
Distribution Policies for Datalog
Bas Ketsman1, Aws Albarghouthi2, and Paraschos Koutris2

1 Hasselt University & transnational University of Limburg
2 University of Wisconsin-Madison

Abstract
Modern data management systems extensively use parallelism to speed up query processing over
massive volumes of data. This trend has inspired a rich line of research on how to formally reason
about the parallel complexity of join computation. In this paper, we go beyond joins and study
the parallel evaluation of recursive queries. We introduce a novel framework to reason about
multi-round evaluation of Datalog programs, which combines implicit predicate restriction with
distribution policies to allow expressing a combination of data-parallel and query-parallel eval-
uation strategies. Using our framework, we reason about key properties of distributed Datalog
evaluation, including parallel-correctness of the evaluation strategy, disjointness of the computa-
tion effort, and bounds on the number of communication rounds.

1 Introduction

Modern data management systems—such as Spark [27, 33], Hadoop [16, 11], and oth-
ers [17]—have extensively used parallelism to speed up query processing over massive volumes
of data. Parallelism enables the distribution of computation into multiple machines, and
thus significantly reduces the completion time for several critical data processing tasks.
This trend has inspired a rich line of research on how to formally reason about the par-
allel complexity of join computation, one of the core tasks in massively parallel systems.
Several papers [7, 8, 20, 19] have studied the tradeoff between synchronization (number of
rounds) and communication cost, and have proposed and analyzed known and new parallel
algorithms [2, 9]. Among these, the Hypercube algorithm [14, 2] can compute any multiway
join query in one round by properly distributing the input data.

To reason about Hypercube-like algorithms, Ameloot et al. [6] recently introduced a
framework that captures one-round evaluation of joins under different data distributions.
Their framework implicitly describes a single-round parallel algorithm through a distribu-
tion policy, which specifies how the facts in the input relations are distributed among the
machines. While for non-recursive queries a distribution policy defines a scalable parallel
evaluation strategy, for Datalog programs this is typically not the case. For instance, a
simple transitive closure query already requires for entire components of the input database
that all facts must reside on the same server to ensure correctness of the computation.

To reason about Datalog evaluation in a distributed setting, we introduce a general the-
oretical framework that allows a combination of data and query parallelization strategies.
The central concept in this framework is the notion of an economic policy. Our key observa-
tion is that, in order to deal with intensional predicates, we need to specify not only where
a fact must be located to be consumed by a rule, but also where a fact must be produced by
evaluating a rule of the program. An economic policy in our framework is defined as a pair
of distribution policies: a consumption policy, which specifies the location of the facts that
are used in the body of rules, and a production policy, which specifies the location of facts
that appear in the head of a rule. The evaluation strategy that is implicitly defined by the
data distribution must communicate any produced facts to the machines where they will be
consumed, and thus can run over multiple rounds.

© Bas Ketsman, Aws Albarghouthi and Paraschos Koutris;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Distribution Policies for Datalog

Our framework is inspired by a rich line of research on parallel evaluation strategies for
Datalog programs from the early 90’s [30, 14, 31, 34]. There, Datalog evaluation strategies
are based on the idea of partitioning the instantiations of the program rules among machines
by adding conditions to the bodies of the rules, called program restrictions. Some of the
strategies proposed require no communication of intermediate (intensional) facts and thus
can be completed in one round; other strategies require communication over multiple rounds.
We show that an economic policy can capture several algorithms used for parallel evaluation
of recursive and non-recursive queries, including the Hypercube algorithm [14, 2], and the
decomposable strategies based on program restrictions [30].

In this framework we study several properties of economic policies. We first explore the
property of parallel-correctness: when does an economic policy lead to a correct evaluation
strategy? As can be expected, it is undecidable to show parallel-correctness for a general
Datalog program, even for the simplest of economic policies. We therefore identify a sufficient
condition: every minimal valuation of a rule must be supported by the policy. A rule
valuation is supported if some machine consumes all the facts in the body, and produces the
fact in the head. For unions of conjunctive queries, this condition is also necessary, recovering
the result of Ameloot et al. [6]; however, we show that even for non-recursive programs with
intermediate relations, the condition is no longer required. To overcome the undecidability
of parallel-correctness, we identify a general family of economic policies, called Generalized
Hypercube Policies (GHPs), which are always parallel-correct, and further capture several
commonly used parallel evaluation strategies.

Second, we study the property of boundedness: can we decide whether a given economic
policy terminates in k rounds, independent of the input size? We show that there exists a
sharp increase in complexity as we move from k = 1 to k ≥ 2. For k = 1, we can succinctly
characterize the structure of a policy that always terminates in one step. Additionally, given
a GHP, we can do this in polynomial time in the description of the GHP. On the other hand,
for k ≥ 2 it is undecidable to determine whether it terminates in at most k steps, even for
a GHP. We then ask which Datalog programs admit economic policies that are bounded by
one round: we show that such programs are characterized by a syntactic property called
pivoting, which was also identified in [32] in the context of decomposable programs.

2 Related Work

Parallel Complexity The parallel complexity of Datalog was first investigated in [10, 18].
Later work used the complexity class NC to theoretically capture which Datalog programs
are efficiently parallelizable. Since Datalog evaluation is P -complete, it is unlikely that every
Datalog program belongs in NC, which implies that certain Datalog programs may not be
significantly sped up through parallelism. Ullman and Van Gelder [28] showed that if a
Datalog program has the polynomial fringe property, which says that every fact in the output
has a proof tree of polynomial size, evaluation is in NC. Every linear Datalog program has
the polynomial fringe property and is thus in NC. Afrati and Papadimitriou [4] showed
that for simple chain queries (including non-linear queries) evaluation is either in NC or
P -complete. Recently, Afrati and Ullman [5] studied the tradeoff between communication
and number of rounds. They describe a very restricted class of Datalog programs where it
is possible to reduce the number of recursion steps (to a number that is logarithmic in the
size of the input) without significantly increasing the communication cost.
Decomposability The concept of predicate decomposability was first introduced by Wolf-
son and Silberschatz [32]. A predicate T is decomposable if there are r > 1 restricted

B. Ketsman, A. Albarghouthi and P. Koutris 23:3

copies P1, P2, . . . , Pr of the Datalog program P (using arithmetic predicates) such that (i)
the copies compute a partition of T for every input, and (ii) there exists an input instance
where each copy will produce some input for T . The main result is that decomposability is
equivalent to pivoting for sirups where there are no constants, no repeating variables, and
the sirup is linear or a simple chain rule. Here, a sirup is a Datalog program with one idb
predicate S and two rules: (i) a base rule S(x)← B(x), and (ii) a recursive rule with head
predicate S. A sirup is linear if S appears exactly once in the body of the recursive rule.

Later works [30, 31] redefine the concept of decomposability semantically. A Datalog
program is decomposable if it is possible to partition the output domain (to at least two
blocks) such that for every instance I, every output fact has a proof tree where all the idb
facts belong in the same partition block. Wolfson and Ozen [31] show that deciding whether
a given Datalog program is decomposable is undecidable. Cohen and Wolfson [30] provide
necessary and sufficient syntactic conditions for decomposability for sirups where the arity
of the idb predicate is ≤ 2. They also define the notion of strongly decomposable sirups,
where the partition must guarantee that, for some input, at least two blocks will produce a
fact using the recursive rule of the sirup. Following the same line of work, Zhang et al. [34]
present a more general framework that constructs partitionings of the rule instantiations.
Other Parallel Schemes In addition to decomposability, several frameworks for parallel
recursive processing were introduced in the early 90s [30, 14, 31]. Wolfson [30] generalizes
decomposability to load sharing schemes, by allowing the output of a predicate to have
overlap in the copies of the program P . Under a load sharing scheme, every linear program
can be parallelized, even if it is not pivoting. In [14, 13, 31], general schemes are introduced
that parallelize the evaluation by partitioning the set of rule instantiations, and allowing
for communication among the machines (decomposable and load sharing schemes need no
communication). In [12], similar techniques are proposed with dynamic adjustments, to
balance the load of a computation. Our framework differs in that the set of rule instantiations
is distributed implicitly among the servers, according to the production and consumption
policies, and that the communication between servers is made explicit.
Systems Recent work studies the implementation of Datalog (or fragments of Datalog)
on modern shared-nothing distributed systems. Seo et al. [24] present a distributed version
of a Datalog variant for social network analysis called Socialite; however, their framework
requires that the user provides annotations to guide the distribution of data. Wang et al. [29]
implement a variant of Datalog on the Myria system [17], focusing mostly on asynchronous
evaluation and fault-tolerance. The BigDatalog system [26] describes an implementation of
Datalog on Apache Spark, but focuses mostly on linear Datalog programs that use aggreg-
ation. The task of parallelizing Datalog has also been studied in the context of the popular
MapReduce framework [3, 5, 25]. Motik et al. [22] provide an implementation of parallel
Datalog in main-memory multicore systems.

3 Preliminaries

We assume an infinite domain dom. A database schema σ is a finite set of relation names
{Ri}ni=1 with associated arities ar(Ri). We shall write R(k) to denote a relation R with
arity k. A fact R(a1, . . . , ak) over U ⊆ dom is a tuple consisting of a relation name and a
sequence of values from U . We say that R(a1, . . . , ak) is over schema σ, if R(k) ∈ σ. For a
universe U ⊆ dom and schema σ, we denote by facts(σ, U) the complete set of facts over σ
and U . An instance I over σ and U is defined as a finite subset of facts(σ, U). We write I|σ
to denote the subset of I containing all facts in I that are over schema σ.

CVIT 2016

23:4 Distribution Policies for Datalog

For i ∈ N, we abbreviate the set {1, . . . , i} by [i].
Datalog We assume an infinite domain of variables var, disjoint from dom. An atom is a
formula R(t1, . . . , tk) consisting of a relation name and a tuple of terms; a term ti is either
a variable from var or a constant from dom. We say that R(t1, . . . , tk) is over schema σ,
when R ∈ σ and k = ar(R).

A Datalog rule τ is of the form (headτ , bodyτ), where headτ is a single atom called the
head of τ , and bodyτ is a set of atoms called the body of τ . Henceforth, we shall also use
the more conventional notation R(x)← S1(y1), . . . , Sn(yn), where R(x) denotes the head,
and all other atoms denote the body atoms of the rule. We say that τ is over schema σ if all
its atoms are. We assume that Datalog rules are always safe, i.e., that all variables in the
head occur in at least one body atom. By vars(τ) we denote the set of variables in rule τ .

A Datalog program P is a finite set of Datalog rules. A program P is said to be over
schema σ if all its rules are. Particularly, by edb(P) ⊆ σ we denote the relation names
occurring only in the body of rules, and by idb(P) ⊆ σ all other relation names occurring
in P . We further distinguish the names in idb(P) by calling some of them output relations,
denoted out(P) ⊆ idb(P); all other idb relations are auxiliary. We write σ(P) to denote
edb(P) ∪ idb(P).

Consider the directed graph where each node is an idb predicate, and there is an edge
from S to S′ if S′ occurs in the head of some rule τ of P , and S in the body of τ . We say that
P is recursive if the graph is cyclic; otherwise, we say it is non-recursive. A non-recursive
Datalog program with only one rule is called a conjunctive query (CQ).
Evaluation Semantics We define the evaluation semantics of Datalog programs as usual,
through the immediate consequence operator. Let P be a Datalog program and I an instance
over edb(P). A valuation v for rule τ ∈ P is a constant-preserving mapping of the terms in
τ to values in dom. For a rule τ ∈ P and valuation v, we say that τ derives fact v(headτ)
over instance I if v(bodyτ) ⊆ I. We refer to (v(headτ), v(bodyτ))—sometimes abbreviated
(τ, v)—as the instantiation of rule τ with valuation v. We say that a rule instantiation is
useless if v(headτ) ∈ v(bodyτ); otherwise, we say that it is useful.

We use TP to denote the immediate consequence operator for P , which applies all rules in
P exactly once over a given instance and adds all derived facts to that instance. Formally,
TP (I) = I ∪{v(headτ) | τ ∈ P, valuation v s.t. v(bodyτ) ⊆ I}. Then, P (I) is defined as
the fixpoint reached after iteratively applying the immediate consequence operator over I.
It is not difficult to see that TP is monotone, and thus always reaches a fixpoint after a
finite number of iterations. Moreover, the output of the query that P computes is defined
as P (I)|out(P). We refer to Abiteboul et al. [1] for a detailed description.

We call a fact f P -derivable if f ∈ P (I) for some instance I, and P -consumable if
during the semi-naive evaluation of P on some instance I a rule instantiation (τ, v) fires
that requires f . Both notions naturally generalize to atoms and predicate symbols, e.g.,
predicate symbol R is said to be P -consumable if some P -consumable fact f exists with
symbol R. Atom A is P -consumable if a rule instantiation as above exists, with A ∈ bodyτ .
Proof Theoretic Concepts Let T = (V,E) be a tree. By fringeT we denote its leaves and
by rootT its root vertex. All other vertices are called internal vertices. For a vertex n ∈ V
we denote by childrenT (n) the set of child vertices of n in T . We now recall the classical
notion of proof tree [1]. A proof tree T for a fact f on instance I and Datalog program
P is a tree T with vertices over facts(σ(P),dom), where fringeT ⊆ I, rootT = f , and for
every internal vertex g, there is a rule τ ∈ P and valuation v such that g = v(headτ) and
childrenT (g) = v(bodyτ). In this case, we shall say that T uses the instantiation of τ with
valuation v. It is easy to see that P (I) consists of exactly those facts f for which a proof

B. Ketsman, A. Albarghouthi and P. Koutris 23:5

tree for f on I and P exists. W.l.o.g. we will consider only proof trees that do not use any
useless rule instantiations.

