
80

FairSquare: Probabilistic Verification of Program Fairness

AWS ALBARGHOUTHI, University of Wisconsin–Madison, USA

LORIS D’ANTONI, University of Wisconsin–Madison, USA

SAMUEL DREWS, University of Wisconsin–Madison, USA

ADITYA V. NORI, Microsoft Research, UK

With the range and sensitivity of algorithmic decisions expanding at a break-neck speed, it is imperative that

we aggressively investigate fairness and bias in decision-making programs. First, we show that a number of

recently proposed formal definitions of fairness can be encoded as probabilistic program properties. Second,

with the goal of enabling rigorous reasoning about fairness, we design a novel technique for verifying

probabilistic properties that admits a wide class of decision-making programs. Third, we present FairSquare,

the first verification tool for automatically certifying that a program meets a given fairness property. We

evaluate FairSquare on a range of decision-making programs. Our evaluation demonstrates FairSquare’s

ability to verify fairness for a range of different programs, which we show are out-of-reach for state-of-the-art

program analysis techniques.

CCS Concepts: • Mathematics of computing → Probabilistic inference problems; • Software and its

engineering → Automated static analysis;

Additional Key Words and Phrases: Algorithmic Fairness, Probabilistic Programming, Probabilistic Inference

ACM Reference Format:

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. 2017. FairSquare: Probabilistic Verifica-

tion of Program Fairness. Proc. ACM Program. Lang. 1, OOPSLA, Article 80 (October 2017), 30 pages.

https://doi.org/10.1145/3133904

1 INTRODUCTION
A number of very interesting applications of program analysis have been explored in the proba-

bilistic setting: reasoning about cyber-physical systems [Sankaranarayanan et al. 2013], proving

differential privacy of complex algorithms [Barthe et al. 2014], reasoning about approximate pro-

grams and hardware [Carbin et al. 2013], synthesizing control programs [Chaudhuri et al. 2014],

amongst many others. In this paper, we turn our attention to the problem of verifying fairness of

decision-making programs.

Program Bias As software permeates our personal lives, corporate world, and bureaucracy, more

and more of our critical decisions are being delegated to opaque algorithms. Software has thus

become a powerful arbitrator of a range of significant decisions with far-reaching societal impact—

hiring [Kobie 2016; Miller 2015], welfare allocation [Eubanks 2015], prison sentencing [Angwin

Authors’ addresses: A. Albarghothi, L. D’Antoni, S. Drews, Department of Computer Sciences, University of Wisconsin-

Madison, 1210 West Dayton Street, Madison, WI, 53706, US; A. Nori, Microsoft Research Cambridge, 21 Station Road

Cambridge CB1 2FB United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

2475-1421/2017/10-ART80

https://doi.org/10.1145/3133904

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

https://doi.org/10.1145/3133904
https://doi.org/10.1145/3133904

80:2 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

et al. 2016], policing [Berg 2014; Perry 2013], amongst many others. With the range and sensitivity

of algorithmic decisions expanding by the day, the problem of understanding the nature of program

bias is a pressing one: Indeed, the notion of algorithmic fairness has recently captured the attention

of a broad spectrum of experts, within computer science and without [Ajunwa et al. 2016; Angwin

et al. 2016; Barocas and Selbst 2014; Calders and Verwer 2010; Datta et al. 2015; Dwork et al. 2012;

Feldman et al. 2015; Sweeney 2013; Tutt 2016; Valentino-Devries et al. 2012; Zemel et al. 2013].

Fairness and justice have always been ripe topics for philosophical debate [Rawls 2009], and, of

course, there are no established rigorous definitions. Nonetheless, the rise of automated decision-

making has prompted the introduction of a number of formal definitions of fairness, and their

utility within different contexts is being actively studied and contested [Dwork et al. 2012; Feldman

et al. 2015; Friedler et al. 2016; Hardt et al. 2016; Kleinberg et al. 2017; Ruggieri 2014]. Notable

formulations of fairness include individual fairness, which dictates that similar inputs must result

in similar outputs; and group fairness, which dictates that a particular subset of inputs must have a

similar aggregate output to the whole. In this paper, we view such notions of fairness as probabilistic

specifications of decision-making programs.

Fairness as a Probabilistic Specification We think of decision-making algorithms as probabilis-

tic programs, in the sense that they are invoked on inputs drawn from a probability distribution,

e.g., representing the demographics of some population. Fairness properties are then formalized as

probabilistic specifications to which the decision-making program needs to adhere.

