity (Section 5)

2 THE DATASET MULTIPLICITY PROBLEM
We formalize dataset multiplicity as a technique that conceptualizes
uncertainty and societal bias in training datasets and discuss how
to use dataset multiplicity as a tool to critically assess machine
learning models’ outputs.

We assume the following supervised machine learning setup: we
start with a fixed, deterministic learning algorithm𝐴 and a training
dataset 𝐷 = (X, y) with features X ∈ R𝑛×𝑑 and outputs y ∈ R𝑛 .1
We run 𝐴 on 𝐷 to get a model 𝑓 , that is, 𝑓 = 𝐴(𝐷). Given a test
sample x, we obtain an associated prediction 𝑦 = 𝑓 (x).

2.1 Defining Dataset Multiplicity
We describe dataset multiplicity for a dataset 𝐷 with a dataset
multiplicity model M(𝐷). Intuitively, we want M(𝐷) to be the
smallest set that contains all conceivable alternatives to 𝐷 . We
present a few examples ofM:

M under societally-biased labels. We continue the example from
the introduction. Suppose we believe that women in a dataset are
underpaid by up to $10,000 each. In this case, we defineM(𝐷) as
the set of all datasets 𝐷′ with identical features to 𝐷 , such that all
labels for men in 𝐷′ are identical to the labels in 𝐷 and all labels for
women in 𝐷′ are the same as in 𝐷 , or increased by up to $10,000.

M under noisymeasurement. Suppose a dataset contains aweight
feature and where data was collected using a tool whose measure-
ments may be inaccurate by up to 5 grams. If weight is the 𝑘th
feature, then we can representM(𝐷) as the set of all datasets 𝐷′
that are identical to 𝐷 except that feature 𝑘 may differ by up to 5
grams.

M given unreliable feature data. People commonly misreport
their height on dating profiles [61]: men add 0.5"(±0.88) to their
height, on average, while women add 0.17"(±0.98). So, for a given
man with reported height ℎ we can be 95% confident that his height
is in [ℎ − 1.26, ℎ + 2.26] and for a women with height ℎ, [ℎ −
1.79, ℎ + 2.13]. If a dataset contains height (as self-reported via
dating apps) in position 𝑖 , then M(𝐷) will contain all datasets
𝐷′ that are equivalent to 𝐷 , except that each sample’s 𝑖th feature
may be modified according to the gender-specific 95% confidence
intervals.

M with missing data. Getting a representative population sam-
ple can be a challenge for many data collection tasks. Suppose we
suspect that a dataset underrepresents a specific minority popula-
tion by up to 20 samples. If the undersampled group has feature
𝑖 = 𝑘 , thenM(𝐷) will be the set of datasets 𝐷′ such that 𝐷 ⊆ 𝐷′,
there are at most 20 additional samples in 𝐷′, and all new samples
have feature 𝑖 = 𝑘 . (We additionally assume that all new samples are
in the proper feature space, i.e., that they are valid data samples.)

1𝐴 is inclusive of all modeling steps including preprocessing the training data, selecting
the model hyperparameters through a holdout validation set (segmented off from 𝐷),
etc.
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Figure 1: Salary prediction: (a) Training dataset and resultant model 𝑓 . The prediction for the test sample x is $73,000. (b) Training
dataset with two label modifications (in red) along with the newly-learned model (𝑔). The prediction for the test sample x is
now about $78,000. (c) 𝐻 contains the set of models ℎ that we could have obtained based on various small modifications to the
provided dataset. We see that x’s prediction can be anywhere between $68,000 and $83,000 (blue dotted line).

2.2 Learning with Dataset Multiplicity
We define 𝐴(M(𝐷)) to be the set of all models obtainable by train-
ing with some dataset in M(𝐷), i.e., 𝐴(M(𝐷)) = {𝑓 | ∃𝐷′ ∈
M(𝐷) s.t. 𝐴(𝐷′) = 𝑓 }. Given this set of models, we can inquire
about the range of possible predictions for a test sample x. In par-
ticular, we can ask whether x is robust to dataset multiplicity, that
is, will it receive a different prediction if we started with any other
model inM(𝐷)? Formally, we say that a deterministic algorithm
𝐴, a dataset 𝐷 , and a dataset multiplicity modelM(𝐷) are 𝜖-robust
to dataset multiplicity on a sample x if Equation (1) holds. (Equiva-
lently, we will say that x is 𝜖-robust.)

𝐷′ ∈ M(𝐷) =⇒ 𝐴(𝐷′) (𝑥) ∈ [𝐴(𝐷) (𝑥) − 𝜖,𝐴(𝐷) (𝑥) + 𝜖] (1)

Example 2.1. Returning to the example from the introduction, the
test sample x originally receives a prediction of $78,000 (Figure 1a).
Figure 1c shows that x is not 𝜖-robust for 𝜖 = $5,000, since it can
receive any prediction in [68,000, 83,000], and 78,000−68,000 > 5,000.
However, x is 𝜖-robust for 𝜖 = 10,000.

If a sample x is 𝜖-robust, then we can be certain that its predic-
tion will not change by more than 𝜖 due to dataset multiplicity. In
practice, this may mean we can deploy the prediction with greater
confidence, or less oversight. Conversely, if x is not 𝜖-robust, then
this means there is some plausible alternate training dataset that,
when used to train a model, would result in a different prediction
for x. In this case, the prediction on x may be less trustworthy —
we discuss options for dealing with non-robustness in Section 5.

2.3 Choosing a Dataset Multiplicity Model
We have discussed how to formalizeM(𝐷) given various concep-
tions of dataset inaccuracy; however, we have not discussed how
to determine in what ways a given dataset may be inaccurate. In
practice, these judgments should be made in collaboration with
domain experts, both within the data science and social science
realms. Still, there is no one normative, ‘right’ answer of how to
defineM for a given situation — any judgment will be normative.
Furthermore, there may be multiple ways to describe the same
social phenomenon, as illustrated by the following example:

Example 2.2. The first example in Section 2.1 formalizes gen-
der discrimination in salaries. When index 0 is gender and value 1
is woman, we define M as M(𝐷) = {(X, y′) | (X𝑖 )0 = 1 =⇒

𝑦′
𝑖
∈ [𝑦𝑖 , 𝑦𝑖 + 10,000] and (X𝑖 )0 ≠ 1 =⇒ 𝑦𝑖 = 𝑦′

𝑖
}. However,

what if we frame the problem as men are overpaid, rather than
women are underpaid? In that case, a more appropriate formal-
ization would be M(𝐷) = {(X, y′) | (X𝑖 )0 = 0 =⇒ 𝑦′

𝑖
∈

[𝑦𝑖 − 10,000, 𝑦𝑖 ] and (X𝑖 )0 ≠ 0 =⇒ 𝑦𝑖 = 𝑦′
𝑖
}.

As we will see in Section 4.2, this variability in framing can
affect the conclusions we draw about dataset multiplicity’s impacts,
highlighting the need for thoughtful reflection and interdisciplinary
collaboration when choosingM.

3 THE DATASET MULTIPLICITY PROBLEM
FOR LINEAR MODELS WITH LABEL
ERRORS

We consider a special case of the dataset multiplicity problem in-
troduced in Section 2, namely, linear models given noise or errors
in the training data’s labels. (We use the term ‘label’ in the context
of both linear regression and classification.) We present this anal-
ysis to begin to characterize the impact of dataset multiplicity on
real-world datasets and models, and to provide an example for how
we envision the study of dataset multiplicity’s impacts to continue
in future work.