We say that a proof tree T ′ is entailed by proof tree T for P , denoted T ′ v T , if
fringeT ′ ⊆ fringeT and rootT ′ = rootT .

4 The Framework

Our framework considers a setting with p servers (or machines) that share no memory
and can communicate only via messages—this is commonly referred to as a shared-nothing
parallel architecture. The set of servers forms a network [p] that we assume is fully connected.
In order to define how computation is performed, we will use policies that specify how the
data (input and output facts) are distributed over the network. We borrow the definition of
a distribution policy from [6]:

I Definition 4.1 (Distribution Policy). A distribution policy P = (U, factsP) over schema
σ and network [p] consists of a universe U ⊆ dom and a function factsP : [p] → 2facts(σ,U)

mapping servers to sets of facts over U and σ.

Distribution policies are instance independent, i.e., they are oblivious of the specific
database instance. Intuitively, a policy expresses on which servers a fact should reside if
the fact is in the network, but not whether the fact is in the network. Henceforth, we
slightly abuse notation and write P (f) to denote the set of servers responsible for f , i.e.,
P (f) = {i | f ∈ factsP (i)}.

In contrast to [6], where the focus is on single-round query evaluation and policies that
define only the initial data distribution over edb facts, we consider a multi-round setting
that allows the communication of intermediate facts.

I Definition 4.2 (Economic Policy). An economic policy E over schema σ and network [p]
is a pair (P ,C) of distribution policies over the same universe U , where:
P is defined over idb(P) and is called the production policy; and
C is defined over edb(P) ∪ idb(P) and is called the consumption policy.

A production policy describes which machines have the responsibility of producing a
certain idb fact. A consumption policy describes which machines need an edb or idb fact
to satisfy the body of a rule instantiation. We sometimes make universe U explicit, by
writing (P ,C;U) rather than (P ,C).1 We say that a fact f is C-consumable if C(f) 6= ∅.

A family of economic policies F is a set of economic policies over a common universe
and schema. We say that a family F satisfies property P if all the policies in F satisfy P.

4.1 Datalog Evaluation Modulo Policies
Instead of letting a server compute the full program over its local instance, we restrict
the evaluation process based on a server’s economic policy. That is, for economic policy
E = (P ,C) and Datalog program P , the following sequential evaluation algorithm takes
place on server i:

First, every rule τ ∈ P is annotated with policy-predicates as follows. For the head
R(x), we add a predicate PolicyR(x) to the body of τ . Here, predicate PolicyR refers to
relation factsP (i)|{R}.

1 Notice that mentioning U is redundant, but allows a slightly simpler notation, since P and C need not
be specified explicitly to reference their universe U .

CVIT 2016

23:6 Distribution Policies for Datalog

Second, for every atom S(y) in the body of τ , we add the predicate PolicyS(y), where
now PolicyS refers to the relation factsC(i)|{S}.

The added predicates may be infinitely large, but can be accessed through queries of the
form “t ∈ factsP (i)|{R}?” or “t ∈ factsC(i)|{S}?”. Of course, the complexity of such question
depends on the expression mechanism of P and C. We refer to [6] for a more through
discussion of this matter.

Throughout the paper we assume the semi-naive evaluation strategy for Datalog pro-
grams. Semi-naive evaluation proceeds as usual over the annotated program: after each
application of the fixpoint operator, the newly derived facts are added to a delta relation,
and a rule instantiation is triggered only if at least one of its facts is in the delta relation
from the previous iteration. We denote by P�E(I, J) the fixpoint instance when we execute
P restricted to E on input I, with delta relations initialized with J .

4.2 Distributed Evaluation Strategy
We now present how an economic policy induces a parallel evaluation strategy. Our parallel
model is the BSP-based Massively Parallel Communication Model (MPC) [21]. In this
model, computation is performed over servers in a multi-round fashion. Each round has two
distinct phases: a local computation phase, and a synchronized communication phase.

Consider a Datalog program P , a network [p], and an economic policy E = (P ,C).
Moreover, let I be the input instance, which we initially assume to be partitioned arbitrarily
over the p servers. Denote by Ii the initial local instance of machine i. Let localki be the
instance on machine i right after the k-th communication phase.

We consider the following procedure: Initially, we set local0i ← Ii. Then, at the k-th
round (for k ≥ 1), we perform the following:
1. Communication: Every machine sends its facts as defined by the consumption policy C.

That is, server i sends local fact f ∈ localk−1
i to server j if (and only if) f ∈ factsC(j).

Let recki be the facts received by machine i during the k-th communication phase.2

2. Computation: Every server computes the local fixpoint: if k = 1, then fixki = P�E(recki ∪
localk−1

i , recki ∪ localk−1
i), otherwise fixki = P�E(recki ∪ localk−1

i , recki \ local
k−1
i). Then,

updates its local instance with localki ← fixki .

Intuitively, the algorithm terminates when, after a round is finished, for every server all
locally derived facts that have to be send to some other server according to the consumption
policy, were already send to these servers in an earlier round.

Formally, for server i, we define set Fi = {f | C(f)\ i 6= ∅}. Intuitively, Fi represents all
facts consumed by servers other than i itself. We say that a server has reached a local fixpoint
state for E and P after round k ≥ 1, if localki ∩ Fi ⊆ localk−1

i . We say that the network
[p] has reached a global fixpoint state for E and P after round k, if all servers i ∈ [p] have
reached a local fixpoint state after round k. Notice that this condition is as desired, because
every round goes into the communication phase first, then into the local computation phase.

One could imagine a smarter communication procedure that incorporates Datalog se-
mantics as well. For example, a server does not need to send a local fact f ∈ factsC(j) to
server j if for every input I server j is guaranteed to already have f in its local instance.
However, it is in general undecidable to make such a decision (see Lemma 5.3).

2 We remark that from a practical viewpoint it makes no sense to communicate the same facts more than
once. When j = i, no actual communication takes place.

B. Ketsman, A. Albarghouthi and P. Koutris 23:7

For instance I, let [P,E](I) denote the union of all facts over out(P) found at any server
after reaching the global fixpoint. Notice that the above evaluation strategy always reaches
a fixpoint, due to monotonicity of positive Datalog.

I Example 4.3. Consider the left-linear Datalog program that computes transitive closure:

T (x, y)← R(x, y). T (x, y)← T (x, z), R(z, y).

For any function h : dom → [p], we define the economic policy (P 1,C1), where
C1(R(a, b)) = [p], and C1(T (a, b)) = P 1(T (a, b)) = {h(a)} for all a, b ∈ dom. This policy
works as follows: it replicates the edb facts everywhere, and then produces/consumes each
fact T (a, b) at machine h(a). It is easy to see that the economic policy correctly computes
the transitive closure. In fact, the evaluation always terminates in a single round.

Consider a different policy (P 2,C2), which again takes any function h : dom → [p]
and has C2(R(a, b)) = {h(a)}, C2(T (a, b)) = {h(b)}, and P 2(T (a, b)) = [p]. This policy
does not replicate the edb facts, but it hash-partitions them according to the first attribute.
Whenever a machine discovers a new fact, the new fact has to be consumed to the location
determined by the hash of the second attribute. Observe that the production policy is [p]
because we do not know where each fact will be produced (in other words, each machine
will produce as many idb facts as possible from its local input without any restrictions).

We will see later in Section 6 that all the above economic policies belong in a specific
family of policies that we call Generalized Hypercube Policies (GHPs). We notice that
framework supports evaluation strategies that are oblivious of the instance: each fact is
communicated, consumed, and produced independent of whether other facts are in the
same local instance or not. Lastly, we note that monotonicity of (positive) Datalog ensures
monotonicity of economic policies for (positive) Datalog Programs.

I Proposition 4.4. For every Datalog program P and economic policy E for P , f ∈
[P,E](I ′) implies f ∈ [P,E](I), for all I ′ ⊆ I. More specifically, if f is derived by E
for I ′ in round i on server s, then f is derived by E for I in round j ≤ i on server s.

I Remark. While we study Datalog evaluation in the MPC model, where communication is
synchronized by definition, it should be noted that all proposed evaluation strategies also
work in settings where communication is done asynchronously. This follows naturally from
the monotonicity of econonomy policies for (positive) Datalog programs. Also, most concepts
we discuss remain relevant in the asynchronous setting, except of course for boundedness.

5 Parallel-Correctness

An economic policy for a Datalog program does not necessarily lead to the desired output.
For example, if the production policy maps every fact onto the empty set of servers, then
the execution will generate only empty idb relations. Henceforth, we are only interested in
economic policies that generate the expected output.

I Definition 5.1 (Parallel-correctness). An economic policy E = (P ,C;U) is parallel-correct
for Datalog program P if, for every instance I ⊆ facts(edb(P), U), [P,E](I) = P (I)|out(P).

Parallel-correctness is in general undecidable, even for simple classes of policies. For
instance, consider the class of policies, where P (f1) = P (f2) andC(f1) = C(f2), whenever
f1,f2 are facts with same relation symbol. We call this class of policies value-independent,
denoted Eindep, since the facts are mapped to machines only according to the relations they

CVIT 2016

23:8 Distribution Policies for Datalog

belong to. Value-independent policies allow a succinct representation by simply enumerating
the idb predicates of P and the subsets of [p] where each relation is assigned.

We consider the following decision problem.

pc(L, E)
Input: Program P ∈ L, policy E ∈ E .
Question: Is E parallel-correct for P?

I Theorem 5.2. pc(Datalog, Eindep) is undecidable.

In fact, we can show an even stronger result:

I Lemma 5.3. Let P be an arbitrary Datalog program and E = (P ,C;U) an economic
policy over σ that is parallel-correct for P . Now let f ∈ facts(σ, U), and C ′ the consumption
policy where C ′(g) = C(g) for all g ∈ facts(σ, U) \ {f} and C ′(f) (C(f). It is still
undecidable whether E′ is parallel-correct for P .

Despite the above results, we can present some syntactic conditions that are necessary
for parallel-correctness, and some that are sufficient.

I Definition 5.4 (Support). An instantiation of rule τ with valuation v is supported by
economic policy E = (P ,C) if there exists some machine s ∈ [p] with v(headτ) ∈ factsP (s)
and v(bodyτ) ⊆ factsC(s).

We consider various categories of economic policies based on which rule instantiations
are supported for a given Datalog program P :
N all
P : the set of all rule instantiations of P .
Nmin
P : the set of all minimal rule instantiations of P . An instantiation of rule τ with
valuation v is minimal if there is no rule τ ′ and valuation v′ with v′(headτ ′) = v(headτ)
and v′(bodyτ ′) (v(bodyτ).
N use
P : the set of all rule instantiations of P that are useful. Recall that an instantiation of
rule τ with valuation v is useful if v(headτ) /∈ v(bodyτ).
N ess
P : the set of all essential rule instantiations of P . An instantiation of rule τ with
valuation v is essential if for some P -derivable fact f and instance I, every proof tree T
for f on I and P has a vertex g with g = v(headτ) and v(bodyτ) ⊆ childrenT (g).

If the program is non-recursive, then N use
P = N all

P , since there will be no rule that
contains the same relation in the head and the body. We also have:

I Proposition 5.5. For every Datalog program P , we have N ess
P ⊆ Nmin

P ∩N use
P .

The following example demonstrates the different types of rule instantiations.

I Example 5.6. Let P be the left-linear transitive closure program from Example 4.3;
consider a rule instantiation of the recursive rule: T (a, b) ← T (a, c), R(c, b), for some (not
necessarily different) constants a, b, c. We distinguish the following cases:

c = a: in this case, the instantiation is not minimal, since we can derive the same head fact
from the instantiation T (a, b)← R(a, b) of the first rule.

c = b: in this case, the instantiation is useless, since T (a, b) also belongs in the body. In
some sense, this derivation is unnecessary, as we have already “discovered” the head fact.

c 6= a, c 6= b: in this case, the instantiation is minimal and useful; it is also essential. To
show this, consider the instance I = {R(a, c), R(c, b)}, and the fact f = T (a, b). Because
c /∈ {a, b}, the only proof tree for f without “useless” rule instantiations is the one with
root f , children T (a, c), R(c, b), where T (a, c) has R(a, c) as child.

B. Ketsman, A. Albarghouthi and P. Koutris 23:9

U()

V ()

R(a′, b′) S(c′, d′) S(d′, c′)

R(a, b) S(c, d)

U()

V ()

R(a′, b′) S(c′, d′) S(d′, c′)

R(a, b) S(d′, c′)

Figure 1 The two proof trees for the fact f = U(a, b).