Consider a hiring program P that takes as input a vector of arguments v representing a job

applicant’s record and returns a Boolean value indicating whether the applicant is hired. One of

the arguments vs in the vector v states whether the person is a member of a protected minority

or not, and similarly vq in v states whether the person is qualified or not for the job. Our goal

may be to prove a group fairness property that is augmented with a notion of qualification—that

the algorithm is just as likely to hire a qualified minority applicant as it is for other qualified

non-minority applicants. Formally, we state this probabilistic condition as follows:

P[P(v) = true | vs = true ∧vq = true]
P[P(v) = true | vs = false ∧vq = true] > 1 − ϵ

Here, ϵ is a small constant. In other words, the probability of hiring a person v , conditioned on

them being a qualified minority applicant, is very close to (or greater than) the probability of hiring

a person conditioned on them being a qualified non-minority applicant. We note that, while most

recent concerns of fairness have focused on automation of bureaucratic processes, e.g., employment

and loan applications, our view of the problem is broad. For instance, fairness properties can be

extended to actions and decisions of autonomous agents, like robots and self-driving cars, that

interact with us and affect our environment.

Automated Fairness Verification We envision a future in which those who employ algorithmic

decision-making in sensitive domains are required to prove fairness of their processes. Towards

this vision, our goal in this paper is to develop an automated technique that can prove fairness

properties of programs, like the one shown above, as well as others. With that in mind, we have

two key criteria: First, we require a technique that can construct a proof of fairness or unfairness of

a given program with respect to a specified fairness property. Second, we need to ensure that our

technique can handle real-world classes of decision-making programs.

Since our aim is to construct proofs of fairness or unfairness, we focus our development on

exact probabilistic verification techniques, in contrast with approximate techniques that may

provide probabilistic guarantees. We first attempted to reason about fairness using a range of

recent probabilistic static analysis techniques that provide exact guarantees [Gehr et al. 2016;

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:3

Sankaranarayanan et al. 2013], but we observed that these existing techniques are unable to handle

the programs and properties we consider. We therefore set out to design a new technique that is

suited for our domain of verifying fairness of decision-making programs.

We first observe that many decision-making programs—e.g., machine-learned classifiers—can be

encoded logically as formulas in real arithmetic. Since our goal is to verify a probabilistic property

of programs, we propose an automated technique that reduces our probabilistic verification problem

to that of computing the weighted volume of the logical encoding of a program in real arithmetic

(i.e., computing the probability of picking an assignment that satisfies the formula). To enable

automatic construction of proofs, we propose a novel symbolic-volume-computation algorithm that

exploits the power of smt solvers to compute the weighted volume of formulas in real arithmetic.

We show that our algorithm monotonically converges to the exact probabilities in the limit, thus

resulting in a sound and complete fairness verification procedure. To our knowledge, this is the first

probabilistic-inference algorithm for arithmetic smt theories with this expressivity and guarantees.

FairSquare We implement our algorithm in a new tool called FairSquare. We evaluate FairSquare

on a number of decision-making programs generated by a range of machine-learning algorithms

from real-world data. Our evaluation demonstrates FairSquare’s ability to prove/disprove fairness

properties for a range of decision-making programs. Furthermore, our evaluation highlights the

importance of our algorithmic contributions and design decisions in the fairness context: for

example, we demonstrate how state-of-the-art, general-purpose probabilistic program analysis

tools are unable to handle the majority of our benchmarks.

Contributions This paper makes a number of conceptual, algorithmic, and practical contributions:

• We frame fairness properties of programs as correctness properties in the context of program

verification. Specifically, we show that a number of formal definitions of fairness can be cast

as probabilistic specifications of decision-making programs. (Sec. 3)

• Motivated by the structure of decision-making programs, we address the problem of automat-

ing fairness verification by reducing it to a set of weighted-volume-computation problems.

We present a novel weighted-volume-computation algorithm, for formulas over real closed

fields, that utilizes an smt solver as a black box, and we prove that it converges to the exact

volume in the limit. (Sec. 4)

• We implement our technique in a new tool called FairSquare and use it to verify a class

of fairness properties for a broad spectrum of decision-making programs generated from

real-world datasets. Our evaluation demonstrates the power of our technique in the domain

of fairness verification and its ability to outperform state-of-the-art probabilistic program

analyses. (Sec. 6)

2 OVERVIEW AND ILLUSTRATION
Our problem setting is as follows: First, we are given a decision-making program Pdec. Second, we
have a probabilistic precondition defining a probability distribution over inputs of Pdec. We define the

probability distribution operationally as a probabilistic program Ppop, which we call the population

model. Intuitively, the population model provides a probabilistic picture of the population from

which the inputs of Pdec are drawn. Third, we are given a quantitative postcondition φpost that

correlates the probabilities of various program outcomes. This postcondition can encode various

fairness properties. Intuitively, our goal is to prove the following triple:{
v ∼ Ppop

}
r ← Pdec(v)

{
φpost

}
In this section, we consider a specific fairness property. We will discuss in Sec. 3 how several

formulations of fairness can be captured by our framework.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:4 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori}
}The decision-making program takes an

applicant’s record and decides whether
to hire them. A person is hired if they
are from a top-5 college (colRank <= 5)
or have lots of experience compared to
their college rank (expRank > -5). Note
that this program does not access an
applicant’s ethnicity.