We focus on linear models with label errors for a few reasons.
First, linear models are well-studied and used in practice, especially
with tabular data, which is common in areas with societal implica-
tions. Furthermore, complicated models like neural nets can often
be conceived of as encoders followed by a final linear layer, making
our results more widely applicable. Second, label errors and noise
are common, well-documented realities in many applications [39].
Finally, as we will see, the closed-form solution for linear regression
allows us to solve this problem exactly, a challenge that is currently
impractical even for other simple, widely-studied model families
like decision trees [35].

3.1 Formulating the Dataset Label Multiplicity
Problem

We assume our dataset is of the form𝐷 = (X, y) with feature matrix
X ∈ R𝑛×𝑑 and output vector y ∈ R𝑛 . (Even though y is continuous,
we borrow terminology from classification to also refer to 𝑦𝑖 as the
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label for X𝑖 .) At times, we will reference the interval domain, IR,
that is, IR = {[𝑎, 𝑏] | 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏}.

ParameterizingM given label perturbations. We parameterize
M given label noise with three parameters, 𝑘 , Δ, and 𝜙 . First, 𝑘 ∈ N
is an upper bound on the number of training samples that have
an inaccurate label. Second, Δ ∈ IR𝑛 stores the amount that each
label can change. The 𝑖th element of Δ is [𝛿𝑙

𝑖
, 𝛿𝑢

𝑖
], signifying that

the true value of 𝑦𝑖 falls in the interval [𝑦𝑖 + 𝛿𝑙𝑖 , 𝑦𝑖 + 𝛿
𝑢
𝑖
]. Finally,

𝜙 is predicate over the feature space specifying whether we can
modify a given sample when, for example, label errors are limited
to a population subgroup. Given 𝑘 , Δ, and 𝜙 we defineM as

M𝑘,Δ,𝜙 ((X, y)) = {(X, y′) | ∥1[y ≠ y′] ∥1 ≤ 𝑘∧
∀𝑖 .𝑦𝑖 ≠ 𝑦′𝑖 =⇒ 𝜙 (x𝑖 ) ∧ ∀𝑖 .𝑦′𝑖 − 𝑦𝑖 ∈ 𝛿𝑖 }

We describe 𝑘 , Δ, and 𝜙 for the following examples:

Example 3.1. We assume that women in a salary dataset are
underpaid by up to $10,000 each. Since we place no limit on howmany
labels may be incorrect — beyond the proportion of women in the
dataset — we set 𝑘 = 𝑛, the total number of samples. Since labels may
be underreported by up to $10,000, we setΔ = [0, 10,000]𝑛 . And finally,
since x0 = 1 means that x is a woman, we define 𝜙 (x) = 1[x0 = 1]
since we assume that only women’s salaries may change.

Example 3.2. (Spam filter) Suppose a dataset 𝐷 = (X, y) contains
emails X that are labeled as not spam or spam (i.e., y ∈ {−1, 1}𝑛).
From manual inspection of a small portion of the dataset, we estimate
that up to 2% of the emails are mislabeled. Since up to 2% of the labels
may be incorrect, we set 𝑘 = 0.02𝑛. As the labels are binary, we can
modify each label by +/−2, depending on its original label.2 Thus,
Δ = [𝑎, 𝑏]𝑛 where [𝑎, 𝑏]𝑖 = [0, 2] when 𝑦𝑖 = −1 and [𝑎, 𝑏]𝑖 = [−2, 0]
when 𝑦𝑖 = 1. Finally, 𝜙 (x) = 1 since there are no limitations on which
samples have inaccurate labels.

3.2 Linear Regression Overview
Our goal is to find the optimal linear regression parameter \ , i.e.,

\ = argmin
\ ∈R𝑑

(\𝑇X − y)2 (2)

Least-squares regression admits a closed-form solution3

\ = (X⊤X)−1X⊤y (3)

for which we will analyze dataset label multiplicity. We work with
the closed-form solution, instead of a gradient-based one, as it is
deterministic and holistically considers the whole dataset, allowing
us to exactly measure dataset multiplicity by exploiting linearity
(Rosenfeld et al. make an analogous observation [47]). On medium-
sized datasets and modern machines, computing this closed-form
solution is efficient.

Given a solution, \ , to Equation (2), we output the prediction
𝑦 = \⊤x for a test point x.

2The linearity of the algorithm ensures that all labels will remain valid, i.e., either -1
or 1.
3In practice, we implement ridge regression, \ = (X𝑇X − _𝐼 )−1X𝑇 y, for greater
stability.

Algorithm 1 Find the allowable perturbation that makes 𝑦 as large
as possible, i.e., max(X,ỹ) ∈M𝑘,Δ,𝜙 ( (X,y) ) zỹ

Require: z ∈ R𝑛, (X, y) ∈ (R𝑛×𝑑 ,R𝑛),Δ ∈ IR𝑛 with 0 ∈ Δ, 𝑘 ≥ 0,
𝜙 : R𝑑 → {0, 1}
y𝑢 ← y
if 𝑧𝑖 ≥ 0 then 𝜌+

𝑖
← 𝑧𝑖𝛿

𝑢
𝑖

else 𝜌+
𝑖
← 𝑧𝑖𝛿

𝑙
𝑖

if not 𝜙 (x𝑖 ) then 𝜌+
𝑖
← 0

Let 𝜌+
𝑖1
, . . . , 𝜌+

𝑖𝑙
be the 𝑙 largest elements of 𝜌+ by absolute value

for each 𝜌+
𝑖 𝑗
do

if 𝑧𝑖 𝑗 ≥ 0 then 𝑦𝑢
𝑖 𝑗
← 𝑦𝑢

𝑖 𝑗
+ 𝛿𝑢

𝑖 𝑗
else 𝑦𝑢

𝑖 𝑗
← 𝑦𝑢

𝑖 𝑗
+ 𝛿𝑙

𝑖 𝑗

return zy𝑢

Extension to binary classification. Given a binary output vector
y ∈ {−1, 1}𝑛 , we find \ in the same way, but when making test-time
predictions, use 0 as a cutoff between the two classes, i.e., given
parameter vector \ and test sample x, we return 1 if \𝑇 x > 0 and
−1 otherwise. To evaluate robustness for binary classification, we
care about whether the predicted label can change when training
with any dataset 𝐷′ ∈ M(𝐷). Thus, if \𝑇 x ≥ 0, then x is dataset
multiplicity robust if there is no model \ ′ such that (\ ′)𝑇 x < 0
(and vice-versa when \𝑇 x < 0).

3.3 Exact Pointwise Solution
Given a model \ and test sample x we can expand and rearrange
\⊤x as follows:

𝑦 = \⊤x = ((X⊤X)−1X⊤y)⊤x = (x⊤ (X⊤X)−1X⊤)︸                ︷︷                ︸
z

y

This form is useful since it isolates y, which under our dataset
multiplicity assumption contains all of the dataset’s uncertainty.
We will use z to denote x⊤ (X⊤X)−1X⊤. Thus, our goal is to find

(_ , y′) = argmax
(_ ,ỹ) ∈M𝑘,Δ,𝜙 (𝐷 )

|zỹ − zy| (4)

and then to check whether ∥𝑦 − zy′∥ < 𝜖 . If so, then we will
have proved that the prediction for x is 𝜖-robust underM𝑘,Δ,𝜙 (𝐷).
(Conversely, if ∥𝑦 − zy′∥ ≥ 𝜖 , then y′ is a counterexample proving
that x is not 𝜖-robust underM𝑘,Δ,𝜙 (𝐷).)