Depending on which types of rule instantiations are supported by an economic policy,
we can define different types of policies. An economic policy that supports all possible rule
instantiations, that is, N all

P , is said to be strongly supporting for Datalog program P . We
show in the Appendix that we can state the following two conditions for parallel-correctness:

I Proposition 5.7. Let P be a Datalog program and E an economic policy. Then:
1. if E supports all minimal and useful rule instantiations in P , it is parallel-correct.
2. if E is parallel-correct for P , it supports all essential rule instantiations.

I Proposition 5.8. Let P be a Datalog program where each idb predicate occurs only in the
head of rules (i.e., P is a union of CQs). Then, N ess

P = Nmin
P ∩N use

P .
Together with Proposition 5.7, the above proposition implies that a Datalog program

where the body of each rule contains only edb relations is parallel-correct if and only if
it supports every minimal rule instantiation, or equivalently if and only it supports every
essential rule instantiation. Notice that this class of Datalog programs corresponds to a pro-
gram that computes a set of UCQs, and thus the above result captures the characterization
of parallel-correctness for CQs and UCQs in [6, 15]. We should emphasize here that [6, 15]
consider only economic policies where P assigns every fact to every server, while a general
economic policy can assign facts to any subset of servers.

For general Datalog programs, N ess
P = Nmin

P ∩ N use
P is not true anymore, and thus

supporting essential instantiations is not a sufficient condition for parallel-correctness, even
if P is non-recursive. (Recall that non-recursiveness is a syntactic condition, and that all
such programs are straightforwardly rewritable to UCQs.)

I Example 5.9. Consider the following non-recursive Datalog program P :

V ()← R(x, y), S(z, w), S(w, z). U()← V (), R(x, y), S(z, w).

and take the rule instantiation with head U() and body {V (), R(a, b), S(c, d)}. Assume that
c 6= d. This rule instantiation is minimal, but we will show that it is not essential.

For the sake of contradiction, assume that it is essential. Then, for some instance I
there exists a proof tree T for U() on I and P such that there exists a vertex U() with
{V (), R(a, b), S(c, d)} ⊆ childrenT (U()). Since the proof tree contains the fact V (), it also
contains a rule instantiation that derives the fact V () with body {R(a′, b′), S(c′, d′), S(d′, c′)}
for some constants a′, b′, c′, d′. We can now construct two proof trees for U() on the same
instance, as seen in Figure 1. Because c 6= d, one of the facts S(c′, d′), S(d′, c′) must be
different from S(c, d) (In Figure 1 we assume this fact is S(d′, c′)). Thus, for one of the two
trees, the children of U() will not be a subset of {V (), R(a, b), S(c, d)}. This implies that
the rule instantiation we considered is indeed not essential.

I Example 5.10. This example shows that N ess
P = Nmin

P ∩ N use
P can hold for recursive

programs. Consider Example 5.6. Notice that every rule instantiation of the base rule,
T (x, y) ← R(x, y), is trivially minimal, useful and essential. As for the recursive rule, we

CVIT 2016

23:10 Distribution Policies for Datalog

Datalog program P

τ1 : T (x, y)← R(x, y).

τ2 : T (x, y)← T (x, z), R(z, y).

τ3 : U(x, y, z)← T (x, y), S(y, z).

Hypercubes

P1
p1,1

p1,2

P2
p2,1

p2,2

χ(τ1)

χ(τ2)

χ(τ3)

Network [p]

1

2

...

p− 1

p

map1

map2

Figure 2 Example of a GHP policy for the Datalog program P with three rules.

showed in Example 5.6 that an instantiation that is minimal and useful is also essential.
Observe that if this instantiation is only minimal but not useful, or only useful and not
minimal, it is not essential. Thus, both properties are necessary to guarantee essentiality.

We conclude this section by commenting on whether it is computationally feasible to test
the different properties of rule instantiations. It is easy to see that given an instantiation, it
is possible to check whether it is useful in polynomial time. The complexity for checking the
minimality of a rule instantiation is coNP-complete [6]. Unfortunately, testing essentiality
of a rule instantiation is undecidable. A proof of the proposition is given in Appendix B.7.

I Proposition 5.11. Testing essentiality of a rule instantiation for a given Datalog program
is undecidable.

6 Generalized Hypercube Policies

In this section, we present a general class of economic policies, called Generalized Hypercube
Policies (GHP), which encompass a broad variety of evaluation strategies.

We first give an intuitive explanation. The formalism of GHPs relies on the Hyper-
cube partitioning for CQs [2], which has been shown to provide nice guarantees on the
communication-cost for CQ evaluation [7]. Let P = {τ} be a CQ with k distinct variables.
Hypercube conceptually orders the p servers as a hypercube P = [p1] × [p2] × · · · × [pk],
with

∏
i pi = p, where every dimension pi ≥ 0 corresponds to a variable xi from the query;

every server is assigned a unique coordinate in space P; and every variable xi is associated
with a hash function hxi : dom 7→ [pi]. Then, a fact R(a1, . . . , ar), matching with atom
R(y1, . . . , yr) ∈ bodyτ , is sent to all servers whose coordinate agrees, for all j ∈ [r], with
position hyi(aj) on the dimension of P where yj is associated with.

For GHPs we associate to every rule a Hypercube over the full p-server network, and
intuitively define the consumption policy so that “a fact is consumed at server i if and
only if one of the considered Hypercube specifications would send it to server i”; for the
specification of the production policy, we rely on a similar mechanism.
GHP parameters Let P be a Datalog program, and assume we have a network [p]. A
GHP for P defines a finite set of k-dimensional hypercubes P1, . . . ,P`, for some parameter k.3
The size of the dimensions of the hypercubes are parametrized by a matrix P of dimensions

3 We assume w.l.o.g. that each hypercube has the same number of dimensions, but we can also define it
such that different rules have a different number of dimensions.

B. Ketsman, A. Albarghouthi and P. Koutris 23:11

` × k, such that
∏k
i=1 pj,i = p, for each j ∈ [`]. Each hypercube is then defined as Pj =

[pj,1] × [pj,2] × . . . [pj,k]. For each hypercube Pj , we also define a bijective mapping mapj
that assigns to every point in Pj a machine s ∈ [p]. The latter thus provides the mapping
between conceptual machines in the cube and real machines in the considered network.

A GHP policy next assigns each rule τ to exactly one of the hypercubes: let χ : P → [`]
be the function that encodes this assignment. Given this assignment, a GHP defines a
mapping ρτ : [k] → 2vars(τ) that maps each dimension of the hypercube Pχ(τ) to a subset
of the variables that appear in τ , such that the following condition holds:

If χ(τ) = χ(τ ′), then |ρτ (i)| = |ρτ ′(i)| for every dimension i. In other words, the
mappings of variables of different rules to the same hypercube must be consistent.

Finally, the GHP defines for each dimension i ∈ [k] and each hypercube Pj a hash
function hji that maps sets of size α (α is the size of the set ρτ (i) for any τ such that
χ(τ) = j) to a value in the i-th dimension. We require hash functions to be surjective and
symmetric (by the latter we mean that hji (t) = hji (t′) if t′ is a permutation of t). Notice
that our concept of hash-function is a generalization of the hash-functions used in, e.g., the
Hypercube algorithm, where α = 1. Further, we notice that, by definition, rules that use
the same hypercube, also use the same hash functions for each dimension of that hypercube.
GHP semantics Let f be a fact and suppose that f = v(A), for some valuation v and
atom A = R(y) that appears in rule τ .4 We define the following set of machines:

Sτf ,A = {mapχ(τ)(q) | q ∈ Pχ(τ) such that ∀i with ∅ (ρτ (i) ⊆ y : qi = h
χ(τ)
i (v(ρτ (i)))}.

Intuitively, Sτf ,A denotes the set of machines whose coordinate q is consistent with the for τ
specified hash mappings. Notice that if the atom R(y) has only a part of the variables that
correspond to some dimension i, then facts are broadcast over dimension i, as it happens if
none of these variables are in y.

The consumption policy C(f) is defined as the union over all sets Sτf ,A for rules τ and
atoms A ∈ bodyτ with instantiation f . The production policy P (f) is similarly defined as
the union over all sets Sτf ,A for rules τ and atom headτ with instantiation f .

I Example 6.1. Consider the Datalog program depicted in Figure 2. We choose two hy-
percubes P1,P2 (` = 2) with dimension k = 2. The first two rules τ1, τ2 are mapped to
the hypercube P1, and the third rule τ3 is mapped to P2. We choose the dimensions of the
hypercubes such that p1,1 · p1,2 = p, p2,1 = p, and p2,2 = 1. The two functions map1,map2

map the points of P1,P2 respectively to {1, . . . , p} in a one-to-one fashion. Finally, the
mapping of variables to dimensions is:

ρτ1(1) = {x}, ρτ1(2) = {y}, ρτ2(1) = {x}, ρτ2(2) = {z}, ρτ3(1) = {y}, ρτ3(2) = {}

Consider the first two rules (which form the left-linear TC example), and assume that
p1,1 = 1 and p1,2 = p. Then, the resulting GHP is equivalent to the hash partitioning
policy that we described in Example 4.3. Notice that since we use the same hypercube for
both rules, the edb relation R will be hash partitioned only once. If we now change the
dimensions to p1,1 = p, p1,2 = 1, we obtain the decomposable policy of Example 4.3 that
broadcasts the edb R to every machine and can terminate in a single round. Apart from
the above two GHPs, we can also define other GHPs by configuring different dimensions of
the hypercube P1. For example, we can choose p1,1 = p1,2 = √p.

4 Notice that either v does not exist, or is unique w.r.t the variables in atom A.

CVIT 2016

23:12 Distribution Policies for Datalog

The following proposition shows that GHPs are strongly supporting policies.

I Proposition 6.2. Let P be a Datalog program. Every GHP E for P is strongly supporting
for P and, as a consequence, parallel-correct for P .

GHP Families Since we do not want to consider an encoding mechanism for hash
functions—which is necessary to formally reason about properties for GHPs—we introduce
the concept of GHP families. Given a Datalog program P and network [p], a GHP family
H is defined as the set of GHPs over P and [p] that all have the same parametrization for
P,mapj , χ, ρτ . In other words, policies in H can differ only with respect to the choice of
hash functions, and for every choice of hash functions, the associated GHP is in the family.
By Fghp we denote the class of all GHP families.

7 Bounded & Disjoint Evaluation

In this section, we we ask two main questions: First, can we reason about the number of
rounds that an economic policy needs to compute a Datalog program? Second, can we
constrain the number of machines that derive a copy of the same fact? We start with a
formal definition of boundedness.

I Definition 7.1 (Boundedness). An economic policy E for Datalog program P is bounded
if some constant k exists such that, for every instance I, the network has reached a global
fixpoint for E and P , when round k is finished. We call E `-bounded if k ≤ `.

One should not confuse the number of rounds in the parallel computation with the
number of iterations of semi-naive evaluation. Nevertheless, as the following proposition
shows, boundedness of the Datalog program implies boundedness of the evaluation.

I Proposition 7.2. If P is a bounded Datalog program, then every parallel-correct economic
policy E for P is k-bounded, for some constant k that depends on P .

Surprisingly, there exist economic policies for bounded Datalog programs that are not
bounded. However, due to Proposition 7.2, such policies cannot be parallel-correct.

I Example 7.3. Consider the following bounded program.

T (x)← A(x). T (x)← B(x), T (y).

We construct a network with p > 1 machines. Consider a policy that consumes T (i) and B(i)
at machine (i mod p)+1, and produces T (i) at machine (i mod p). Every tuple in A is con-
sumed at machine 1. Now, consider the following input instance: {A(0), B(1), B(2), . . . , B(p−
1)}. It is easy to see that T (0) is produced in machine 1 at round 1, T (1) is produced in
machine 2 at round 2, and so on, until T (p− 1) is produced at round p at machine p.

In the remainder of this section, we focus on pure Datalog (denoted PureDatalog). We
call a Datalog program pure if its variables occur at most once in every atom and it has no
constants [23]. We consider the following decision problems.

k-boundedness(L, E)
Input: Program P ∈ L, policy E ∈ E .
Question: Is E k-bounded for P?

boundednessF (L,W)
Input: Program P ∈ L, family F ∈ W.
Question: Is there a k s.t. F is k-bounded for P?

k-boundednessF (L,W)
Input: Program P ∈ L, family F ∈ W.
Question: Is F k-bounded for P?

B. Ketsman, A. Albarghouthi and P. Koutris 23:13

I Theorem 7.4. 1. boundednessF (PureDatalog,Fghp) is undecidable;
2. k-boundedness(PureDatalog, Eindep) and k-boundednessF (PureDatalog,Fghp) are un-

decidable for k ≥ 2; and
3. k-boundednessF (PureDatalog,Fghp) is in ptime if k = 1.

Proofs for Theorem 7.4(1) and (2) are in the Appendix. Result (3) follows from the
syntactical characterization shown in the next subsection. Towards this characterization,
we first give a general characterization of 1-boundedness for strongly supporting policies.

Let P be a Datalog program and E = (P ,C) an economic policy. We denote by P ∗ the
policy obtained by removing from every P (f) any server s for which no rule instantiation
(τ, v) exists with v(headτ) = f , v(bodyτ) ⊆ factsC(s), and v(bodyτ) being all P -derivable.
Intuitively, P ∗(f) removes those servers that are allowed to produce f , but cannot due to
limitations of the consumption policyC. Notice that ifE = (P ,C) is strongly supporting for
P , then so is E = (P ∗,C), since we have not removed the support of any rule instantiation.