1 define popModel()
2 ethnicity ~ gauss(0,10)
3 colRank ~ gauss(25,10)
4 yExp ~ gauss(10,5)
5 if (ethnicity > 10)
6 colRank colRank + 5
7 return colRank, yExp

1 define dec(colRank, yExp)
2 expRank yExp - colRank
3 if (colRank <= 5)
4 hire true
5 elif (expRank > -5)
6 hire true
7 else
8 hire false
9 return hire

The population model defines a joint prob-
ability distribution on attributes of mem-
bers of a population: (i) the rank of the
college a person attended (colRank), (ii) the
years of work experience they have (yExp),
and (iii) their ethnicity (ethnicity). Note
that colRank is influenced by a persons’s
ethnicity.

(a)

(b)

(d)

of iterations of algorithm

ra
tio

 u
pp

er
/lo

w
er

 b
ou

nd

(e)

of iterations of algorithm

ra
tio

 u
pp

er
/lo

w
er

 b
ou

nd

colRank

ethnicity yExp

(c) Underapproximation of '
as a union of hyperrectangles

FairSquare ratio computation
on modified dec (fair)

FairSquare ratio computation
on dec and popModel (unfair)

Formula ' in R3

(blue faces are unbounded)

Fig. 1. Simple illustrative example

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:5

ASimple Verification Problem Consider the two programs in Figure 1(a). The program popModel
is a probabilistic program describing a simple model of the population. Here, a member of the

population has three attributes, all of which are real-valued: (i) ethnicity; (ii) colRank, the ranking
of the college the person attended (lower is better); and (iii) yExp, the years of work experience a

person has. We consider a person to be a member of a protected group if ethnicity > 10; we call
this the sensitive condition. The population model can be viewed as a generative model of records of

individuals—the more likely a combination is to occur in the population, the more likely it will

be generated. For instance, the years of experience an individual has (line 4) follows a Gaussian

(normal) distribution with mean 10 and standard deviation 5. Observe that our model specifies that

members of a protected minority will probably attend a lower-ranked college, as encoded in lines

5-6.

The program dec is a decision-making program that takes a job applicant’s college ranking and

years of experience and decides whether they get hired. The program implements a simple decision

tree, perhaps one generated by a machine-learning algorithm or written by a person. A person is

hired if they attended a top-5 college (colRank <= 5) or have lots of experience compared to their

college’s ranking (expRank > -5). Observe that dec does not access an applicant’s ethnicity.

Our goal is to establish whether the hiring algorithm dec discriminates against members of the

protected minority. Concretely, we attempt to prove the following property:

P[hire | min]
P[hire | ¬min] > 1 − ϵ

where min is shorthand for the sensitive condition ethnicity > 10, and ϵ is a small parameter

set to 0.1 for purposes of illustration. Despite the potential shortcomings of this group-fairness

property [Dwork et al. 2012], its simple formulation serves well as an illustration of our technique.

We can rewrite the above statement to eliminate conditional probabilities as follows:

P[hire ∧ min]/P[min]
P[hire ∧ ¬min]/P[¬min] > 1 − ϵ (1)

Therefore, to prove the above statement, we need to compute a value for each of the probability

terms:P[hire∧min],P[min], andP[hire∧¬min]. (Note thatP[¬min] = 1−P[min].) Observe that,
to prove or disprove inequality 1, all we need are sufficiently precise bounds on probabilities—not

their exact values.

For the purposes of illustration, we shall focus our description on computing P[hire ∧ ¬min].
Probabilistic Verification Conditions To compute the probability P[hire ∧ ¬min], we need to

reason about the composition of the two programs, dec ◦ popModel. That is, we want to compute the

probability that (i) popModel generates a non-minority applicant, and (ii) dec hires that applicant.
To do so, we begin by encoding both programs as formulas in the linear-real-arithmetic theory of

first-order logic. The process is analogous to that of standard verification-condition generation for

loop-free program fragments.