Solving for Equation (4). One option is to formulate Equation (4)
as a mixed-integer linear program. However, due to the vast number
of possible label perturbation combinations, this approach is prohib-
itively slow (we provide a runtime comparison with our approach in
the appendix). Instead, we use the algorithmic technique presented
in Algorithm 1. Intuitively, one iteration of the algorithm’s inner
loop identifies what output 𝑦𝑖 ∈ y to modify so that we maximally
increase zy. After 𝑘 output modifications — or once all outputs
eligible for modification under 𝜙 have been modified — we check
whether the new prediction, 𝑦′, has 𝑦′ > \𝑇 x + 𝜖 . If this is the case,
we stop because we have shown that x is not 𝜖-dataset multiplicity
robust. Otherwise, we repeat a variation of the algorithm (see the
appendix) to maximally decrease zy and check whether we can
achieve 𝑦′ < \𝑇 x − 𝜖 .
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Extension to binary classification. The binary classification ver-
sion of the algorithm works identically, except we check whether 𝑦
rounds to a different class than \𝑇 x to ascertain x’s robustness.

3.4 Over-Approximate Global Solution
In Section 3.3, we described a procedure to find the exact dataset
multiplicity range for a test point x. For every input x for which
we want to know the dataset multiplicity, the procedure effectively
relearns the worst-case linear regression model for x. In practice,
we may want to explore the dataset multiplicity of a large number
of samples, e.g., a whole test dataset, or we may need to perform
online analysis.

We would like to understand the dataset multiplicity range for a
large number of test points without performing linear regression
for every input. We formalize capturing all linear regression models
we may obtain as follows:

Θ = {\ | \ = (X⊤X)−1X⊤ỹ for some (X, ỹ) ∈ M𝑘,Δ,𝜙 (𝐷)}

To see whether x is 𝜖-robust, we check whether \̃⊤x ∈ [\⊤x −
𝜖, \⊤x + 𝜖] for all \̃ ∈ Θ. For ease of notation, let C = (X⊤X)−1X⊤.
Note that C ∈ R𝑚×𝑛 , while z ∈ R1×𝑛 .

Challenges. The set of weights Θ is not enumerable and is non-
convex (proof in the appendix). Our goal is to representΘ efficiently
so that we can simultaneously apply all weights \ ∈ Θ to a point x.
Our key observation is that we can easily compute a hyperrectangu-
lar over-approximation of Θ. In other words, we want to compute
a set Θ𝑎 such that Θ ⊆ Θ𝑎 . Note that the set Θ𝑎 is an interval
vector in IR𝑛 , since interval vectors represent hyperrectangles in
Euclidean space.

This approach results in an overapproximation of the true dataset
multiplicity range for a test sample x — that is, some values in
the range may not be attainable via any allowable training label
modification.

Approximation approach. We will iteratively compute compo-
nents of the vector Θ𝑎 by finding each coordinate 𝑖 as the following
interval, where c𝑖 are the column vectors of C:

Θ𝑎
𝑖 =

[
min

(X,y′ ) ∈M𝑘,Δ,𝜙 (𝐷 )
c𝑖y′, max

(X,y′ ) ∈M𝑘,Δ,𝜙 (𝐷 )
c𝑖y′

]
To find miny′∈M𝑘,Δ (y) c𝑖y

′, we use the same process as in Sec-
tion 3.3. Specifically, we use Algorithm 1 to compute the lower
and upper bounds of each Θ𝑎

𝑖
. We show in the appendix that the

interval matrix Θ𝑎 is the tightest possible hyperrectangular over-
approximation of the set \ .

Evaluating the impact of dataset multiplicity on predictions. Given
Θ𝑎 as described above, the output for an input x is provably robust
to dataset multiplicity if

(Θ𝑎)⊤x ⊆ [\⊤x − 𝜖, \⊤x + 𝜖] (5)

Note that (Θ𝑎)⊤x is computed using standard interval arithmetic,
e.g., [𝑎, 𝑏] + [𝑎′, 𝑏′] = [𝑎 + 𝑎′, 𝑏 + 𝑏′]. Also note that the above is a
one-sided check: we can only say that the model’s output given x
is robust to dataset multiplicity, but because Θ𝑎 is an overapproxi-
mation, if Equation (5) does not hold, we cannot conclusively say
that the model’s prediction on x is subject to dataset multiplicity.

4 EMPIRICAL EVALUATION
We use Python to implement the algorithms from Sections 3.3
and 3.4 for measuring label-error multiplicity in linear models.4
To speed up the evaluation, we use a high-throughput computing
cluster. (We request 8GB memory and 8GB disk, but all experiments
are feasible to run on a standard laptop.) This approach does not
have a direct baseline with which to compare, as ours is the first
work to propose and analyze the dataset-multiplicity problem.

Datasets and tasks. We analyze our approach on three datasets:
the Income prediction task from the FolkTables project [20], the
Loan Application Register (LAR) from the Home Mortgage Disclo-
sure Act publication materials [22], and MNIST 1/7 (i.e., the MNIST
dataset limited to 1’s and 7’s) [32]. We divide each dataset into
train (80%), test (10%), and validation (10%) datasets and repeat
all experiments across 10 folds, except when a standard train/test
split is provided, as with MNIST. We perform classification on the
Income dataset (whether or not an individual earned over $50,000),
on LAR (whether or not a home mortgage loan was approved),
and on MNIST (binary classification limited to 1’s and 7’s). Ad-
ditionally, in the appendix we evaluate the regression version of
Income by predicting an individual’s exact income. For all of the
Income experiments, we limit the dataset to only include data from
a single U.S. state to speed computations. In Sections 4.1 and 4.3 we
present results from a single state, Wisconsin, while in Section 4.2
we compare results across five different US states.

Accuracy-Robustness Tradeoff. There is a tradeoff between ac-
curacy and robustness to dataset multiplicity that is controlled
by the regularization parameter _ in the ridge regression formula
\ = (X⊤X − _𝐼 )−1X⊤y. Larger values of _ improve robustness at
the expense of accuracy. Figure 2 illustrates this tradeoff. All results
below, unless otherwise stated, use a value of _ that maximizes
accuracy.

Experiment goals. Our core objective is to see how robust linear
models are to dataset label multiplicity. We measure this sensitiv-
ity with the robustness rate, that is, the fraction of test points that
receive invariant predictions (within a radius of 𝜖) given a certain
level of label inaccuracies. The robustness rate is a proxy for the sta-
bility of a modeling process under dataset multiplicity, so knowing
this rate — and comparing it across various datasets, demographic
groups, and algorithms — can help ML practitioners analyze the
trustworthiness of their models’ outputs. In Section 4.1, we describe
the overall robustness results for each dataset. Then, in Section 4.2,
we perform a stratified analysis across demographic groups and
show how varying the dataset multiplicity model definition can
significantly change data’s vulnerability to dataset multiplicity. Fi-
nally, in Section 4.3, we discuss results of the over-approximate
approach and how it can be used to evaluate dataset multiplicity
robustness.

4.1 Robustness to Dataset Multiplicity

Key insights:When a small percentage (e.g., 1%) of labels are
incorrect, a significant minority of test samples are not robust to

4Our code is available at https://github.com/annapmeyer/linear-bias-certification.

https://github.com/annapmeyer/linear-bias-certification
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Figure 2: Fraction of test samples whose predictions are robust to dataset multiplicity for different accuracy/robustness trade-
offs as controlled by the ridge regression parameter _. The different lines within each graph plot robustness for different
accuracy/robustness trade-offs. The line labeled 0.0 corresponds to the value of _ that achieves maximal accuracy, the line
labeled 0.2 corresponds to the value of _ that sacrifices a 0.2 percentage-point drop in accuracy for more robustness, etc. We
include the specific accuracy values in the appendix. The datasets for each graph are (a) LAR, (b) Income, and (c) MNIST 1/7.

dataset multiplicity, raising questions about the reliability of the
models’ predictions.