I Proposition 7.5. Let P be a Datalog program and E = (P ,C) a strongly supporting
economic policy for P . E is 1-bounded if and only if for every P -derivable idb fact f : (1)
|C(f)| ≤ 1; and (2) |C(f)| = 1 implies C(f) = P ∗(f).

7.1 Weakly Pivoting GHPs
We present a necessary and sufficient syntactic condition for 1-boundedness of GHP families.
Here, for atom A and set of variables X ⊆ vars(A), we denote by posA(X) the positions in
A having variables from X.

I Definition 7.6 (Pivoting Relation). A relation R is pivoting w.r.t GHP family H if for
every two atoms A1 and A2 (in rules τ1 and τ2 respectively) over R, and for all dimensions
i of cube χ(τ1) with pχ(τ1),i > 1:
1. ∅ (ρτ1(i) ⊆ vars(A1); and
2. χ(τ1) = χ(τ2) and posA1(ρτ1(i)) = posA2(ρτ2(i)).

Intuitively, if R is pivoting, then every rule that sends R tuples will send each R tuple
to exactly one machine, and the rules agree on this machine.

I Example 7.7. For example, take the program

T (x, y)← R(x, y). (τ1)
T (x, y)← T (x, z), R(z, y). (τ2)
O(y)← T (x, y), S(x). (τ3)

and the GHP over the single one-dimensional cube (cube 1). We define χ(τ1) = χ(τ2) =
χ(τ3) = 1 and ρτ1(1) = ρτ2(1) = ρτ3(1) = {x}. Let map1 be the identity mapping. Here, S
and T are pivoting relations; O and R are not pivoting.

I Definition 7.8 (Pivoting/Weakly pivoting). We say that a GHP family is pivoting (weakly
pivoting, resp.) for P if all (all P -consumable, resp.) idb relations are pivoting.

The program from Example 7.7 is weakly pivoting. We can test whether a GHP family
is weakly pivoting in polynomial time, since we need to go over all P -consumable idb rela-
tions, and then for each such relation R test all pairs of atoms over R. This observation,
along with the proposition below—that shows that weakly pivoting is a necessary and suf-
ficient condition for 1-boundedness—implies that deciding 1-boundedness for GHP families
is indeed in ptime.

CVIT 2016

23:14 Distribution Policies for Datalog

I Proposition 7.9. Let P be a pure Datalog program, and H a GHP family. Then, H is
1-bounded for P if and only if it is weakly pivoting for P .

We remark that Proposition 7.9 cannot be easily generalized. For example, one cannot
replace GHP families by strongly supporting policies, since then, facts that are not P -
consumable may still be C-consumable (i.e., C(f) 6= ∅). Reasoning about the latter requires
a concrete representation mechanism. Further, it is unclear what the complexity becomes for
testing 1-boundedness under general (not necessarily pure) Datalog, since then it is required
to reason about P -derivability of facts.

I Example 7.10. For an example showing that not every 1-bounded GHP is weakly pivoting,
consider the following non-pure Datalog program P :

R(x, x)← S(x, x). T (x, y)← R(x, y). T (x, y)← T (z, x), R(z, y).

and GHP family H over a single one-dimensional cube 1. Let map1 be the identity mapping,
χ(τ) = 1 and ρτ (1) = {x} for all rules τ . Clearly, H is not weakly pivoting. Nevertheless,
it can be shown that H is 1-bounded, which follows from the observation that only single-
valued rule instantiations can satisfy under P .

7.2 Weakly Pivoting Datalog
We have so far looked at whether a given GHP family is 1-bounded. In this section, we ask:
which Datalog programs admit a 1-bounded policy?

If A = R(x) is an atom, we use A[i] to denote the variable/constant in atom A in
position i. We naturally extend A[·] to map tuples of positions (that take values from the
set {1, . . . , ar(R)}) onto tuples of variables/constants. For example, if A = R(x1, x2, x3) and
b = (1, 3), then A[b] = (A[1], A[3]) = (x1, x3).

I Definition 7.11 (Pivot Base). Let P be a Datalog program, and let σ ⊆ idb(P). Let β
be a function that takes as input some R ∈ σ and outputs a non-empty tuple with values in
[ar(R)]. We say that β is a pivot base w.r.t. σ if:

For every rule τ ∈ P and for every pair of atoms R(x), S(y) in {headτ} ∪ bodyτ , such
that R,S ∈ σ, we have R(x)[β(R)] = S(y)[β(S)].

A Datalog program P is pivoting (weakly pivoting, resp.) if it has a pivot base w.r.t all
relations in idb(P) (w.r.t all relations in idb(P) that occur in the body of some rule in P).

I Example 7.12. Consider the left-linear TC example, and let σ = {T}. Suppose we
choose β(T) = (1). Then β is a pivot base w.r.t. σ, since for the recursive rule and
the only pair of T -atoms T (x, y), T (x, z) we have T (x, y)[β(T)] = T (x, y)[1] = (x), and
T (x, z)[β(T)] = T (x, z)[1] = (x). Since T is the only idb relation, left-linear TC is pivoting.

Next, consider the left-linear TC with an extra rule:

T (x, y)← R(x, y). T (x, y)← T (x, z), R(z, y). U(y)← T (x, y).

Here, there are two idb relations, but only T occurs in the body of a rule. The pivot base β
from before is still a pivot base w.r.t. {T}; hence the program is weakly pivoting. However,
there is no pivot base w.r.t. to {T,U}, which means that the program is not pivoting.

The concept pivoting Datalog was first introduced in [30] for single rule programs and
then generalized to full Datalog in [23] where it is called generalized pivoting. The latter
definition is based on a rather complex argument over fractional weight-mappings, but relates

B. Ketsman, A. Albarghouthi and P. Koutris 23:15

to pivoting in that every generalized pivoting Datalog program is pivoting w.r.t. all idb
relations. For pure Datalog these notions are equivalent.

The proposition below shows that for pure Datalog, a weakly pivoting program admits
a weakly pivoting (and thus 1-bounded) GHP family.

I Proposition 7.13. Let P be a pure Datalog program and p ≥ 2. There is a 1-bounded
GHP family if and only if P is weakly pivoting.

7.3 Bounded and Disjoint Evaluation
Sometimes we want to guarantee that, at the end of computation, no two copies of the same
fact have been derived at different machines. We call this property disjointness.

I Definition 7.14 (Disjointness). Let P be a Datalog program, and R an idb predicate of
P . We call an economic policy E for P R-disjoint if for every instance, every fact of R is
produced in at most one server.

We study economic policies that are both 1-bounded and disjoint. For this, let P be a
Datalog program and E a strongly supporting economic policy for P over [p]. We call s ∈ [p]
a straggler if s ∈ C(f) or s ∈ P ∗(f) for all facts f of some idb relation where P is defined
over. Intuitively, a straggler is a server that consumes or produces an entire relation.

I Proposition 7.15. Let P ∈ PureDatalog and H a GHP family for P . Then, H is 1-
bounded, disjoint for P , and without stragglers for idb relations, if and only if, H is pivoting.

Next, we show which programs admit a 1-bounded, disjoint policy.

I Proposition 7.16. Let P ∈ PureDatalog. Then P is pivoting if, and only if, P admits a
1-bounded, strongly supporting, disjoint economic policy without stragglers for idb relations.

I Remark. The reader may wonder how the above concepts relate to the class of decompos-
able programs, as introduced in [32, 31]. A decomposable program is a (single rule) Datalog
program that admits an evaluation strategy (via predicate restrictions) that is parallel-
correct, 1-bounded, disjoint, and non-trivial. (Here non-triviality means that all servers do
part of the work.) We did not consider the non-triviality property, but instead require the
absence of stragglers. Nevertheless, for GHPs, non-triviality is implied—at least for pure
Datalog—by the use of surjective hash functions).

8 Conclusion

We introduce a theoretical framework to reason about multi-round Datalog evaluation in
a distributed setting. In this framework we study three properties: parallel-correctness,
boundedness, and disjointness. There are many interesting questions left open. For example,
it would be interesting to come up with restrictions on Datalog programs and economic
policies, for which the mentioned properties are not undecidable. Another interesting direc-
tion for future work would be to define a relevant fairness condition for economic policies,
e.g., an instance independent notion of load-balancing; and to study bounds on the amount
of communication needed to evaluate Datalog programs. Another direction is to consider
smarter algorithms for local Datalog evaluation than semi-naive, by, for example, allowing
to express unique-decomposition conditions (c.f., [5]) in the economic policy.

CVIT 2016

23:16 Distribution Policies for Datalog

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Databases: The

Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edi-
tion, 1995.

2 F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce environment. In EDBT
’10, pages 99–110, 2010.

3 Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and Jeffrey D.
Ullman. Map-reduce extensions and recursive queries. In EDBT ’11, pages 1–8, 2011. URL:
http://doi.acm.org/10.1145/1951365.1951367, doi:10.1145/1951365.1951367.

4 Foto N. Afrati and Christos H. Papadimitriou. The parallel complexity of simple chain
queries. In PODS ’87, pages 210–213, 1987. URL: http://doi.acm.org/10.1145/28659.
28682, doi:10.1145/28659.28682.

5 Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive datalog implemented
on clusters. In EDBT ’12, pages 132–143, 2012. URL: http://doi.acm.org/10.1145/
2247596.2247613, doi:10.1145/2247596.2247613.

6 Tom J. Ameloot, Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick.
Parallel-correctness and transferability for conjunctive queries. In PODS ’15, pages 47–
58. ACM, 2015. URL: http://doi.acm.org/10.1145/2745754.2745759, doi:10.1145/
2745754.2745759.

7 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In PODS ’13, pages 273–284, 2013. URL: http://doi.acm.org/10.1145/
2463664.2465224, doi:10.1145/2463664.2465224.

8 Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In
PODS ’14, pages 212–223, 2014. URL: http://doi.acm.org/10.1145/2594538.2594558,
doi:10.1145/2594538.2594558.

9 Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Efficient join
query evaluation in a parallel database system. In SIGMOD ’15, pages 63–78, 2015. URL:
http://doi.acm.org/10.1145/2723372.2750545, doi:10.1145/2723372.2750545.

10 S Cosmadakis and P Kanellakis. Parallel evaluation of recursive rule queries. In PODS ’86,
pages 280–293, New York, NY, USA, 1986. ACM. URL: http://doi.acm.org/10.1145/
6012.15421, doi:10.1145/6012.15421.

11 J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
OSDI ’04, pages 137–150, 2004.

12 Hasanat M. Dewan, Salvatore J. Stolfo, Mauricio A. Hernández, and Jae-Jun Hwang.
Predictive dynamic load balancing of parallel and distributed rule and query processing. In
Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data,
Minneapolis, Minnesota, May 24-27, 1994., pages 277–288, 1994. URL: http://doi.acm.
org/10.1145/191839.191893, doi:10.1145/191839.191893.

13 Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. Parallel bottom-up processing
of datalog queries. J. Log. Program., 14(1&2):101–126, 1992. URL: http://dx.doi.org/
10.1016/0743-1066(92)90048-8, doi:10.1016/0743-1066(92)90048-8.

14 Sumit Ganguly, Avi Silberschatz, and Shalom Tsur. A framework for the parallel processing
of datalog queries. In SIGMOD ’90, pages 143–152, 1990. URL: http://doi.acm.org/
10.1145/93597.98724, doi:10.1145/93597.98724.

15 Gaetano Geck, Bas Ketsman, Frank Neven, and Thomas Schwentick. Parallel-correctness
and containment for conjunctive queries with union and negation. CoRR, abs/1512.06246,
2015. URL: http://arxiv.org/abs/1512.06246.

16 Hadoop. http://hadoop.apache.org/.
17 Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris,

Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, JingjingWang, AndrewWhitaker,

http://doi.acm.org/10.1145/1951365.1951367
http://dx.doi.org/10.1145/1951365.1951367
http://doi.acm.org/10.1145/28659.28682
http://doi.acm.org/10.1145/28659.28682
http://dx.doi.org/10.1145/28659.28682
http://doi.acm.org/10.1145/2247596.2247613
http://doi.acm.org/10.1145/2247596.2247613
http://dx.doi.org/10.1145/2247596.2247613
http://doi.acm.org/10.1145/2745754.2745759
http://dx.doi.org/10.1145/2745754.2745759
http://dx.doi.org/10.1145/2745754.2745759
http://doi.acm.org/10.1145/2463664.2465224
http://doi.acm.org/10.1145/2463664.2465224
http://dx.doi.org/10.1145/2463664.2465224
http://doi.acm.org/10.1145/2594538.2594558
http://dx.doi.org/10.1145/2594538.2594558
http://doi.acm.org/10.1145/2723372.2750545
http://dx.doi.org/10.1145/2723372.2750545
http://doi.acm.org/10.1145/6012.15421
http://doi.acm.org/10.1145/6012.15421
http://dx.doi.org/10.1145/6012.15421
http://doi.acm.org/10.1145/191839.191893
http://doi.acm.org/10.1145/191839.191893
http://dx.doi.org/10.1145/191839.191893
http://dx.doi.org/10.1016/0743-1066(92)90048-8
http://dx.doi.org/10.1016/0743-1066(92)90048-8
http://dx.doi.org/10.1016/0743-1066(92)90048-8
http://doi.acm.org/10.1145/93597.98724
http://doi.acm.org/10.1145/93597.98724
http://dx.doi.org/10.1145/93597.98724
http://arxiv.org/abs/1512.06246
http://hadoop.apache.org/

B. Ketsman, A. Albarghouthi and P. Koutris 23:17

Shengliang Xu, Magdalena Balazinska, Bill Howe, and Dan Suciu. Demonstration of the
myria big data management service. In SIGMOD ’14, pages 881–884, 2014. URL: http:
//doi.acm.org/10.1145/2588555.2594530, doi:10.1145/2588555.2594530.