First, we encode popModel as follows:

φpop ≡ (ethnicity > 10⇒ colRank1 = colRank + 5) ∧ (ethnicity ⩽ 10⇒ colRank1 = colRank)

where subscripts are used to encode multiple occurrences of the same variable (i.e., ssa form). Note

that assignments drawn from probability distributions do not appear in the encoding—we shall

address them later.

Second, we encode dec as follows (after simplification):

φdec ≡ expRank = yExp
i − colRanki ∧ (hire ⇐⇒ (colRanki ⩽ 5 ∨ expRank > −5))

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:6 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

where variables with the superscript i are the input arguments to dec. Now, to encode the com-

position dec ◦ popModel, we simply conjoin the two formulas—φpop and φdec—and add equalities

between returns of popModel and arguments of dec.

φP ≡ φpop ∧ φdec ∧ yExpi = yExp ∧ colRanki = colRank1

Our goal is to compute the probability that a non-minority applicant gets hired. Formally, we are

asking, what is the probability that the following formula is satisfied?

φ ≡ ∃Vd .φP ∧ hire ∧ ethnicity ⩽ 10

Vd is the set of variables that are not probabilistically assigned to—that is, all variables other than the

three variables Vp = {ethnicity, colRank, yExp}. Intuitively, by projecting out all non-probabilistic

variables with existential quantifiers, we get a formula φ whose models are the set of all probabilistic

samplings that lead to a non-minority applicant being generated and hired.

Weighted Volume Computation To compute the probability that φ is satisfied, we begin by

noting that φ is, geometrically, a region in R3
, because it has three free, real-valued variables, Vp .

The region φ is partially illustrated in Figure 1(b). Informally, the probability of satisfying φ is the

probability of drawing values for the variables in Vp that end up falling in the region described by

φ. Therefore, the probability of satisfying φ is its volume in R3
, weighted by the probability density

of each of the three variables. Formally:

P[hire ∧ ¬min] =
∫
φ
pepypc dVp

where, e.g., pe is the probability density function of the distribution gauss(0,10)—the distribution
from which the value of ethnicity is drawn in line 2 of popModel. Specifically, pe is a function of

ethnicity, namely, pe (ethnicity) = 1

10

√
2π
e−

ethnicity
2

200 .

The primary challenge here is that the region of integration is specified by an arbitrary smt

formula over an arithmetic theory. So, how do we compute a numerical value for this integral? We

make two interdependent observations: (i) if the formula represents a hyperrectangular region

in Rn
—i.e., a box—then integration is typically simple, due to the constant upper/lower bounds

of all dimensions; (ii) we can symbolically decompose an smt formula into an (infinite) set of

hyperrectangles.

Specifically, given our formula φ, we construct a new formula, �φ , where each modelm |= �φ
corresponds to a hyperrectangle that underapproximates φ. Therefore, by systematically finding

disjoint hyperrectangles inside of φ and computing their weighted volume, we iteratively improve

a lower bound on the exact weighted volume of φ. Figure 1(c) shows a possible underapproximation

of φ composed of four hyperrectangles. The hyperrectangles form a ladder shape that underap-

proximates the slanted face of φ. We can analogously compute an upper bound on the weighted

volume of φ: we simply find a lower bound for ¬φ and apply the fact that P[φ] = 1 −P[¬φ]. Sec. 4
formalizes this technique and proves its convergence for decidable arithmetic theories.

Proofs ofGroup Fairness Wedemonstrated how our technique reduces the problem of computing

probabilities to weighted volume computation. Figure 1(d) illustrates a run of our tool, FairSquare,

on this example. FairSquare iteratively improves lower and upper bounds for the probabilities in the

ratio, and, therefore, the ratio itself. Observe how the upper bound (red) of the ratio is decreasing

and its lower bound (blue) is increasing. This example is not group fair for ϵ = 0.1, because the
upper bound goes below 0.9.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:7

Recall that applicants of a protected minority tend to attend lower-ranked colleges, as defined

by popModel. Looking at dec, we can point out that the cause for unfairness is the importance of

college ranking for hiring. Let us attempt to fix this by modifying line 2 of dec to

expRank ← 5*yExp - colRank

In other words, we have made the algorithm value job experience far more than college ranking.

The run of FairSquare on the modified dec is shown in Figure 1(e), where the lower bound on the

ratio exceeds 0.9, thus proving our group fairness property.

3 A FRAMEWORK FOR VERIFYING FAIRNESS PROPERTIES
In this section, we formally define our program model, show how a number of fairness properties

can be modeled as probabilistic properties, and present a general framework for specifying and

verifying such properties.