Table 1 shows the fraction of test points that are dataset multiplicity
robust for classification datasets at various levels of label inaccu-
racies. For each dataset, the robustness rates are relatively high
(> 80%) when fewer than 0.25% of the labels can be modified, and
stay above 50% for 1% label error.

Despite globally high robustness rates, we must also consider the
non-robust data points. In particular, we want to emphasize that for
Income and LAR, each non-robust point represents an individual
whose classification hinges on the labels of only a small number of
training samples. That is, given the assumed uncertainty about the
labels’ accuracy, it is plausible that a ‘clean’ dataset would output
different test-time predictions for these samples. Some data points
will almost surely fall into this category — if not, that would mean
the model was independent from the training data, which is not
our goal! However, if a sample is not robust to a small number of
label modifications, perhaps the model should not be deployed on
that sample. Instead, if the domain is high-impact, the sample could
be evaluated by a human or auxiliary model (see Section 5 for more
discussions on how to handle non-robust test samples).

Returning to Table 1, many data points are not robust at low
label error rates, e.g., when 1% of labels may be wrong, 49.3% of
Income test samples are not robust. Likewise, 38.7% of LAR test
samples can receive the opposite classification if the correct subset
of 1% of labels change. These low robustness rates call into question
the advisability of using linear classifiers on these datasets unless
one is confident that label accuracy is very high.

4.2 Disparate Impacts of Dataset Multiplicity
In Section 4.1, we showed dataset multiplicity robustness results
given the assumption that all labels in the training dataset were
potentially inaccurate. However, in practice, label errors may be
systemic. In particular, two of the datasets we analyzed in Section 4.1
contain data that may display racial or gender bias. We hypothesize
that the Income dataset likely reflects trends where women and
people of color are underpaid relative to white men in the United
States, and that the LAR dataset may similarly reflect racial and
gender biases on the part of mortgage lending decision makers. To
leverage this refined understanding of potential inaccuracies in the

labels, in this section we evaluate test data robustness under the
following two targeted dataset multiplicity paradigms:
• ‘Promoting’ the disadvantaged group: We restrict label modi-
fication to members of the disadvantaged group (i.e., Black
people or women); furthermore, we only change labels from
the negative class to the positive class.
• ‘Demoting’ the advantaged group: We restrict label modifi-
cation to the advantaged group (i.e., White people or men);
furthermore, we only allow change labels from the positive
class to the negative class. This setup is compatible with the
worldview (for example) that men are overpaid.

Before delving into the results, we want to acknowledge that this
analysis has a few shortcomings. First, for simplicity we use binary
gender (male/female) and racial (White/Black) breakdowns. Clearly,
this dichotomy fails to capture complexities in both gender and
racial identification and perceptions. Second, the targeted dataset
multiplicity models that we use also over-simplify both how dis-
crimination manifests and how it can interact with other identities
not captured by the data. Finally, we are not social scientists or
domain experts and it is possible that the folk wisdom we rely on
to propose data biases does not fully capture the patterns in the
world. Rather, readers should treat this section as an analysis of
‘toy phenomena’ meant to illustrate how our technique can be used
for real-world tasks.

Basic results. First, we present the overall dataset multiplicity
robustness rates for the various multiplicity definitions.

Key insights: Limiting label errors to a subset of the train-
ing dataset (i.e., refiningM) yields higher dataset multiplicity
robustness rates. However, the exact choice ofM is significant.

Figure 3 shows that in all cases the targeted multiplicity defini-
tion yields significantly higher overall robustness rates than a broad
multiplicity definition does. Notably, limiting all label perturbations
to one racial group for Income greatly affects robustness: using the
original multiplicity definition (no targeting), no test samples are
robust when 12% of labels can be modified. However, when limiting
label errors to Black people with the negative label, the robustness
rate remains over 95% — it turns out this is not surprising, since
fewer than 2% of the data points have race=Black. However, more
than 80% of samples have race=White, and limiting label changes to
White people with the positive label still yields over 60% robustness
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Table 1: Robustness rates (percentage of test dataset whose predicted label cannot change under dataset label multiplicity) for
classification datasets given different rates of inaccurate labels.

Dataset Inaccurate labels as a percentage of training dataset size
0.1% 0.25% 0.5% 0.75% 1.0% 1.5% 2.0% 3.0% 4.0% 5.0% 6.0%

LAR 93.9 88.1 79.4 69.2 61.3 45.9 33.7 16.2 5.2 0.4 0.0
Income 91.1 81.4 67.8 58.4 50.7 37.2 23.3 12.1 4.8 1.7 0.7
MNIST 1/7 98.3 96.3 93.1 88.3 84.4 73.1 60.8 38.8 23.3 13.1 7.0

when 12% of labels can be changed. Similarly, using targeted dataset
multiplicity definitions for LAR can increase overall robustness by
up to 30 percentage points.

Demographic group robustness rates. We also investigate the ro-
bustness rates for different demographic groups, both under the
original, untargeted multiplicity assumptions and under the tar-
geted versions.

Key insights: Different demographic groups do not exhibit
the same dataset multiplicity robustness rates and targetingM
to reflect real-world uncertainty can exacerbate discrepancies.

Each row of Figure 4 compares baseline (untargeted) robustness
rates, stratified by demographic groups, with targeted versions of
M for five US states. We observe two trends: first, there are com-
monly racial and gender discrepancies (see the pairs of dotted lines).
E.g., for all states except Wisconsin, men consistently have higher
baseline robustness rates than women (sometimes by a margin of
over 20%). Second, using various targeted versions ofM has un-
equal impacts across demographic groups. The top row of Figure 4
shows that targeting on race=Black (i.e., allowable label pertur-
bations can change Black people’s labels from −1 to 1) modestly
improves dataset multiplicity robustness rates for Black people, but
massively improves them for White people. We see similar trends,
namely, that the non-targeted group sees higher robustness rate
gains than the targeted group, across the other versions ofM, as
well.

On LAR, similar results hold. (Graphs and discussion are in the
appendix.)

4.3 Approximate Approach

Key insights: Using the approximate approach greatly re-
duces precision in proving dataset-multiplicity robustness, but
still shows promise for understanding dataset multiplicity’s im-
pact given low levels of label errors.

As expected, the approximate approach from Section 3.4 is less pre-
cise than the exact one. The loss in precision depends highly on the
dataset and the level of label uncertainty, as shown in Figure 5. For
Income and MNIST, there are very large gaps: for example, given 2%
label error, 80% of test samples are robust to dataset multiplicity, but
the approximate version cannot prove robustness for any samples.
However, there are some bright points: at 1% label error, we can
still prove robustness for 90% of MNIST-1/7 samples, and over 60%
of Income samples. In situations where label error is expected to

be relatively small, the approximate approach can still be useful for
gauging the relative dataset multiplicity robustness of a dataset.

We also measured the time complexity of each approach. To
check the robustness of 1,000 Income samples, it takes 37.2 seconds
for the exact approach and 6.8 seconds for the approximate ap-
proach. For 10,000 samples, it takes 383.5 seconds and 30.7 seconds,
respectively. I.e., the exact approach scales linearly with the num-
ber of samples, but the approximate approach stays within a single
order of magnitude. See appendix for more details and discussion.

5 IMPLICATIONS AND ETHICAL
CHALLENGES OF DATASET MULTIPLICITY

For the conclusions we draw from machine learning to be robust
and generalizable, we need to understand dataset multiplicity, reduce
its impacts on predictions, and adapt machine learning practices to
consider dataset multiplicity.