18 Paris C. Kanellakis. Logic programming and parallel complexity, pages 1–30. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1986. URL: http://dx.doi.org/10.1007/
3-540-17187-8_27, doi:10.1007/3-540-17187-8_27.

19 Bas Ketsman and Dan Suciu. A worst-case optimal multi-round algorithm for parallel
computation of conjunctive queries. In PODS ’17, pages 417–428, 2017. URL: http:
//doi.acm.org/10.1145/3034786.3034788, doi:10.1145/3034786.3034788.

20 Paraschos Koutris, Paul Beame, and Dan Suciu. Worst-case optimal algorithms for parallel
query processing. In ICDT ’16, pages 8:1–8:18, 2016. URL: http://dx.doi.org/10.4230/
LIPIcs.ICDT.2016.8, doi:10.4230/LIPIcs.ICDT.2016.8.

21 Paraschos Koutris and Dan Suciu. Parallel evaluation of conjunctive queries. In PODS ’11,
pages 223–234, 2011. URL: http://doi.acm.org/10.1145/1989284.1989310, doi:10.
1145/1989284.1989310.

22 Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. Parallel mater-
ialisation of datalog programs in centralised, main-memory RDF systems. In AAAI ’14,
pages 129–137, 2014. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/
view/8505.

23 Jürgen Seib and Georg Lausen. Parallelizing datalog programs by generalized pivoting. In
PODS ’91, pages 241–251, 1991. URL: http://doi.acm.org/10.1145/113413.113435,
doi:10.1145/113413.113435.

24 Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. Distributed socialite: A datalog-
based language for large-scale graph analysis. PVLDB, 6(14):1906–1917, 2013. URL:
http://www.vldb.org/pvldb/vol6/p1906-seo.pdf.

25 Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. Optimizing large-scale semi-
naïve datalog evaluation in hadoop. In Datalog 2.0, pages 165–176, 2012. URL: http://
dx.doi.org/10.1007/978-3-642-32925-8_17, doi:10.1007/978-3-642-32925-8_17.

26 Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and
Carlo Zaniolo. Big data analytics with datalog queries on spark. In SIGMOD ’16, pages
1135–1149, 2016. URL: http://doi.acm.org/10.1145/2882903.2915229, doi:10.1145/
2882903.2915229.

27 Apache spark. http://spark.apache.org/.
28 Jeffrey D. Ullman and Allen Van Gelder. Parallel complexity of logical query programs.

Algorithmica, 3:5–42, 1988. URL: http://dx.doi.org/10.1007/BF01762108, doi:10.
1007/BF01762108.

29 Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and fault-
tolerant recursive datalog evaluation in shared-nothing engines. PVLDB, 8(12):1542–1553,
2015. URL: http://www.vldb.org/pvldb/vol8/p1542-wang.pdf.

30 O. Wolfson. Sharing the load of logic-program evaluation. In DPDS ’88, pages 46–55, Dec
1988. doi:10.1109/DPDS.1988.675001.

31 Ouri Wolfson and Aya Ozeri. A new paradigm for parallel and distributed rule-processing.
SIGMOD Rec., 19(2):133–142, May 1990. URL: http://doi.acm.org/10.1145/93605.
98723, doi:10.1145/93605.98723.

32 Ouri Wolfson and Avi Silberschatz. Distributed processing of logic programs. SIGMOD
Rec., 17(3):329–336, June 1988. URL: http://doi.acm.org/10.1145/971701.50242,
doi:10.1145/971701.50242.

33 Reynold S. Xin, Josh Rosen, Matei Zaharia, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Shark: SQL and rich analytics at scale. In SIGMOD ’13, pages 13–24, 2013. URL:
http://doi.acm.org/10.1145/2463676.2465288, doi:10.1145/2463676.2465288.

CVIT 2016

http://doi.acm.org/10.1145/2588555.2594530
http://doi.acm.org/10.1145/2588555.2594530
http://dx.doi.org/10.1145/2588555.2594530
http://dx.doi.org/10.1007/3-540-17187-8_27
http://dx.doi.org/10.1007/3-540-17187-8_27
http://dx.doi.org/10.1007/3-540-17187-8_27
http://doi.acm.org/10.1145/3034786.3034788
http://doi.acm.org/10.1145/3034786.3034788
http://dx.doi.org/10.1145/3034786.3034788
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.8
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.8
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.8
http://doi.acm.org/10.1145/1989284.1989310
http://dx.doi.org/10.1145/1989284.1989310
http://dx.doi.org/10.1145/1989284.1989310
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8505
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8505
http://doi.acm.org/10.1145/113413.113435
http://dx.doi.org/10.1145/113413.113435
http://www.vldb.org/pvldb/vol6/p1906-seo.pdf
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://dx.doi.org/10.1007/978-3-642-32925-8_17
http://doi.acm.org/10.1145/2882903.2915229
http://dx.doi.org/10.1145/2882903.2915229
http://dx.doi.org/10.1145/2882903.2915229
http://spark.apache.org/
http://dx.doi.org/10.1007/BF01762108
http://dx.doi.org/10.1007/BF01762108
http://dx.doi.org/10.1007/BF01762108
http://www.vldb.org/pvldb/vol8/p1542-wang.pdf
http://dx.doi.org/10.1109/DPDS.1988.675001
http://doi.acm.org/10.1145/93605.98723
http://doi.acm.org/10.1145/93605.98723
http://dx.doi.org/10.1145/93605.98723
http://doi.acm.org/10.1145/971701.50242
http://dx.doi.org/10.1145/971701.50242
http://doi.acm.org/10.1145/2463676.2465288
http://dx.doi.org/10.1145/2463676.2465288

23:18 Distribution Policies for Datalog

34 Weining Zhang, Ke Wang, and Siu-Cheung Chau. Data partition and parallel evaluation
of datalog programs. IEEE Trans. Knowl. Data Eng., 7(1):163–176, 1995. URL: http:
//dx.doi.org/10.1109/69.368511, doi:10.1109/69.368511.

http://dx.doi.org/10.1109/69.368511
http://dx.doi.org/10.1109/69.368511
http://dx.doi.org/10.1109/69.368511

B. Ketsman, A. Albarghouthi and P. Koutris 23:19

A Proofs for Section 4

A.1 Proof for Proposition 4.4
I Proposition 4.4. For every Datalog program P and economic policy E for P , f ∈
[P,E](I ′) implies f ∈ [P,E](I), for all I ′ ⊆ I. More specifically, if f is derived by E
for I ′ in round i on server s, then f is derived by E for I in round j ≤ i on server s.

For the proof, we first extend the concept of proof tree for Datalog programs, to annotated
proof trees for Datalog evaluation with economic policies. For program P , economic policy
E, instance I, and fact f , an annotated proof tree T is a proof tree for P , I, and f , where,
additionally, every node g in T has a label serverT (g). For non-leafs we assume the following
constraint:
g ∈ factsP (serverT (g)), and childrenT (g) ⊆ factsC(serverT (g)).

We also assign to all nodes in T a number roundT (g), which is obtained through the following
iterative argument: For leaf nodes g in T , roundT (g) = 1. For all nodes g, for which all nodes
in childrenT (g) have already a number assigned, let maxg = maxg′∈childrenT (g){roundT (g′)}
and L = {g1, . . . , gk} ⊆ childrenT (g) be exactly those child nodes, with roundT (gi) = Mg.

Now, we define roundT (g) = Mg if serverT (gi) = serverT (g), for all gi ∈ L, and
roundT (g) = Mg + 1 otherwise.

Intuitively, an annotated proof tree encodes possible runs in the evaluation of P over I
using E. More specifically, T encodes an upperbound on the moment where a fact is derived
during the evaluation. More formally:

I Lemma 1.1. For Datalog program P , economic policy E, instance I, and fact f :
1. f ∈ [P,E](I) implies existence of an annotated proof tree T for P , E, I and f . Specific-

ally, if f is derived by E in round i on server s, then T exists, with roundT (rootT) = i

and serverT (rootT) = s.
2. existence of annotated proof tree T for E, P , I and f implies f ∈ [P,E](I). More

specifically, f is derived on server serverT (f) in round j ≤ roundT (f).

Proof. (1). The proof is by induction on the round in which f is derived. Clearly, after
round 1, all facts residing in the network have a desired annotated proof tree. The proof
then proceeds by induction, assuming that condition (1) of the lemma holds up to ≤ k

rounds, for some k. Now suppose that f is derived at round k + 1 on server s. The latter
means that some proof-tree T for f , P and recks ∪ local

k−1
s exists. We and set for all facts g

in T , serverT (g) = s. Since for all leaves g in T there exists a desired annotated proof-tree
T ′ with roundT ′(g) ≤ k (by the hypothesis), we can simply attach these to T . It is now easy
to see that roundT (g) ≤ k + 1, for all nodes g in T ′. Hence, the proof-tree is as desired.

(2). By definition of annotated proof-tree, particularly due to the constraints on serverT ,
fact f becomes derivable on server s during the computation of E over I. We only need to
show that this happens in round ≤ roundT (f). The proof is by induction on roundT (f).

Clearly, if roundT (f) = 1, then all facts g in T are marked roundT (g) = 1, and therefore,
serverT (g) = s. The latter means that all leafs of T where present on node s after the first
communication phase, and thus either f ∈ I, or (because T is also a valid proof tree for f),
f has been derived on node s in the first computation phase.

Assume now that condition (2) holds for i ≤ k (induction hypothesis). Suppose roundT (f) =
k + 1. By the induction hypothesis, all facts g in T with roundT (f) ≤ k have been derived
at some node in round ≤ k. Now it is easy to see that the top-fragment T ′ of T (i.e., all the

CVIT 2016

23:20 Distribution Policies for Datalog

subtree of all facts marked with roundT (g) = k+ 1 and their immediate children), describes
a proof-tree for f and P on node s.

Let j be the earliest communication round after which all leaf nodes have reached server
s. Since all leaf-nodes have been derived in round ≤ k (by the hypothesis), and the semantics
of E and T guarantees arrival of these facts on server s after the next communication phase,
we have that j ≤ k+ 1. It is now easy to see (due to T ′), that f will be derived on server s
in computation round j ≤ k + 1. This concludes the proof. J

Since for instances I ′ ⊆ I, every annotated proof tree T for E, P , and I ′ is trivially also
an annotated proof tree for E, P , and I, Proposition 4.4 is now a corollary of Lemma 1.1.

B Proofs for Section 5

B.1 Proof for Theorem 5.2
I Theorem 5.2. pc(Datalog, Eindep) is undecidable.

Proof. The proof is by reduction from the Datalog containment problem, which is well-
known to be undecidable [1]. Let P1 and P2 be two arbitrary Datalog programs given as
input for the containment problem. As usual, we assume that both are over the same output
predicate, say O.

We first denote by P ∗i an indexed version of program Pi; particularly we define P ∗i as
Pi in which all idb predicates are annotated with index i. We now construct a program P

by taking all rules from P ∗1 and P ∗2 , and adding the rules O(x) ← Oi(x), for i ∈ {1, 2}.
We note that edb(P) = edb(P ∗1) ∪ edb(P ∗2) and out(P) = {O}. As economic policy we take
E = (P ,C) over the 2-node network {1, 2}. The consumption policy maps all facts with
index i to server i. The production policy maps all facts with index i to server i, and all
O-facts to server 2. The edb facts are consumed on all servers.

Intuitively, programs P ∗1 and P ∗2 are computed locally on server 1 and server 2. It thus
follows from the construction that (†) P1(I)∪P2(I) ⊆ [P,E](I), for every instance I. Notice
that rule O(x) ← O1(x) is never used, since server 2 cannot consume facts over predicates
with index 1.

It remains to show that E is parallel-correct for P if and only if P1 ⊆ P2. Indeed, if
P1 ⊆ P2, then O(I) = P2(I) for every instance I, which implies that the policy will compute
the correct result for O. The other direction follows from monotonicity of P . From (†) it
follows that this condition is satisfied if and only if all facts over the O relation produced by
P (I) are also produced by [P,E](I), which is the case only if every fact O(a) ∈ P (I) implies
a fact O2(a) ∈ P (I). The latter is equivalent to saying O(a) ∈ P1(I) implies O(a) ∈ P2(I)
for every instance I, which means that P1 ⊆ P2. J

B.2 Proof for Lemma 5.3
I Lemma 2.1. Let P be an arbitrary Datalog program and E = (P ,C;U) an economic
policy over σ that is parallel-correct for P . Now let f ∈ facts(σ, U), and C ′ the consumption
policy where C ′(g) = C(g) for all g ∈ facts(σ, U) \ {f} and C ′(f) (C(f). It is still
undecidable whether E′ is parallel-correct for P .