3.1 Program Model and Semantics

Programs A program P is a sequence of statements S :

S B V ← E assignment statement

| V ∼ Dist probabilistic assignment

| if B then S else S conditional

| S ; S sequence of statements

whereV is the set of real-valued variables that can appear in P , e ∈ E is an arithmetic expression over

variables in V , and b ∈ B is a Boolean expression over variables in V . A probabilistic assignment

is made by sampling from a probability distribution p ∈ Dist. A probability distribution can be,

for example, a Gaussian distribution, denoted by gauss(µ,σ), where µ,σ ∈ R are the mean and

standard deviation of the Gaussian. Without loss of generality, we shall restrict distributions to

be univariate. We will also assume distributions have only constant parameters, e.g., mean and

standard deviation of a Laplacian or Gaussian—that is, we assume independence of probabilistic

assignments.
1
Given a probabilistic assignment x ∼ p, we shall treat p(x) as a probability density

function (pdf) of the distribution from which the value assigned to x is drawn. For instance, if the

distribution p is gauss(0,1), then p(x) = 1√
2π
e−

x
2

2 .

We usevi to denote a vector of input variables of P , andvo to denote a vector of output variables

of P ; these variables appear inV and denote the arguments and returns of P . We say that a program

is closed if it has no inputs, i.e.,vi is empty. We shall refer to the following subsets of V .

• Vp ⊆ V is the set of probabilistic variables: those that get assigned to in probabilistic assign-

ments.

• Vd = V \ Vp is the set of deterministic variables: those that do not appear in probabilistic

assignments.

This simple language can be used to describe typical machine-learning classifiers such as de-

cision trees, support vector machines, Bayesian networks, neural networks, as well as loop-free

probabilistic programs (loops with constant bounds can be unrolled). As demonstrated in Sec. 2,

the same language is used to define population models programmatically.

Operational Semantics The operational semantics of our program model is standard, following

those introduced by Kozen [1981] and used by other recent papers on the topic [Chistikov et al.

1
Gaussian distributions with non-constant parameters can be handled through properties of Gaussians. E.g.,y ∼ gauss(x, σ),
where x ∈ V and σ ∈ R, can be transformed into an equivalent sequence of assignments y ∼ gauss(0, σ);y ← y + x .

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:8 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

2015; Sampson et al. 2014; Sankaranarayanan et al. 2013]. We refer the reader to these texts for an

account of the semantics.

3.2 Fairness as a Probabilistic Program Property
We now formalize probabilistic pre- and postconditions and use them to define the probabilistic ver-

ification problem. We then show how many fairness definitions can be expressed in our verification

framework.

Probabilistic Verification Problems A verification problem is a triple (Ppop, Pdec,φpost), where
• Ppop, called the population model, is a closed program over variablesV pop

and output variables

v
pop
o .

• Pdec, called the decision-making program, is an open program over variables V dec
; its input

arguments arevdec
i , with |vdec

i | = |v
pop
o |; and its output variables arevdec

o . (We assume that

V pop ∩V dec = ∅.)
• φpost is a probabilistic postcondition, which is a Boolean expression over probabilities of

program outcomes. Specifically, φpost is defined as follows:

φpost ∈ BExp B PExp > c | BExp ∧ BExp | ¬BExp
PExp B P[φ] | c | PExp {+,−,÷,×} PExp

where c ∈ R and φ is a linear arithmetic formula over input and output variables of Pdec; e.g.,
φpost might be of the form

P[x > 0] > 0.5 ∧ P[y + z > 7] − P[t > 5] > 0

The goal of verification is to prove that φpost is true for the program Pdec ◦Ppop, i.e., the composition

of the two programs where we first run Ppop to generate an input for Pdec. Since Ppop is closed,
Pdec ◦ Ppop is also closed. To avoid division-by-zero problems, we assume that divisors never have

value zero. We will use the following definition when stating the meta-properties of our algorithm:

we say that the postcondition is robust iff, for any subformula of the form PExp > c , the value of
the expression PExp is not exactly c .

Fairness Properties We now show how prominent fairness definitions from the literature can be

encoded as probabilistic postconditions. At a high-level, all proposed fairness definitions aim to

ensure fair decision making, and while some focus on fairness at the granularity of groups, others

focus on fairness at the individual level.