Understanding dataset multiplicity. Adopting standardized data
documentation practices will likely aid in identifying potential
inaccuracies or biases in datasets [23, 43]. Further work surround-
ing how and why datasets are created with particular worldviews
(e.g., [26, 50]) will assist in identifying blind spots in existing datasets
and help further the push for more robust dataset curation and doc-
umentation. But even if specific shortcomings in data collection are
addressed through better curation and documentation practices,
unavoidable variations in data collection will still contribute to
dataset multiplicity [45], making modeling and model deployment
interventions important, too.

Reducing the impacts of dataset multiplicity. An advantage of pre-
dictive multiplicity (i.e., multiplicity in the model selection process
given a fixed training dataset) is that the wide range of equally-
accurate models allows model developers to choose a model based
on criteria like fairness or robustness without sacrificing predic-
tive accuracy [6, 67]. Likewise, we know that there exist datasets —
typically de-biased or more representative than a naïvely-collected
baseline dataset — that yield models that are both fair and accu-
rate [11, 21, 64]. If there exists a dataset in the dataset multiplicity
set that yields a fairer (or more robust, more interpretable, etc.)
model, then we should consider whether it is more appropriate to
use that dataset to train the deployed model. (This may or may not
be appropriate, depending on the domain, and is a decision that
should be considered in conjunction with stakeholders.) Another
option is to find learning algorithms or model classes that are in-
herently more robust to dataset multiplicity. In the context of ridge
regression, we found that using a larger regularization parameter
(see Figure 2) increases dataset-multiplicity robustness. Ensemble
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Figure 3: Dataset multiplicity robustness rates for (a) Income stratified by race, (b) Income stratified by gender, (c) LAR stratified
by race, (d) LAR stratified by gender. “No targeting” means that we place no restrictions on which labels can be modified.
“Target on group 1” indicates that we can modify labels for group 1 (the minority/disadvantaged group) from the negative to
positive class, while “target on group 2” indicates that we can modify labels for group 2 (the majority/advantaged group) from
the positive to the negative class. For the race plots, Group 1 is Black people and Group 2 is White people. For the gender plots,
Group 1 is women and Group 2 is men.
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learning is another promising direction, as it has been shown to
decrease predictive multiplicity [5].

Adapting ML to handle non-robustness to dataset multiplicity.
If a model has low dataset multiplicity robustness in aggregate
across a test dataset, then confidence may be too low to deploy
the model because of procedural fairness concerns [6]. It is also
important to consider how robustness to dataset multiplicity varies
across different population subgroups. As we saw in Section 4.2,

different multiplicity definitions can yield disparate multiplicity-
robustness rates across populations. The approximate approach
from Section 3.4 is well-suited to these aggregate analyses. If we
find that dataset multiplicity rates are low (either overall or for some
demographic groups), it may be more appropriate to train with a
different algorithm, refine the training dataset so that multiplicity
is lessened, or avoid machine learning for the task at hand.

Dataset multiplicity robustness should also be considered on
an individual level, as in the exact approach from Section 3.3. If
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Figure 5: Left to right: Robustness rates (fraction of the test set) for the exact and approximate techniques on (a) LAR, (b)
Income, and (c) MNIST 1/7. For all examples, _ was chosen to obtain results within 2% of the optimal accuracy. Error bars (for
Income and LAR) are the median 50% for 10-fold cross validation.

a given dataset and algorithm are not dataset multiplicity-robust
on a test sample x, options include abstaining on x or using the
most favorable outcome in its dataset multiplicity range. But in
many cases, an algorithm is deployed to allocate a finite resource —
thus, returning the best-case label for all samples is likely infeasi-
ble. Instead, the chosen model is a function of the arbitrary nature
of the provided dataset. Creel and Hellman explain that arbitrary
models are not necessarily cause for concern, however, algorithmic
monoculture becomes a concern when the same arbitrary outcomes
are used widely, thereby broadly excluding otherwise-qualified peo-
ple from opportunities [15, 31]. Given machine learning’s reliance
on benchmark datasets, it seems plausible that there is algorith-
mic monoculture stemming from the choice of arbitrary training
dataset. To avoid algorithmic monoculture effects in the modeling
process, scholars have proposed randomizing over model selection
or outcomes [24, 31] — we suspect that a similar approach would
make sense in the context of dataset multiplicity.

6 RELATEDWORK
Dataset multiplicity robustness can be used either to certify (i.e.,
prove) that individual predictions are stable given uncertainty in
the training data, or to characterize the overall stability of a model.
Other approaches in the realms of adversarial ML, uncertainty
quantification, and learning theory aim to answer similar questions.

Comparison with other sources of multiplicity. Predictive mul-
tiplicity and underspecification show that there are often many
models that fit a given dataset equally well [9, 16, 33, 60]. Because
of this multiplicity, models can often be selected to simultaneously
achieve accuracy and also fairness, robustness, or other desirable
model-level properties [6, 14, 51, 60, 67]. The extent of predictive
multiplicity can be lessened by constructing more sophisticated
models (e.g., [48]), however, this type of intervention only reduces
algorithmic multiplicity and, furthermore, does not address the un-
derlying procedural fairness concern that individuals can justifiably
receive different decisions. Multiplicity also arises when modifying
training parameters like random seed, data ordering, and hyper-
parameters [8, 13, 34, 54, 56], but most of the works on this topic
focus on either attack vulnerability or the reproducibility and gen-
eralizability of the training process. In a notable exception, Bell et
al. explore the ‘multiverse’ of models by characterizing what hyper-
parameter values correspond with what conclusions [1], but their
analysis does not account for uncertainty in the training dataset,
nor does the predictive multiplicity literature. There is, however, a

line of work that aims to increase the fairness of a model by debias-
ing or augmenting a dataset [11, 21, 64]. Our dataset multiplicity
framework is more broad than those approaches since we aim to
understand the entire range of feasible datasets and models, rather
than identify a single fair alternative.

Other approaches to bounding uncertainty. Approaches from causal
inference, uncertainty quantification, and learning theory aim to
measure and reduce uncertainty in machine learning. One ma-
jor concern in this realm is the role that researcher decisions can
play in reproducibility [12, 55]. Coker et al. propose ‘hacking inter-
vals’ to capture the range of outcomes that any realistic researcher
could obtain through different analysis choices or datasets [12].
Our dataset multiplicity framework can be viewed as extending
their prescriptively constrained hacking-interval concept to allow
for arbitrarily-defined changes to the training dataset. However,
their results employ causality to make a stronger case for defining
reasonable dataset modifications. Likewise, partial identification in
economics uses domain knowledge and statistical tools to bound
the range of possible outcomes in a data analysis [59].

The methods described above — ‘hacking intervals’ and partial
identification — are special formulations of uncertainty quantifica-
tion (UQ), which aims to understand the range of predictions that a
model may output. UQ can occur either through Bayesian methods
that treat model weights as random variables, or through ensem-
bling or bootstrapping [58]. While UQ shares a common goal with
dataset multiplicity — i.e., understanding the range of outcomes —
the assumptions about where the multiplicity arises are different.
UQ typically assumes that uncertainty stems from either insuffi-
cient data or noisy data, and does not account for the systemic
errors that dataset multiplicity can encompass. Work on selection
bias aims to learn in the presence of missing data, feature, or labels.
For example, multiple imputation fills the missing data in multiple
ways and aggregates the results [49, 62], similar to how dataset
multiplicity considers all alternative models. The main difference
between multiple imputation as a selection bias intervention and
dataset multiplicity is that given selection bias, it is easy to identify
where the inaccuracies are, and multiple imputation only considers
a small number of dataset options, rather than all options as dataset
multiplicity aims to do.