Proof. The proof is again by a reduction from the undecidable Datalog containment prob-
lem. Consider two Datalog programs P1, P2 with a single output relation (say T). We
construct program P by considering again the indexed versions of P1 and P2, which we

B. Ketsman, A. Albarghouthi and P. Koutris 23:21

denote by P ∗1 and P ∗2 . (See the proof of Proposition 5.2). We further add also the following
rules:

Trigger()← T1(x).
T ransfer(x)← Trigger(), T1(x).

T (x)← Transfer(x).
T (x)← T2(x).

We note that edb(P) = edb(P ∗1) ∪ edb(P ∗2) and out(P) = {T}. Consider the following
economic policy E = (P ,C) over a 2-node network: The consumption and production
policies map every fact over relations with index 1 to server 1, and those with index 2 to
2. Additionally, Trigger() is produced and consumed at server 1, all facts over Transfer
are in the production policy of server 1 and the consumption policy of server 2. Finally, all
facts over T are in the production policy of server 2.

It is easy to see that program P is parallel-correct for E. Indeed, program P2 evaluates
on server 2, where all tuples over T2 are copied to T . Program P1 evaluates on server 1, and
if it generates tuples in T1, then all are send to server 2 through the Transfer relation. In
server 2, all facts over Transfer are copied to T .

Now let C ′ be the policy as described, but where Trigger() is not consumed, i.e.,
C ′(Trigger()) = ∅. We claim that the query implied by P1 is contained in the query
implied by P2 if and only if economic policy E′ = (P ,C) is parallel-correct for P .
(If). The proof is by contraposition. Let I be an instance for which P1|{T}(I) * P2|{T}(I).
It follows that P|{T}(I) 6= [P,E](I). Indeed, in this case, there are tuples in relation T1

I

that are not in T2
I . Since Trigger() is not consumed, these tuples will not be send to server

2 and thus missing in T . Hence, E′ is indeed not parallel-correct for P .
(Only-if). Let I be an arbitrary instance. In the first round of E′, all T1 facts will be
produced in machine 1, and all T2 facts in machine 2. Moreover, all T facts that are produced
from T2 will also be produced in machine 2. It is easy to see that, since P1|{T}(I) ⊆ P2|{T}(I)
(notice that T here refers to the output relation of the original programs P1, P2, not the
output of P), we have the complete result for T for P in machine 2. J

B.3 Proof for Proposition 5.5
We first show the following Lemma.

I Lemma 2.2. For every proof tree T of depth d, there exists a proof tree T ′ v T of depth
at most d that uses only minimal and useful rule instantiations.

Proof. The proof is by induction on the depth of T , which we denote d. We show that there
exists a proof tree T ′ v T with depth ≤ d that uses only minimal rule instantiations.

For the base case, let d = 1. Then, T corresponds to a single rule instantiation (τ, v) for
P where all the facts in v(bodyτ) are edb facts. By definition, there is also a minimal rule
instantiation (τ ′, v′), with v′(headτ ′) = v(headτ) and v′(headτ ′) ⊆ v(bodyτ), which admits
the desired proof tree.

As induction hypothesis we take the statement of the lemma. Now for the induction
step, suppose T has depth d > 1. Then, the root of T , together with its children, defines a
rule instantiation (τ, v) for P . Now take an entailed minimal instantiation (τ ′, v) such that
v′(headτ ′) = v(headτ) and v′(bodyτ ′) ⊆ v(bodyτ). For every fact f ∈ v′(headτ ′), let Tf be
the subtree of T with root f (child of rootT). By the induction hypothesis, there is a proof

CVIT 2016

23:22 Distribution Policies for Datalog

tree T ′f v Tf with depth ≤ d− 1 that uses only minimal rule instantiations. The proof tree
that combines instantiation (τ ′, v′) with T ′f for all f ∈ v′(τ ′) is as desired. J

I Proposition 5.5. For every Datalog program P , we have N ess
P ⊆ Nmin

P ∩N use
P .

Proof. The containment N ess
P ⊆ N use

P is straightforward, since a proof tree does not use
any useless rule instantiations. We next show that N ess

P ⊆ Nmin
P . Suppose that we have

an instantiation of rule τ with valuation v that is essential. Then, there exists some fact
f and instance I for which every proof tree T has a vertex g with g = v(headτ) and
v(bodyτ) ⊆ childrenT (g). By Lemma 2.2, we can pick this tree such that it uses only
minimal rule instantiations. This implies that the rule instantiation with head g and body
childrenT (g) is minimal. Hence, the instantiation with head v(headτ) and body v(bodyτ) is
also minimal. J

B.4 Parallel Correctness Reformulation
We first show the following lemma.

I Lemma 2.3. Let P be a Datalog program and E an economic policy. If a proof tree T for
P is supported by E, then for every instance I, with fringeT ⊆ I, we have rootT ∈ [P,E].

Proof. The proof is by induction on the depth d of T . Particularly we show using a
simple inductive argument that rootT ∈ localki , for some server i and k ≤ d, which im-
plies rootT ∈ [P,E]. Recall that localki denotes the facts residing locally on server i after the
k-th computation round.

As base case let d = 1, meaning that T describes a single rule instantiation. After
the first communication round, all servers j have local0j ∪ rec1

j ⊆ I ∩ factsC(j). By the
assumption that E supports T , it follows that childrenT (rootT) ⊆ factsC(i)∩ I ⊆ local1i and
rootT ∈ factsP (i), for some server i, thus after the first computation round, rootT ∈ local1i .

For d > 1 we observe that rootT and its children in T define a rule instantiation (τ, v), and,
by the assumptions of the lemma, this rule instantiation is supported byE. More specifically,
some server i exists where rootT ∈ factsP (i) and childrenT (rootT) ⊆ factsC(i). Further, for
all facts f ∈ childrenT (rootT), the respective subtree Tf of T with root f is supported by E
and with depth d− 1. By the induction hypothesis it follows that for all these facts f there
is a server j and k ≤ d− 1, where f ∈ localkj . Therefore childrenT (rootT) ⊆ localk

∗

i ∪ reck∗i ,
where k∗ denotes the maximal k, and consequently, rootT ∈ localk

∗+1
i ⊆ localdi . J

We say that an economic policy E supports a proof tree T if all the rule instantiations
in T are supported.

I Lemma 2.4. Let P be a Datalog program. An economic policy E = (P ,C;U) is parallel-
correct for P if and only if for every proof tree for P with fringe over facts(σ(P), U), an
entailed supported proof tree exists.

Proof. (If). Let I be an arbitrary instance, we show P (I) = [P,E](I). By monotonicity,
[P,E](I) ⊆ P (I), thus we focus on completeness. For this, let f ∈ P (I), which means that
a proof tree T exists with fringeT ⊆ I and rootT = f . Particularly, by the assumption of the
lemma we can choose T so that it is also supported by E. It now follows from Lemma 2.3
that f ∈ [P,E].
(Only if). We assume (P ,C) is parallel-correct for P . Let T be an arbitrary proof tree.
The proof is by construction following the derivation of rootT using E. First, from parallel-
correctness it follows that P (I) = [P,E](I), for any instance I. Here we take I = fringeT ,

B. Ketsman, A. Albarghouthi and P. Koutris 23:23

implying rootT ∈ [P,E](I). The proof now continues by induction on the number of rounds
needed for E to derive rootT .

The induction hypothesis is that if k rounds are needed to derive rootT , then a supported
proof-tree of depth k entailed by T exists.

As a base case suppose k = 1. That is, rootT ∈ local1i , meaning that rootT ∈ P�E(local0j ∪⋃
j rec1

j) for some server j. Particularly, a valuation v and rule τ ∈ P existed with v(bodyτ) ⊆
factsC(j) ∩ I and v(headτ) = rootT , which means that the corresponding rule instantiation
is supported by E. Here, the proof tree admitted by (τ, v) is as desired.

For k > 1 the proof is analogous, but now we take as proof tree the tree obtained by
concatenating the rule instantiation with the proof trees for each child. Existence of the
latter follows from the induction hypothesis. As the number of rounds decreases by one in
each inductive step, and the fringes of the obtained trees cannot have other facts than does
in I, the constructed proof tree is as again as desired. J

B.5 Proof for Proposition 5.7
I Proposition 5.7. Let P be a Datalog program and E an economic policy. Then:
1. if E supports all minimal and useful rule instantiations in P , it is parallel-correct.
2. if E is parallel-correct for P , it supports all essential rule instantiations.

Proof. The first item follows from Lemma 2.4 and Lemma 2.2. For the second item, consider
a parallel-correct policy E and an essential instantiation of rule τ with valuation v. By the
definition of essential, for some fact f and instance I, every proof tree T for f on I and
P has a vertex g with g = v(headτ) and v(bodyτ) ⊆ childrenT (g). By Lemma 2.4, there
must exist such a tree T that is supported. This implies that there exists server s with
v(headτ) = g ∈ factsP (s) and v(bodyτ) ⊆ childrenT (g) ⊆ factsC(s). Hence, the essential
rule instantiation is indeed supported. J

B.6 Proof for Proposition 5.8
I Proposition 5.8. Let P be a Datalog program where each idb predicate occurs only in the
head of rules (i.e., P is a union of CQs). Then, N ess

P = Nmin
P ∩N use

P .

Proof. Because P is not recursive, N use
P = N all

P ; hence, because of Proposition 5.5 it suffices
to show that Nmin

P ⊆ N ess
P . Indeed, consider a minimal instantiation for rule τ with

valuation v, and consider the instance I = v(bodyτ) and fact f = v(headτ). Take any proof
tree T for f on I and P ; T must have depth one. Because of the minimality of the rule
instantiation, it must be that childrenT (f) = v(bodyτ), which proves the essentiality. J

B.7 Proof for Proposition 5.11
We first show the following helper lemma.

I Lemma 2.5. Testing whether for Datalog program P and rule τ ∈ P an essential rule
instantiation exists is undecidable.

Proof. We again consider a reduction from the Datalog containment problem. For this let
P1 and P2 be programs serving as input, with output predicate O(k). As before, let P ∗1 and
P ∗2 be the indexed versions of these programs.

CVIT 2016

23:24 Distribution Policies for Datalog

Define Datalog program P , with edb(P) = edb(P ∗1) ∪ edb(P ∗2), out(P) = {O(k)}, and
idb(P) = idb(P ∗1)∪ idb(P ∗2)∪ out(P). Program P is defined as the union of P ∗1 , P ∗2 , and the
following rules.

O(x)← O1(x).
O(x)← O2(x).

Now the questions whether P1 ⊆ P2 reduces to the question whether some essential rule
instantiation for O(x)← O1(x) exists. Indeed, if P1 ⊆ P2, this cannot be the case, since a
proof tree over {O} ∪ σP2 will always exist.
If P1 6⊆ P2, then some I and t exist, with O1(t) ∈ P1(I), O2(t) 6∈ P2(I). Then, it is easy to
see that all proof trees T with rootT = O(t) contain the instantiation O(t)← O1(t), which
is thus essential. J

I Proposition 5.11. Testing essentiality of a rule instantiation for a given Datalog program
is undecidable.

Proof. The proof is by contradiction. We assume that testing essentiallity of a given rule
instantiation is decidable and show that under this condition it is also decidable whether for
a given rule an essential instantiation exists. Since the later contradicts with Lemma 2.5,
the result follows.

The algorithm relies on the observation that positive Datalog programs (without function
symbols) are C-generic, with C being the constants occurring in P , thus if a rule instantiation
is essential, all isomorphic instantiations (where values from C are preserved) are essential.
Further, there are only finitely many distinct instantiations (up to isomorphisms).

For given rule τ ∈ P , one can thus simply iterate over the above defined equivalence
class, choose from each a specific instantiation, and test whether the chosen instantiation
is essential. An essential instantiation is found if and only if the rule has an essential
instantiation. J

C Proofs for Section 6

C.1 Proof for Proposition 6.2
I Proposition 6.2. Let P be a Datalog program. Every GHP E for P is strongly supporting
for P and, as a consequence, parallel-correct for P .

Proof. To show that E is supporting, consider some rule τ ∈ P , and its instantiation w.r.t.
some valuation v. Consider some atom A = R(y) in the body of τ ; then the consumption
policy says that its instantiation f = v(A) will be consumed in the set Sτf ,A, as defined in
Section 6. Similarly if A is the head, the fact f will be produced in Sτf ,A. Now we can write
the intersection

⋂
A∈τ S

τ
f ,A as:⋂

A∈τ
{mapχ(τ)(q) | ∀i : ∅ (ρτ (i) ⊆ vars(A)⇒ qi = h

χ(τ)
i (v(ρτ (i)))}

⊇ {mapχ(τ)(q) | ∀i : qi = h
χ(τ)
i (v(ρτ (i)))}) ∅

In other words, there will be at least one machine in
⋂
A∈τ S

τ
A, which means that every

instantiation of the rule τ will be strongly supported. J

B. Ketsman, A. Albarghouthi and P. Koutris 23:25

D Proofs for Section 7

D.1 Proposition 7.2
I Proposition 7.2. If P is a bounded Datalog program, then every parallel-correct economic
policy E for P is k-bounded, for some constant k that depends on P .

Proof. We use the following claim.