We first consider group fairness formulations. Feldman et al. [2015] introduced the following

definition, inspired by Equality of Employment Opportunity Commission’s recommendation in the

US [EEOC 2014]:

P[r = true | min(v) = true]
P[r = true | min(v) = false] > 1 − ϵ

Assuming Pdec returns a Boolean value r—indicating whether an applicantv is hired—this group

fairness property states that the selection rate from a protected minority group, min(v) = true, is

as good as the selection rate from the rest of the population. One can thus view this verification

problem as proving a probabilistic property involving two sets of program traces: one set where

the input min(v) is true, and another where it is false. Alternatively, the above definition could

be strengthened by conjoining that the reciprocal of the ratio is also at least 1 − ϵ , thus ensuring
that the selection rate of the two groups is nearly the same (demographic parity). Further, we could

additionally condition on qualified individuals, e.g., if the job has some minimum qualification, we

do not want to characterize group fairness for arbitrary applicants, but only within the qualified

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:9

subpopulation. Various comparable notions of group fairness have been proposed and used in the

literature, e.g., [Datta et al. 2016; Feldman et al. 2015; Zemel et al. 2013].

While the above definition is concerned with fairness at the level of subsets of the domain of

the decision-making program, individual fairness [Dwork et al. 2012] is concerned with similar

outcomes for similar elements of the domain. In our hiring example, one potential formulation is

as follows:

P[r1 = r2 | v1 ∼ v2] > 1 − ϵ
In other words, for any two similar individuals (denotedv1 ∼ v2), we want them to receive similar

outcomes (r1 = r2) with a high probability. This is a hyperproperty—as it considers two copies of

Pdec—and can be encoded through self-composition [Barthe et al. 2004]. This property is close in

nature to differential privacy [Dwork 2006] and robustness [Bastani et al. 2016; Chaudhuri et al.

2011].

Of course, various definitions of fairness have theirmerits, shortcomings, and application domains,

and there is an ongoing discussion on this subject [Ajunwa et al. 2016; Dwork et al. 2012; Feldman

et al. 2015; Friedler et al. 2016; Hardt et al. 2016]. Our contribution is not to add to this debate, but

to cast fairness as a quantitative property of programs, and therefore enable automated reasoning

about fairness of decision-making programs.

3.3 Probabilistic Inference through Volume Computation
Now that we have defined our program model and the properties we are interested in verifying, we

switch attention to constructing probabilistic verification conditions.

Following Chistikov et al. [2015], we reduce the problem of computing the probability that the

program terminates in a state satisfying φ to weighted volume computation (wvc) over formulas

describing regions in Rn
. In what follows, we begin by formalizing the wvc problem.

Volume of a Formula We will use L to denote first-order formulas in linear real arithmetic and

the strictly richer real closed fields—Boolean combinations of polynomial inequalities. Given a

formula φ ∈ L, a modelm of φ, denoted bym |= φ, is a point in Rn
, where n is the number of free

variables of φ. Thus, we view φ as a region in Rn
, i.e., φ ⊆ Rn

. We use Xφ = {x1, . . . ,xn} to denote
the free variables of φ.

The (unweighted) volume of a formula φ is

∫
φ 1 dXφ , where dXφ is short for dx1dx2 . . .dxn . For

example, if φ is in R2
, then

∫
φ 1 dXφ is the area of φ.

Weighted Volume of a Formula We now define theweighted volume of a formula. We assume we

are given a pair (φ,D), where φ ∈ L and D = {p1, . . . ,pn} is a set of probability density functions

such that each variable xi ∈ Xφ is associated with a density function pi (xi) of the probability

distribution of its values. The weighted volume of φ with respect to D, denoted by vol(φ,D), is
defined as follows: ∫

φ

∏
xi ∈Xφ

pi (xi) dXφ

Example 3.1. Consider the formula φ ≡ x1 + x2 ⩾ 0, and let D = {p1,p2}, where p1 and p2 are
the pdf of the Gaussian distribution with mean 0 and standard deviation 1. Then,

vol(φ,D) =
∫
x1+x2⩾0

p1(x1)p2(x2) dx1dx2 = 0.5

Intuitively, if we are to randomly draw two values for x1 and x2 from the Gaussian distribution, we

will land in the region x1 + x2 ⩾ 0 with probability 0.5. ■

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:10 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

vc-asn

⟨x = JeK, ∅⟩ � x ← e
vc-pasn

⟨true, {pi }⟩ � xi ∼ pi

⟨φ1,D1⟩ � S1 ⟨φ2,D2⟩ � S2
vc-seq

⟨φ1 ∧ φ2,D1 ∪ D2⟩ � S1S2

⟨φ1,D1⟩ � S1 ⟨φ2,D2⟩ � S2
vc-cond

⟨ite(JbK,φ1,φ2),D1 ∪ D2⟩ � if b then S1 else S2

Fig. 2. Probabilistic verification condition generation. Above, ite(a,b, c) ≜ (a ⇒ b) ∧ (¬a ⇒ c).