Within learning theory, distributional robustness studies how to
find models that perform well across a family of distributions [2,
37, 53], robust statistics shows how algorithms can be adapted
to account for outliers or other errors in the data [18, 19], and
various works focus on robustifying training algorithms to label
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noise [38, 40, 46]. However, these works all (a) provide statistical
global robustness guarantees, rather than the provable exact robust-
ness guarantees that we make, (b) try to find a single good classifier,
rather than understand the range of possible outcomes, and (c) typi-
cally require strong assumptions about the data distribution and the
types of noise or errors. Algorithmic stability [9, 17] and sensitivity
analysis [25] aim to quantify how sensitive algorithms are to small
perturbations in the training data. However, they both typically
make strict assumptions about the perturbation’s form, either as a
leave-one-out perturbation model in algorithmic stability [4, 30],
or as random noise in sensitivity analysis.

Robustness in adversarial ML. Checking robustness to dataset
multiplicity has parallels to adversarial machine learning, espe-
cially data poisoning, where an attacker modifies a small portion
of the training dataset to reduce test-time accuracy [3, 52, 66, 68].
Various defenses counteract these attacks [29, 41, 47, 57, 69], includ-
ing ones that focus on attacking and defending linear regression
models [28, 36]. Some of these works (e.g., [47] for label-flipping)
additionally try to certify robustness. Our exact solution to dataset
multiplicity in linear models with label errors functions as a certifi-
cate, since we prove robustness to all allowable label perturbations,
including adversarial ones. Three major differences from Rosenfeld
et al. [47] are that we do not modify the underlying algorithm to
achieve a certificate, the certification process is deterministic, not
probabilistic, and we allow the label perturbations to be targeted
towards a particular subgroup. Meyer et al. use a similar targeted
view on data modifications, but their approach is strictly overap-
proximate and is limited to decision trees [35]. Furthermore, our
definition of dataset multiplicity is distinct from the defense papers
in that we aim to study dataset multiplicity robustness of exist-
ing algorithms; however, an interesting direction for future work
would be to improve dataset multiplicity robustness via algorithmic
modifications.

7 CONCLUSIONS
We defined the dataset multiplicity problem, showed how to eval-
uate the impacts of dataset multiplicity on linear models in the
presence of label noise, and presented thoughts for how dataset
multiplicity should be considered as part of the machine learning
pipeline. Notably, we find that we can certify robustness to dataset
multiplicity for some test samples, indicating that we can deploy
these predictions with confidence. By contrast, we show that other
test samples are not robust to low levels of dataset multiplicity,
meaning that unless labels are very accurate, these test samples
may receive predictions that are artifacts of the random nature of
data collection, rather than real-world patterns.

Future work in the area of dataset multiplicity abounds, and
many connections with other areas are mentioned throughout Sec-
tions 5 and 6. The most important technical direction for future
exploration, in our opinion, is extending the dataset multiplicity
framework to probabilistic settings, e.g., by asking what proportion
of reasonable datasets yield a different prediction for a given test
sample. This inquiry is likely to be more fruitful than finding exact
solutions for more complicated model classes, and it may open
opportunities to leverage techniques from areas like distributional

robustness or uncertainty quantification. Making direct connec-
tions with areas like causal inference and partial identification in
economics should also be a priority for future work, as these top-
ics have similar goals and have been studied more broadly. In a
social-science realm, dataset multiplicity could benefit from more
work on what features and labels in a dataset are most likely to be
inaccurate or affected by social biases, since this will allow us to
bound dataset multiplicity more precisely. Similarly, it is difficult to
separate out instances of direct bias (e.g., salary disparities due to
gender discrimination) and indirect bias (e.g., salary disparities due
to women feeling unwelcome in STEM careers), and more research
is needed into how that distinction should affect dataset multiplicity
definitions.
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A ADDITIONAL DETAILS FROM SECTION 3
A note on the relationship between 𝜖 and Δ. Given a fixed 𝜖 , if 𝛿𝑖

is the same for all 𝑖 , the ratio between 𝛿 and 𝜖 uniquely determines
robustness to dataset multiplicity (we make use of this fact for
computing Table 2).

A.1 Details about Algorithm 1
Algorithm 2 is the complete algorithm for the approach described
in Section 3.3. Note that this algorithm supersedes Algorithm 1.

We define the positive potential impact 𝜌+
𝑖
as the maximal posi-

tive change that perturbing ỹ𝑖 can have on zy, likewise, 𝜌−
𝑖
is the

negative potential impact, that is, the maximal negative change that
perturbing ỹ𝑖 can have on zy.

Algorithm 2 finds the minimal label perturbation necessary to
change the label of test point x, a fact we formalize in the following
theorem:

TheoremA.1. Suppose we have a deterministic learning algorithm
𝐴, a training dataset𝐷 = (X, y) where up to 𝑘 labels𝑦𝑖 corresponding
to data points X𝑖 that satisfy 𝜙 (X𝑖 ) are inaccurate by +/−Δ. Let
M(𝐷) be the set of all datasets that can be constructed by modifying
𝐷 according to 𝑘 , 𝜙 , and Δ. Let 𝐹 = 𝐴(M(𝐷)) be the set of models 𝑓
obtainable by training using 𝐴 on any dataset 𝐷′ ∈ M(𝐷). Given a
test point x, (i) Algorithm 2 outputs an interval containing all values
𝑓 (x) for all 𝑓 ∈ 𝐹 (i.e., the algorithm is sound) and (ii) there is some
𝑓1, 𝑓2 ∈ 𝐹 such that 𝑓1 (x) is equal to the upper bound of the output
and 𝑓2 (x) is equal to the lower bound of the output (i.e., the algorithm
is tight).

Proof. We will prove (i) that the upper bound Theorem A.1’s
output is an upper bound on the value of 𝑓 (x) for any 𝑓 ∈ 𝐹 =

𝐴(M(𝐷)) and (ii) that this upper bound is achieved by some 𝑓1 ∈ 𝐹 .
The proofs for the lower bounds are analogous.

(i) Let 𝑢 be the upper bound of Theorem A.1’s output. We want
to show that 𝑓 (x) ≤ 𝑢 for all 𝑓 ∈ 𝐹 = 𝐴(M(𝐷)), where

M(𝐷 = (X, y)) = {(X, y′) | ∥y′ − y∥1 ≤ 𝑘∧
y𝑖 ≠ y′𝑖 =⇒ 𝜙 (X𝑖 ) ∧ ∥y𝑖 − y′𝑖 ∥ ≤ Δ}

Suppose, towards contraction, that there is some 𝑓 ′ ∈ 𝐴(M(𝐷))
such that 𝑓 ′ (x) = 𝑢′ > 𝑢. So, there is a set of labels 𝑦𝑖1 , 𝑦𝑖2 , . . . , 𝑦𝑖𝑘
that can be modified to create a y′ such that (X𝑇X)−1X𝑇 y′x = 𝑢′.
Recall that 𝑧 = x(X𝑇X)−1X𝑇 . So, either (a), we modify the same
set of labels, but modify at least one in a different magnitude or
direction, or (b), there must be some 𝑖 𝑗 that we modify 𝑦𝑖 𝑗 to find
𝑢′, but the algorithm does not identify this index in line 8 of the
algorithm.

First, suppose (a) occurred. WLOG, suppose the if case on line
2 is satisfied, i.e., 𝑧𝑖 𝑗 ≥ 0. Then we hypothetically modified 𝑦𝑖 𝑗 by
𝑎 ≠ 𝛿𝑢

𝑖 𝑗
in place of line 11. We know 𝑎 < 𝛿𝑢

𝑖 𝑗
since 𝛿 is an upper

bound on how much we can change each label. We have 𝛿𝑢
𝑖 𝑗
≥ 0

and 𝑧𝑖 𝑗 ≥ 0, so their product is also greater than 0, so 𝑎𝑧𝑖 𝑗 < 𝛿𝑢
𝑖 𝑗
𝑧𝑖 𝑗 .