(†) if we run E on an instance with bounded size, then E will finish its evaluation in
a bounded number of rounds.

The result now follows from boundedness of P and Proposition 4.4. Boundedness of
P implies that some constant exists, such that for every instance I and fact f , f ∈ P (I)
implies existence of a proof tree with depth no more than the bound. We observe that a
bound on depth implies also a bound on fringe size.

Now, for arbitrary f and I, for f ∈ [P,E](I) we observe that f ∈ P (I), due to mono-
tonicity, and thus some proof-tree T with bounded fringe exists. It follows from (†) that E
finished in a bounded number of rounds over fringeT , and due to parallel-correctness of E,
f ∈ [P,E](fringeT).

Since this observation holds for all f ∈ [P,E](I), it follows from Proposition 4.4 that E
finishes in a bounded number of rounds.
It remains to show (†). The crucial observation is that, in all but the last computation
round at least some fact is communicated in the network that has not been communicated
in any earlier round. Indeed, only new derivations can trigger a next communication round,
and when a fact is received it will trigger new derivations only if it is not already known by
the receiving server.

Since the instance is bounded, the active domain (of this instance) is bounded, and thus
the number of facts that can be introduced during the evaluation is bounded as well. The
result follows. J

D.2 Proof for Theorem 7.4
Results (1) and (2) follow from the bellow lemmas.

I Lemma 4.1. boundednessF (PureDatalog,Fghp) is undecidable.

Proof. The proof is by reduction from the undecidable containment problem for Datalog
programs. Let P1, P2 be two Datalog programs with same distinguished output predicate
that serve as input.

As before, we annotate the relation names of both programs P1 and P2 with index 1 and
2, respectively, and denote the obtained programs by P ∗1 and P ∗2 .

We now construct program P over schema σ(P ∗1) ∪ σ(P ∗2) ∪ {Adom(1), T (2+ar(O)), E(2)}
by combining the rules from P ∗1 , P ∗2 , and those mentioned below. First we add rules
Adom(xj) ← X(x1, . . . , xα) for every relation X(α) ∈ σ(P ∗1) ∪ σ(P ∗2) ∪ {E(2)} and j ∈ [α].
Further, we add:

T (z;x, y)← O1(z), Adom(x), Adom(y). (τ1)
T (z;x, y)← O2(z), E(x, y). (τ2)

T (z;x, y)← T (z;x,w), T (z;w, y). (τ3)

Notice that new relation E is an edb relation, while T and Adom are idb relations.

CVIT 2016

23:26 Distribution Policies for Datalog

Next, we define a GHP H. For this take a single 1-dimensional cube of p servers, say
cube 1, and define χ(τ) = 1 for all rules in P . For rules in P ∗1 and P ∗2 , as well as the Adom
producing rules, we define ρτ (1) = ∅. For rule τ1 we again define ρτ1(1) = ∅, for τ2 and τ3
we define ρτ2(1) = ρτ3(1) = {x, y}.

We claim that P is 2-bounded if, and only if, P1 ⊆ P2. Otherwise, a GHP exists in H
for which the number of rounds depends on the size of the input, particularly on the size of
relation E.
(If). Let E = (P ,C) be an arbitrary economic policy from H. We observe that after a
single round, program P ∗1 and P ∗2 , as well as relation Adom are fully computed locally on
every server. Further, during this same round every T -fact with prefix a tuple from O2
is computed. After the first round, several relations will be communicated: C-consumable
relations used by P ∗1 and P ∗2 , as well as relation T and Adom. Since all these relations where
computed on all servers, no server receives a new fact (particularly due to P1 ⊆ P2). Hence,
the fixpoint is reached and no further communication steps are needed.
(Only if). Since P1 6⊆ P2, some instance I ′ exists, with O(t) ∈ P1(I ′), O(t) 6∈ P2(I ′). We
convert instance I to an instance for P , by annotating the relations with respective index,
and add a relation E with chain E(0, 1), E(1, 2), . . . , E(m− 1,m), for some integer m.

We take a specific GHP from H. For this we need some additional notation. Let T =
{T (t,u) | t ∈ adom(I)k,u ∈ TC(EI)}. Intuitively, T contains all T facts that can be
derived based on the given E relation, for all possible prefixes.

Not let π be the function where π(1) = 1 and π(i) = j, with 2j−1 < i ≤ 2j . By Bj
we denote the subset of T representing chains of length i, for all π(i) = j. Then as hash
function we choose h1

1({i, j}) = (π(i+ j) mod p) + 1.
During the computation of P over I we observe that P ∗1 , P ∗2 , and Adom are computed in

parallel on all available server as before. Only now, there are facts O2(a) such that O1(a)
does not exist, more specifically, T -facts with prefix t. Due to choice of hash functions, these
are all produced (only) on server 1. Hence, after the consequent communication phase, and
due to the construction of I, the production of new facts will be triggered.

More precisely we have the following induction hypothesis: After communication round
i+ 1 all servers know all T facts in Bj ∩P (I), for all j ≤ i, and no server has produced facts
from Bj , with j > i. Further, exactly one server is able to produce new T facts based on
the facts in Bi∩P (I), and this server is capable of computing only the facts in Bi+1∩P (I).

For round i we observe that initially, all servers know all T -facts from Bj ∩ P (I), j ≤ i,
due to the induction hypothesis. We observe that all new T -relations that can be obtained
by applying τ3 on Bj ∩ P (I), j ≤ i are in Bi+1, and thus can be produced only by server
(i mod p) + 1. Since the production of facts in Bi+2 is assigned to another server (by choice
of hash function), during this round only the facts from Bi+1 ∩ P (I) can be produced.

Since the number of buckets Bi is logarithmic in the size of E, it follows that to reach a
fixpoint, we need O(log(m)) rounds. J

I Lemma 4.2. k-boundednessF (PureDatalog,Fghp) is undecidable if k ≥ 2.

Proof. We give a reduction from the undecidable Datalog containment problem. Given
two Datalog programs P0, P1 with single output predicate T , which serve as input for
Datalog containment. First, we modify program P0 and P1 in the following way. For each
EDB relation R(α) ∈ edb(Pi) and every position j ∈ [α], we add the rule Adomi(xj) ←
R(x1, . . . , xα) to program Pi. Then, we add to every relation in idb(Pi) (expect for newly
introduced relation Adomi) one additional attribute. For notational convenience, we assume

B. Ketsman, A. Albarghouthi and P. Koutris 23:27

this is the first attribute of each relation. Then we update all the rules in Pi, by adding to
every IDB (applicable) predicate an additional variable z on the first position, and add atom
Atomi(z) to the body of the rule. Here we assume that z is a fresh variable, not previously
used by the rule. We refer to the annotated programs as P ∗0 and P ∗1 , and by T (β)

0 and T (β)
1

as their respective output predicates. Notice that P ∗0 and P ∗1 are essentially equivalent to
P0 and P1, but facts are computed redundantly for every value in the considered instance.

We construct program P over schema σ(P ∗0)∪ σ(P ∗1)∪ {T (β)
i | i ∈ [k− 1]} by combining

the rules in P ∗0 and P ∗1 with the below rules, for i ∈ [k − 1].

Ti(z;x)← Ti−1(z;x), Adom(i+1 mod 2)(z).

Next, we construct a GHP family H over a p-server network (with p ≥ 2) that considers
two 1-dimensional cube configurations of the p servers, each with their own hash function.
We refer to these cubes as cube 0 and cube 1. We assume the identity mapping map from
cube coordinates to [p] that is the same for both cubes. Now every rule having a head
predicate with index i is mapped over cube (i mod 2) by applying the associated hash
function over variable z. We refer to these hash functions as h0 and h1 respectively.

Now, we show that E is k-bounded if and only if P0 ⊆ P1.
If. On every instance I, by construction of E, program P ∗1 and P ∗2 will be computed
completely already after a single round. This follows from the fact that P ∗1 and P ∗2 are
pivoting and E decomposes their computation.

In the consequent communication phase (i.e., round 2), all servers send the tuples from
their locally computed Ti relation to the respective consuming servers. In the computation
phase that follows, servers receiving fact T0(a; t) derive fact T1(a; t). Since the former is
consumed at server f(h1(a)), and the latter was already produced at server f(h1(a)) during
the previous round (due to P0 ⊆ P1 and the constructed GHP family), these need not be
communicated.

For k = 2, we have thus reached the fixpoint, particularly because then relation T1 is
not consumed. For k > 2, we observe that in each additional communication round i (with
k ≥ i > 2), only tuples with predicate Tj (with j ≥ i − 1) are reshuffled and copied into
relation Tj+1. In a worst-case scenario we thus need k rounds for all these facts to be copied
to relation Tk−1.
Only if. Suppose P1 6⊆ P2. We fix some arbitrary hash function for h0 over [p] and define
h1 as the hash function over [p] where h1(a) = h0(a) + 1 mod p, for every value a ∈ dom.
Notice that h0 and h1 yield a GHP in H.

Let T (t) be a fact and I and instance with T (t) ∈ P0(I)\P1(I). Notice that in program P ,
this fact has the form T0(a; t), for some value a in the active domain of I. The computation
of I proceeds as in the previous case, only after the first communication phase some server
receives fact T0(a; t), deriving a fact T1(a; t) that was not previously in the T1 relation
(recall that by assumption P2 could not derive T2(a; t)). This fact will thus be send to its
consumers in communication phase 3 (rather than 2).

Due to our choice of hash functions, facts from relation Ti are communicated the earliest
in round i, and the fact Ti(a; t), for i ≥ 2, is being communicated in the i+1th communication
phase. Therefore k + 1 rounds are needed before fact Tk+1(a; t) is derived. J

I Lemma 4.3. k-boundedness(PureDatalog, Eindep) is undecidable if k ≥ 2.

Proof. The proof is by a reduction from the undecidable Datalog containment problem.
Given two Datalog programs P1, P2 over single output relation, which serve as input for
Datalog containment. We construct program P by taking all rules in P1, where all IDB

CVIT 2016

23:28 Distribution Policies for Datalog

relations are annotated by index 1, and all rules in P2, where IDB relations marked with
index 2. Here we assume that T1 is the output predicate for P1, and T2 for P2. Furthermore
we add the following rules:

T2(x)← T1(x).
O(x)← T2(x).

We take as economic policy E = (P ,C) over a two-node network. The consumption and
production policies map every fact over relations with index 1 to server 1, and those with
index 2 to server 2. Additionally, relation T1 is also consumed at server 2, and relation T2
is also consumed at server 1. Relation O is produced at server 1. Next, we show that E is
2-bounded if and only if P1 ⊆ P2.
(If). On every instance I, server 1 computes the complete output P1(I), and server 2
computes the complete output P2(I). In the consequent communication phase, server 1
sends its entire T1 relation to server 2, and server 2 sends its entire T2 relation to server
1. In the computation phase that follows, server 2 adds all the received facts from T1 to
its relation T2, which has no effect due to assumption P1 ⊆ P2. Hence server 2 requires
no additional communication and reached a local fixedpoint. Server 1 copies relation T2
to relation O. As no other new facts are derived than those in O, and relation O is not
consumed, server 1 has reached a local fixed too. Hence, E is indeed 2-bounded.
(Only if). Suppose P1 6⊆ P2. Let f be a fact and I and instance with f ∈ P1(I) \ P2(I).
The computation of I proceeds as in the previous case, only after the first communication
phase, server 2 receive at least one fact (f) that was not computed locally. In the consequent
computation phase, this fact will be added to the T2 relation, and needs to be communicated
to server 1 before a fixpoint can be reached. Policy E is thus not 2-bounded. J

D.3 Proof for Proposition 7.5
I Proposition 7.5. Let P be a Datalog program and E = (P ,C) a strongly supporting
economic policy for P . E is 1-bounded if and only if for every P -derivable idb fact f : (1)
|C(f)| ≤ 1; and (2) |C(f)| = 1 implies C(f) = P ∗(f).

Proof. (If). All idb facts derived during the distributed evaluation are P -derivable. Con-
sider a rule instantiation (τ, v) that is satisfied on some server s and produces fact f =
v(headτ). Then, condition (1) tells us that |C(f)| ≤ 1. If |C(f)| = 0, then f is not con-
sumed anywhere and thus will not be communicated. If |C(f)| = 1, condition (2) tells us
that C(f) = P ∗(f). But since s ∈ P ∗(f), this implies that C(f) = {s}. Hence, s is the
only server that consumes f , and f does not have to be sent to another server. Thus indeed
E is 1-bounded. Notice that edb facts are never communicated after round 1.
(Only if). Towards a contradiction, suppose that E is 1-bounded, but the conditions of the
proposition do not hold, i.e., there exists some P -derivable fact f such that at least one of
conditions (1), (2) fails. Because E is strongly supporting, it is parallel-correct and thus
for some instance I and server s, during the distributed evaluation, server s will produce
fact f in round 1. Now, if condition (1) is not true, then |C(f)| > 1, which implies that
server s needs to send f to servers C(f) \ {s}; this contradicts 1-boundedness. Similarly, if
condition (1) holds but (2) does not, then s ∈ P ∗(f), while for some server s′ 6= s we have
C(f) = {s′}. By the definition of P ∗, there exists some instance J , rule τ and valuation v,
with v(headτ) = f , such that all facts v(bodyτ) are derived and are consumed on server s.
This means that f will be produced (during round 1), so then it will have to be sent to s′;
this contradicts again 1-boundedness. J

B. Ketsman, A. Albarghouthi and P. Koutris 23:29

D.4 Proof for Proposition 7.9
I Proposition 7.9. Let P be a pure Datalog program, and H a GHP family. Then, H is
1-bounded for P if and only if it is weakly pivoting for P .