Probabilistic Verification Conditions Recall that our goal is to compute the probability of some

predicate φ at the end of a program execution, denoted P[φ]. We now show how to encode this

problem as weighted volume computation. First, we encode program executions as a formula φP .
The process is similar to standard verification condition generation (as used by verification [Barnett

and Leino 2005] and bounded model checking tools [Clarke et al. 2004]), with the difference that

probabilistic assignments populate a set D of probability density functions.

Figure 2 inductively defines the construction of a probabilistic verification condition for a program

P , denoted by a function pvc(P), which returns a pair ⟨φP ,D⟩. Without loss of generality, to simplify

our exposition, we assume programs are in static single assignment (ssa) form [Cytron et al. 1991].

Given a Boolean expressionb, the denotation JbK is the same expression interpreted as anL formula.

The same applies to arithmetic expressions e . For example, Jx + y > 0K ≜ x + y > 0. Intuitively,

the construction generates (i) a formula φP that encodes program executions, treating probabilistic

assignments as non-deterministic, and (ii) a set D of the pdfs of distributions in probabilistic

assignments (rule vc-pasn).

Now, suppose we are given a closed program P and a Boolean formula φ over its output variables.

Then,

P[φ] = vol(∃Vd .φP ∧ φ,D)
That is, we project out all non-probabilistic variables Vd from φP ∧ φ and compute the weighted

volume with respect to the densities pi ∈ D. Intuitively, each modelm of ∃Vd .φP ∧ φ corresponds

to a sequence of values drawn in probabilistic assignments in an execution of P . We note that our

construction is closely related to that of Chistikov et al. [2015], to which we refer the reader for a

measure-theoretic formalization.

Example 3.2. Consider the following closed program P :

x ~ gauss(0,2);
y ~ gauss(-1,1);
z ← x + y

where z is the return variable. Using the encoding in Figure 2, we compute the pair ⟨φP ,D⟩ � P ,
where φP ≜ z = x +y and D = {px ,py }, where px and py are the pdfs of the two distributions from

which values of x and y are drawn.

Suppose that we would like to compute the probability that z is positive when the program

terminates:P[z ⩾ 0]. Then, we can compute the following weighted volume: vol(∃z.φP ∧z ⩾ 0,D),
which is ∼ 0.327. ■

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:11

1: function verify(Ppop, Pdec,φpost)

2: ⟨φpop,Dpop⟩ ← pvc(Ppop)
3: ⟨φdec,Ddec⟩ ← pvc(Pdec)
4: ⟨φP ,D⟩ ← ⟨φpop ∧ φdec ∧vdec

i = v
pop
o ,Dpop ∪ Ddec⟩

5: Vd ← V pop
d ∪V dec

d
6: m ← ∅
7: for each expression P[φ] in φpost do

8: m ←m[P[φ] 7→ vol(∃Vd .φP ∧ φ,D)]
9: returnm |= φpost

Fig. 3. Abstract verification algorithm

Verification Algorithm We now describe an idealized verification algorithm that assumes the

existence of an oracle vol for measuring probability expressions appearing in the postcondition

(we formally define these quantities in Sec. 3.3). The algorithm verify, shown in Figure 3, takes a

verification problem and returns whether the probabilistic postcondition holds.

verify begins by encoding the composition of the two programs, Pdec ◦ Ppop, as the pair ⟨φP ,D⟩
and adds the constraintvdec

i = v
pop
o to connect the outputs of Ppop to the inputs of Pdec (recall the

example from Sec. 2 for an illustration). For each term of the form P[φ] appearing in φpost, the

algorithm computes its numerical value and maintains it in a mapm. Ifm satisfies the φpost—i.e.,

by replacing all terms P[φ] with their values inm—then the postcondition holds.

4 SYMBOLIC PROBABILISTIC INFERENCE
We now turn our attention to our probabilistic inference algorithm, which reduces the problem to

computing the weighted volume of a formula. Recall that we are given (i) a formula φ over real

arithmetic constraints, encoding the semantics of a program, and (ii) a set D defining the pdfs of

the distributions of free variables of φ. Our goal is to evaluate the integral
∫
φ

∏
xi ∈Xφ

pi (xi) dXφ .

We begin by describing limitations of existing approaches.