So, the final product zy′ cannot be larger than had we followed the
algorithm.

Now, suppose (b) occurred. Suppose 𝑦𝑖 𝑗 is modified to yield 𝑢′,
but is not modified in the algorithm. Then, there must be some 𝑦𝑖′
such that (assume WLOG that z𝑖′ ≥ 0 and z𝑖 𝑗 ≥ 0) z𝑖′𝛿𝑢𝑖′ ≥ z𝑖 𝑗 𝛿

𝑢
𝑖 𝑗
.

If equality holds, we will have 𝑢 = 𝑢′. So, assume z𝑖′𝛿𝑢𝑖′ > z𝑖 𝑗 𝛿
𝑢
𝑖 𝑗
.

But then, modifying y𝑖′ by 𝛿𝑢
𝑖′ will result in a greater increase to

𝑚𝑎𝑡ℎ𝑏𝑓 𝑧y than increasing y𝑖 𝑗 by 𝛿𝑢𝑖 𝑗 will. So, changing 𝑦𝑖 𝑗 cannot
result in an output 𝑢′ > 𝑢.

(ii) We need to construct the function 𝑓 ∈ 𝐹 = 𝐴(M(𝐷)) such
that 𝑓 (x) = 𝑢, where 𝑢 is the upper bound of Theorem A.1’s out-
put. Let 𝑦𝑖1 , 𝑦𝑖2 , . . . , 𝑦𝑖𝑘 be the labels modified by lines 15-19 of the
algorithm to yield some y′. Then, let 𝑓 (𝑥) = (X𝑇X)−1X𝑇 y′. □

Algorithm 2 Solve for 𝑉 = [min(X,ỹ) ∈M𝑘,Δ,𝜙 ( (X,y) ) zỹ,
max(X,ỹ) ∈M𝑘,Δ,𝜙 ( (X,y) ) zỹ] by finding perturbations of y that max-
imally decrease/increase zy.

Require: z ∈ R𝑛, (X, y) ∈ (R𝑛×𝑑 ,R𝑛),Δ ∈ IR𝑛 with 0 ∈ Δ, 𝑘 ≥ 0,
𝜙 : R𝑑 → {0, 1}

1: y𝑙 ← y and y𝑢 ← y
2: if 𝑧𝑖 ≥ 0 then
3: 𝜌+

𝑖
← z𝑖𝛿𝑢𝑖 , 𝜌−

𝑖
← z𝑖𝛿𝑙𝑖

4: else
5: 𝜌+

𝑖
← z𝑖𝛿𝑙𝑖 , 𝜌−

𝑖
← z𝑖𝛿𝑙𝑖

6: if not 𝜙 (x𝑖 ) then
7: 𝜌+

𝑖
← 0, 𝜌−

𝑖
← 0

8: Let 𝜌+
𝑖1
, . . . , 𝜌+

𝑖𝑙
be the 𝑘 largest elements of 𝜌+ by absolute value

9: for each 𝜌+
𝑖 𝑗
do

10: if 𝑧𝑖 𝑗 ≥ 0 then
11: (𝑦𝑢 )𝑖 𝑗 ← (𝑦𝑢 )𝑖 𝑗 + 𝛿𝑢𝑖 𝑗
12: else
13: (𝑦𝑢 )𝑖 𝑗 ← (𝑦𝑢 )𝑖 𝑗 + 𝛿𝑙𝑖 𝑗
14: Let 𝜌−

𝑖1
, . . . , 𝜌−

𝑖𝑙
be the 𝑘 largest elements of 𝜌− by absolute

value
15: for each 𝜌−

𝑖 𝑗
do

16: if 𝑧𝑖 𝑗 ≥ 0 then
17: (𝑦𝑙 )𝑖 𝑗 ← (𝑦𝑙 )𝑖 𝑗 + 𝛿𝑙𝑖 𝑗
18: else
19: (𝑦𝑙 )𝑖 𝑗 ← (𝑦𝑙 )𝑖 𝑗 + 𝛿𝑢𝑖 𝑗
20: 𝑉 = [zy𝑙 , zy𝑢 ]

A.2 Details on the Approximate Approach
We will next present an example to show that Θ can be non-convex.

Example A.1. Suppose y = (1,−1, 2), Δ = [−1, 1]3, and 𝑘 = 2.

Given C =
©«
1 2 1
−1 0 2
2 1 0

ª®¬, we have
Θ = Cy ∪

C ©«
𝑎

𝑏

2

ª®¬
 ∪

C ©«
𝑎

−1
𝑐

ª®¬
 ∪

C ©«
1
𝑏

𝑐

ª®¬


for 𝑎 ∈ [0, 2], 𝑏 ∈ [−2, 0], and 𝑐 ∈ [1, 3].
Note that (3, 6, 3)⊤ ∈ Θ and (4, 5, 2)⊤ ∈ Θ, but their midpoint

(3.5, 5.5, 3.5)⊤ ∉ Θ, thus, Θ is non-convex.
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We present the complete algorithm for procedure described in
Section 3.4 Algorithm 3. Next, we will show that this algorithm
outputs the tightest hyperrectangular (i.e., box) enclosure ofM.

Theorem A.2. Algorithm 3 computes the tightest hyperrectangu-
lar enclosure ofM.

Proof. First, we will show that Algorithm 3 computes an enclo-
sure ofM, and next we will show that this output is the tightest
hyperrectangular enclosure ofM.

By construction of the algorithm, we see that the output will be
an enclosure ofM. The algorithm constructs the maximal way to
increase/decrease each coordinate.

Now, suppose there is another hyperrectangle Θ𝑎 ′ that with
M(𝐷) ⊆ Θ𝑎 ′ and Θ𝑎 ′

𝑖 ⊂ Θ𝑎
𝑖
. WLOG, assume that the upper

bound of Θ𝑎 ′
𝑖 is strictly less than the upper bound of Θ𝑎

𝑖
. But Θ𝑎

𝑖
=

max(X,y′ ) ∈M(𝐷 ) (z𝑖y′), whichmeans that y∗ = max(X,y′ ) ∈M(𝐷 ) Cy′
has C𝑖y∗ greater than the upper bound of Θ𝑎 ′

𝑖 , and thus Θ𝑎 ′ is not
a sound enclosure of Θ. □

Algorithm 3 Computing Θ𝑎

Require: C ∈ R𝑑×𝑛, (X, y) ∈ (R𝑛×𝑑 ,R𝑛),Δ ∈ IR𝑛 with 0 ∈ Δ,
𝑘 ≥ 0, 𝜙 : R𝑑 → {0, 1}

1: y𝑙 ← y and y𝑢 ← y
2: Θ𝑎 ← [0, 0]𝑑
3: for 𝑖 in range 𝑑 do:
4: y𝑙 ← y, y𝑢 ← y
5: if 𝑐𝑖 𝑗 < 0 then
6: 𝜌+