Proof. (If). Let E = (P ,C) be an arbitrary economic policy inH. Let f be an arbitrary C-
consumable fact over the schema of P . Recall that s ∈ C(f) iff there is a τ ∈ P,A ∈ bodyτ ,
and valuation v such that v(A) = f . Analogously, s ∈ P (f) iff there is a τ ∈ P and
valuation v such that v(A) = f , with A = headτ .

More precisely, in both cases, for fixed τ and A, condition (1) of weakly pivoting GHP
families implies that server s is uniquely identified by parameters χ(τ) and posA(ρτ (i)), for
all dimensions i of χ(τ). (We ignore mapχ(τ), which is fixed for χ(τ).)

Clearly, C(f) 6= ∅, because f is over a P -consumable relation, and E is a GHP. Now
take s1, s2 ∈ C(f). Then, due to condition (2) of weakly pivoting GHPs it follows directly
that s1 = s2. Hence, |C(f)| ≤ 1.

For s1 ∈ P (f) and s2 ∈ C(f) the observation that s1 = s2 is analogous. Hence,
P (f) = C(f). Now it follows from Proposition 7.5 that E is 1-bounded.
(Only If). We argue condition (1) and (2) from the definition of weakly pivoting GHPs
by contraposition. First suppose that (1) fails for some τ1, i, and A1. If A1 is a body
atom it follows immediately that f is replicated for C over dimension i, which contradicts
1-boundedness (since pi > 1). Now assume A1 is the head of τ1. If ρτ1(i) = ∅ it follows
that all rule instantiations for τ1 are replicated over dimension i, and thus that P ∗(f) >
1 for facts matching the head of τ1. Since R1 is C-consumable and pi > 1, this again
contradicts 1-boundedness. For the case where ρτ1(i) 6= ∅, a similar argument holds: Take
x ∈ ρτ1(i) \ vars(A1) and consider two valuations mapping all variables on the same value,
except for x. We can now chose the hash functions for ρτ1 so that both rule instantiations
satisfy on distinct servers (due to p1 > 1), and thus again |P ∗(f)| > 1, for some C-
consumable fact f , which contradicts 1-boundedness.

For condition (2), χ(τ1) 6= χ(τ2) allows choosing valuations for τ1 and τ2 that agree
on the A1 and A2 (due to pureness), and then hash functions can be chosen so that both
satisfy on distinct servers. Since all matching facts are C-consumable, this would contradict
1-boundedness. For χ(τ1) = χ(τ2) and posA1(ρτ1(i)) 6= posA2(ρτ2(i)) the observation is
analogous. J

D.5 Proof for Proposition 7.13
I Proposition 7.13. Let P be a pure Datalog program and p ≥ 2. There is a 1-bounded
GHP family if and only if P is weakly pivoting.

In the below propositions, we show slightly stronger results. The if-direction of Pro-
position 7.13 then follows from Proposition 7.9 and Proposition 4.4. The only-if direction
follows from Proposition 4.5. Proposition 4.6.

I Proposition 4.4. Let P be a pure and weakly pivoting Datalog program. For every p there
is a weakly pivoting GHP family for P over [p].

Proof. Take a weak pivot base B for P . We construct GHP E over network p by considering
a single cube, cube 1, with only one dimension. We choose χ(τ) = 1 for every τ ∈ P ,
and map1 as the mapping from the single-point coordinates to servers in [p] that expresses
identity. Now for rules τ ∈ P having no atom with associated pivot base, we define ρτ (1) = ∅;

CVIT 2016

23:30 Distribution Policies for Datalog

for all other rules we define ρτ (1) = varsA[β(R)], with R the relation symbol of A. It is easy
to see that H is indeed weakly pivoting. J

I Proposition 4.5. Let P be a pure Datalog program. If H is a weakly pivoting GHP for P
over a network where p ≥ 2, then every E ∈ H is without stragglers for P -consumable idb
relations.

Proof. To show that E is without stragglers, we recall that the hash functions used by E
are surjective by definition. Thus for any P -consumable relation R a fact f , a fact g over
R with C(f) 6= C(g) can always be found. J

I Proposition 4.6. Let P be a pure and not weakly pivoting Datalog program. Then, every
strongly supporting economic policy that is 1-bounded has a straggler for some consumable
idb relation in P .

In the remainder of this section, we prove Proposition 4.6. We introduce the notion of
policy key for economic policy E = (C,P) and Datalog program P . Let R be some idb
relation and γ a tuple of integers in |ar(R)|. Then γ is called a policy key for R in E, if
for all facts f , g over R, f [γ] = g[γ] implies P ∗(f) = P ∗(g) = {s}, for some server s; and
C(f) = C(g) = ∅ or C(f) = C(g) = {s}. When E is clear from the context we omit
mentioning E and say that γ is a policy key for R. We call γ empty if γ = ().

For 1-bounded and strongly supporting economic policies, allC-consumable idb relations
have a (possibly empty) policy key, which follows immediately from Proposition 7.5.

I Lemma 4.7. For pure Datalog program P , and 1-bounded strongly supporting economic
policy E = (P ,C) for P , the following are equivalent:
1. a C-consumable idb relation of P has empty key in E;
2. E has a straggler for some C-consumable idb relation.

Proof. The direction (2)⇒ (1) is straightforward. For (1)⇒ (2), let R be a C-consumable
idb relation with empty key. The latter means that some server s exists with s ∈ C(f) for
all facts f with predicate R. (Recall that s ∈ P ∗(f) implies s ∈ C(f) due to Proposition 7.5
and the fact that R is C-consumable.) J

We can also show the following technical results regarding policy keys.

I Lemma 4.8. Let E be an economic policy and R a relation in the schema of E. If γ1
and γ2 are policy keys for R, then every tuple γ having all integers that are in both γ1 and
γ2 is a policy key for R.

Proof. Let γ1,γ2,γ be as in the proposition, and f , g be arbitrary facts over relation R,
with f [γ] = g[γ].

We construct fact f ′ over R, by taking as values on positions mentioned in γ1 the same
values as in f , and for values on positions in γ2 the same values as in g. Notice that the
construction is well-defined, because γ contains all positions from the intersection.

Now it is easy to see that γ is indeed a key. Specifically because C(f) = C(f ′) = C(g)
and P ∗(f) = P ∗(f ′) = P ∗(g). J

I Lemma 4.9. Let P be a pure Datalog program and E a strongly supporting economic
policy. Let R1(x1), R2(x2) be two idb relations occurring in some rule τ ∈ P , with minimal
keys γ1 and γ2 respectively. Then, varsA1

[γ1] = varsA2
[γ2].

B. Ketsman, A. Albarghouthi and P. Koutris 23:31

Proof. LetE be the economic policy from the lemma. We show that every tuple γ consisting
of all positions in posA1(varsA1

[γ1] ∩ varsA2
[γ2]) is a key for R1 (and due to symmetry for

R2). Then, the desired property varsA1
[γ1] = varsA2

[γ2] follows from Lemma 4.8.
Now let f , g be two arbitrarily chosen facts over R1, with f [γ] = g[γ]. Let v be a

valuation for τ , with v(A1) = f ; and let v′ be a valuation for τ with v′(A1) = g. Then, we
construct valuation v′′ so that v′′(x) = v(x) for all x ∈ vars(A2); and v′′(x) = v′(x) for all
x ∈ vars(A1) \ vars(A2).

We observe that v′′(A2) = v′(A2), and thus trivially C(v′′(A2)) = C(v′(A2)) = {s}.
The latter equality is due to existence of a key for R2. More precisely, all P -consumable
body facts from instantiations (v′, τ) and (v′′, τ) must be consumed on server s due to E
being strongly supporting. If R1 is P -consumable, this implies s ∈ C(f) ∩C(v′(A2)). Due
to existence of a key for R1, |C(f)| = 1, thus P ∗(f) = C(f) = {s}. Analogously we obtain
P ∗(g) = C(g) = {s}, which is as desired.

If A1 is the head of τ , then s ∈ P ∗(f) ∩ C(v′(A1)). Due to existence of a key for
R1, either P ∗(f) = C(f) = {s} or C(f) = ∅. As before, an analogous observation gives
P ∗(g) = {s} and C(g) = P (g) = {s}, or C(g) = ∅. Due to pureness either both facts are
P -consumable and thus C-consumable s, or not. Hence the result is as desired. J

Proof of Proposition 4.6. Suppose E is a strongly supporting economic policy that is 1-
bounded. For the sake of contradiction, assume that E has no stragglers for any C-
consumable idb relations. Then, by Lemma 4.7 all P -consumable relations have non-empty
policy keys. In turn, this implies that from Lemma 4.9 we can use the policy keys for C-
consumable idb relations as pivot base. However, this contradicts the fact that P is not
weakly pivoting. J

D.6 Proof for Proposition 7.15
I Proposition 7.15. Let P ∈ PureDatalog and H a GHP family for P . Then, H is 1-
bounded, disjoint for P , and without stragglers for idb relations, if and only if, H is pivoting.

The result follows from the below two propositions: Proposition 4.10 and Proposi-
tion 4.11.

I Proposition 4.10. Let E be a pivoting GHP for some pure Datalog program P . Then E
is 1-bounded, disjoint, and without stragglers for idb relations.

Proof. Since a pivoting GHP is also weakly pivoting, it follows from Proposition 7.9 and
Proposition 4.5 that E is 1-bounded and without stragglers for P -consumable idb relations.

For the remainder of the proof we observe that s ∈ P ∗(f) iff there is a rule τ ∈ P and
valuation v such that v(headτ) = f . Due to condition (1) of pivoting GHP, s is identified
uniquely per rule τ by the combination χ(τ) and posheadτ (ρτ (i)) for all i with pi ≥ 1.

For s1, s2 ∈ P ∗(f), it follows from condition (2) of pivoting GHP, that s1 = s2, thus
|P ∗(f)| = 1. Hence, E is indeed disjoint. Due to surjectivity of the considered hash
functions, it follows that E has no stragglers for idb relations. J

I Proposition 4.11. Let P be a pure Datalog program, and H a GHP family. If H is
1-bounded, disjoint for P without stragglers for idb relations, then H is pivoting.

For the proof, we use the next auxiliary result.

I Proposition 4.12. An economic policy E = (C,P) that is 1-bounded, disjoint, strongly
supporting and without stragglers has non-empty keys for idb relations of the associated
Datalog program.

CVIT 2016

23:32 Distribution Policies for Datalog

Proof. Due to 1-boundedness and the absence of stragglers for P -consumable idb relations,
it follows from Lemma 4.7 that non-empty keys for C-consumable idb relations exist.

Now let R be an idb relation that is not P -consumable. Pureness of P , and E being
disjoint and strongly supporting implies |P ∗(f)| = 1, thus R has a trivial key. Due to the
absence of stragglers it immediately follows that R cannot have the empty key. J

Proof for Theorem 4.11. 1-boundedness implies that H is weakly pivoting due to Propos-
ition 4.12. It remains to show that condition (1) and (2) also hold for relations that are not
consumable. The proof is again by contraposition and completely analogous to the proof of
Proposition 7.9. Only now A1 and A2 must be head atoms, and we use disjointness to argue
|P ∗(f)| = 1 for all facts f over R1. J

D.7 Proof for Proposition 7.16
I Proposition 7.16. Let P ∈ PureDatalog. Then P is pivoting if, and only if, P admits a
1-bounded, strongly supporting, disjoint economic policy without stragglers for idb relations.

Proof. (If). The proof is analogous to the proof of Proposition 4.4, by taking the pivot base
B for P to obtain a pivoting GHP for P . The result then follows from Proposition 4.10.
(Only if). The result follows from Proposition 4.12. Particularly, because we can take the
non-empty keys for idb relations as pivot. Correctness follows from Correctness follows from
non-emptyness of policy keys and Lemma 4.9. J

	Introduction
	Related Work
	Preliminaries
	The Framework
	Datalog Evaluation Modulo Policies
	Distributed Evaluation Strategy

	Parallel-Correctness
	Generalized Hypercube Policies
	Bounded & Disjoint Evaluation
	Weakly Pivoting GHPs
	Weakly Pivoting Datalog
	Bounded and Disjoint Evaluation

	Conclusion
	Proofs for Section 4
	Proof for Proposition 4.4

	Proofs for Section 5
	Proof for Theorem 5.2
	Proof for Lemma 5.3
	Proof for Proposition 5.5
	Parallel Correctness Reformulation
	Proof for Proposition 5.7
	Proof for Proposition 5.8
	Proof for Proposition 5.11

	Proofs for Section 6
	Proof for Proposition 6.2

	Proofs for Section 7
	Proposition 7.2
	Proof for Theorem 7.4
	Proof for Proposition 7.5
	Proof for Proposition 7.9
	Proof for Proposition 7.13
	Proof for Proposition 7.15
	Proof for Proposition 7.16