𝑗
← C𝑖 𝑗𝛿

𝑙
𝑗
, 𝜌−

𝑗
← C𝑖 𝑗𝛿

𝑢
𝑗

7: else
8: 𝜌+

𝑗
← C𝑖 𝑗𝛿

𝑢
𝑗
, 𝜌−

𝑗
← C𝑖 𝑗𝛿

𝑙
𝑗

9: if not 𝜙 (x𝑖 ) then
10: 𝜌+

𝑗
← 0, 𝜌−

𝑗
← 0

11: Let 𝜌+
𝑘1
, . . . , 𝜌+

𝑘𝑙
be the 𝑘 largest elements of 𝜌+ by absolute

value.
12: for each 𝜌+

𝑘 𝑗
do

13: if 𝑐𝑖𝑘 𝑗
≥ 0 then

14: (𝑦𝑢 )𝑘 𝑗
← (𝑦𝑢 )𝑘 𝑗

+ 𝛿𝑢
𝑘 𝑗

15: else
16: (𝑦𝑢 )𝑘 𝑗

← (𝑦𝑢 )𝑘 𝑗
+ 𝛿𝑙

𝑘 𝑗

17: Let 𝜌−
𝑘1
, . . . , 𝜌−

𝑘𝑙
be the 𝑘 largest elements of 𝜌− by absolute

value.
18: for each 𝜌−

𝑘 𝑗
do

19: if 𝑐𝑖𝑘 𝑗
≥ 0 then

20: (𝑦𝑙 )𝑘 𝑗
← (𝑦𝑙 )𝑘 𝑗

+ 𝛿𝑙
𝑘 𝑗

21: else
22: (𝑦𝑙 )𝑘 𝑗

← (𝑦𝑙 )𝑘 𝑗
+ 𝛿𝑢

𝑘 𝑗

23: Θ𝑎
𝑖
← [c𝑖y𝑙 , c𝑖y𝑢 ]

B ADDITIONAL EXPERIMENTS
We present additional tables, graphs, and discussion about the ex-
perimental results.

Accuracy. Themaximal accuracy for each dataset (i.e., in Figure 2,
the accuracy for the 0.0 line) is 76.5% for Income, 61.9% for LAR,
and 98.9% for MNIST. The exact values we used for _ (as well as
the procedure to obtain _) are in the code.

Additional LAR data. Figure 6 shows demographic-stratified
dataset-multiplicity robustness rates for LAR under different ways
of defining targeted dataset multiplicity. To varying extents, the ma-
jority/advantaged group sees higher robustness rates as compared
with the disadvantaged group across all versions ofM.

Regression dataset results. Table 2 presents results on Income-
Reg for the fixed robustness radius 𝜖 = $2,000, which we chose
as a challenging, but reasonable, definition for two incomes being
close. We also empirically validated that the ratio between Δ and 𝜖
uniquely determines robustness for a fixed multiplicity definition.
Notably, for small Δ to 𝜖 ratios (i.e., when we can modify labels by
small amounts, but predictions can be far apart and still considered
robust), many test points are dataset-multiplicity robust, even when
the number of untrustworthy training labels is relatively large (up
to 10%). However, when this ratio is large, e.g., when Δ = 5𝜖 , we
are still able certify a majority of test points as robust up to 1% bias.
For example, if we can modify 1% of labels by up to $10,000, then
69.6% of test samples’ predictions cannot be modified by more than
$2,000. By contrast, only allowing 1% of labels to be modified by
up to $4,000 yields a dataset-multiplicity robustness rate of 91.2%
(again, within a radius of $2,000).

Income demographics. Table 3 shows the demographic make-
up of various states’ data from the Income dataset. Notice that
Oregon has the lowest percentage of Black people in the dataset
- we suspect that this is why the robustness rates between White
and Black people is so large.

Figure 7 shows robustness rates, stratified by race or gender, for
five U.S. states on the Income dataset. We see that for most states,
there is a significant gap in robustness rates across with race and
gender. In particular, Georgia and Louisiana have higher robustness
rates for Black people, and Oregon has drastically higher robustness
rates for White people. All states, except Wisconsin, have higher
robustness rates for men than women.

Figure 8 shows the demographic group-level robustness rates
under the over-approximate technique.

B.1 Running time
Table 4 shows the running time of our techniques, as evaluated
on a 2020 MacBook Pro with 16GB memory and 8 cores. These
times should be interpreted as upper bounds; in practice, both ap-
proaches are amenable to parallelization, which would yield faster
performance. We notice that both the exact approach scales lin-
early with the number of samples, while the approximate approach
stays within a single order of magnitude as the number of sam-
ples grows.Clearly, the approximate approach is more scalable for
checking the robustness of large numbers of data points.

Table 5 shows the running time of the MILP solver for Income
and LAR. We see that the times scale linearly (as with our exact
approach), but aremuchworse. To check robustness for 100 samples,
it is over 80% slower to use MILP.
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Figure 6: Targeted label multiplicity for LAR. (a) only allows errors in labels for Black people (flip labels from -1 to 1), (b) only
allows errors in labels for White people (flip labels from 1 to -1), (c) only allows errors in labels for women (flip labels from -1
to 1), and (d) only allows errors in labels for men (flip labels from 1 to -1). In graphs (a) and (b), group 1 is Black people while
group 2 is White people. In graphs (c) and (d), group 1 is women and group 2 is men. In all graphs, the error bars represent the
middle 50% of values across 10-fold cross validation.

Table 2: Robustness rates (percentage of test dataset whose prediction cannot change by more than 𝜖) for Income-Reg given
various Δ and 𝑘 values. 𝜖 = 2,000 in all experiments. Note that the shorthand Δ = 𝑎 means Δ = [−𝑎, 𝑎]𝑛 . Column 2 gives the ratio
between the maximum label perturbation (Δ) and the robustness radius (𝜖), which uniquely determines robustness for a given 𝑘 .

Δ Ratio Δ
𝜖

Maximum label error 𝑘 as a percentage of training dataset size
1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0%

1,000 0.5 100.0 100.0 100.0 100.0 99.8 99.4 99.1 98.6 98.0 97.1
2,000 1 100.0 96.6 91.1 85.4 84.1 76.4 73.3 64.0 49.9 35.2
4,000 2 91.2 84.2 69.2 35.7 14.2 2.0 0 0 0 0
6,000 3 85.9 61.1 15.4 0 0 0 0 0 0 0
8,000 4 80.1 20.0 0 0 0 0 0 0 0 0
10,000 5 69.6 3.6 0 0 0 0 0 0 0 0
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Figure 7: Row 1: Robustness rate for White people (gray lines) and Black people (black lines) across 5 different states of the
Income dataset. Row 2: Robustness rates for men (gray lines) and women (black lines) across 5 different states of the Income
dataset. Error bars show averages across 10 folds.

Table 4: Running time, in seconds, for exact and approximate
experiments. The exact experiments flip labels for each data
point until the sample is no longer robust. The approximate
experiments flip 10% of the labels (which is enough to bring
the robustness to 0%).

Dataset 100 samples 1,000 samples 10,000 samples
Exact Approx. Exact Approx. Exact Approx.

Income 2.5 4.4 37.2 6.8 383.5 30.7
LAR 7.5 1.8 73.5 2.6 730.2 10.6
MNIST 1/7 4.1 3.8 24.8 6.0 448.5 24.3

Table 5: Running time, in seconds, for the MILP solver. We
modify 10% of the labels.

Dataset 10 samples 100 samples

Income 49.1 498.8
LAR 58.1 616.6

Table 3: Summary of data download by state from the Folk-
tables Income task.

State training 𝑛 % White % Black

Georgia 40731 67.6 23.9
Louisiana 16533 70.9 23.5
Maryland 26433 63.6 23.5
Oregon 17537 86.4 1.4
Wisconsin 26153 92.7 2.6
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Figure 8: Row 1: Robustness rate under the over-approximate approach for White people (gray lines) and Black people (black
lines) across 5 different states of the Income dataset. Row 2: Robustness rates for men (gray lines) and women (black lines)
across 5 different states of the Income dataset. Error bars show averages across 10 folds.
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