Existing Techniques In general, there is no systematic technique for computing an exact value

for such an integral. Moreover, even simpler linear versions of the volume computation problem, not

involving probability distributions, are #P-hard [Dyer and Frieze 1988]. Existing techniques suffer

from one or more of the following: they (i) restrict φ to a conjunction of linear inequalities [De Lo-

era et al. 2012; Sankaranarayanan et al. 2013], (ii) restrict integrands to polynomials or uniform

distributions [Belle et al. 2015a,b; Chistikov et al. 2015; De Loera et al. 2012], (iii) compute approx-

imate solutions with probabilistic guarantees [Belle et al. 2015b; Chistikov et al. 2015; Vempala

2005], (iv) restrict φ to bounded regions of Rn
[Chistikov et al. 2015], or (v) have no convergence

guarantees, e.g., computer algebra tools that find closed-form solutions, like Mathematica and

psi [Gehr et al. 2016]. (See Sec. 7 for details.)

Symbolic Weighted Volume Computation Our approach is novel in its generality and its

algorithmic core. The following are the high-level properties of our algorithm:

(1) It is guaranteed to converge to the exact value of the weighted volume in the limit. This

allows us to produce a sound and complete procedure for verifying fairness properties.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:12 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

hdecomp

vol ← 0 Ψ← �φ

m |= Ψ
hsample

vol ← vol + vol(Hm ,D) Ψ← Ψ ∧ block(Hm)

where block(Hm) ≡
∨
x ∈Xφ

ux < Hm
l (x) ∨ lx > Hm

u (x)

Fig. 4. symvol: weighted volume computation algorithm

(2) It imposes no restrictions on pdfs, only that we can evaluate the cumulative distribution

functions (cdfs) associated with the pdfs in D.2 This provides us with flexibility in defining

population models.

(3) It accepts formulas in the decidable yet rich theory of real closed fields: Boolean combinations

of polynomial inequalities. This provides a rich language for encoding many decision-making

programs, as we demonstrate in Sec. 6.

At the algorithmic level, our approach makes the following contributions:

(1) It exploits the power of smt solvers and uses them as a black box, allowing it to directly

benefit from future advances in solver technology.

(2) It employs the idea of dividing the space into rectangular regions that are easy to integrate

over. While this idea has been employed in various guises in verification [Asarin et al. 2000;

Bournez et al. 1999; Li et al. 2014; Sankaranarayanan et al. 2013], we utilize it in a new

symbolic way to enable volume computation over smt formulas.

(3) It introduces a novel technique for approximately encoding pdfs as formulas and using them

to guide the smt solver towards making large leaps to the exact solution. This technique is

crucial when dealing with decision-making programs comprised of halfspaces, as we show

experimentally in Sec. 6.

4.1 Weighted Volume Computation Algorithm
To compute the integral over the region φ, we exploit the observation that if φ is a hyperrectangular

region, i.e., an n-dimensional rectangle in Rn
, then we can evaluate the integral, because each

dimension has constant lower and upper bounds. For instance, consider the following formula

representing a rectangle in R2
:

φ ≡ 0 ⩽ x1 ⩽ 100 ∧ 4 ⩽ x2 ⩽ 10

The following holds:

∫
φ
p1(x1)p2(x2) dx1dx2 =

(∫
100

0

p1(x1) dx1
) (∫

10

4

p2(x2) dx2
)

= (F1(10) − F1(4))(F2(100) − F2(0))

2
The cumulative distribution function of a real-valued random variable X is the function f : R → R, such that f (x) =
P[X ⩽ x]. In practice, evaluating a cdf means either computing the value of the function exactly or approximating its

value to specified high degree of precision; see Sec. 5.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:13

where Fi =
∫ x
−∞ pi (t) dt is the cdf of pi (xi). That is, we independently compute the integral

along each dimension of the rectangle and take the product. This holds since all variables are

independently sampled.

Our algorithm is primarily composed of two steps: First, the hyperrectangular decomposition phase

represents the formula φ as a set of hyperrectangles. Note that this set is likely to be infinite. Thus,

we present a technique for defining all hyperrectangles that lie in φ symbolically as a formula �φ ,

where each model of �φ corresponds to a hyperrectangle that lies inside the region φ. Second, after
characterizing the set �φ of all hyperrectangles in φ, we can iteratively sample hyperrectangles in φ,
which can be done using an off-the-shelf smt solver to find models of �φ . For each hyperrectangle

we sample, we compute its weighted volume and add it to our current solution. Therefore, the

current solution maintained by the algorithm is the weighted volume of an underapproximation of

φ—that is, a lower bound on the exact weighted volume of φ.

Hyperrectangular Decomposition We begin by defining hyperrectangles as special formulas.

Definition 4.1 (Hyperrectangles and their weighted volume). A formula H ∈ L is a hyperrectangle

if it can be written in the form

∧
x ∈XH

cx ⩽ x ⩽ c ′x , where cx , c
′
x ∈ R are the lower and upper

bounds of dimension x . We use Hl (x) and Hu (x) to denote the lower and upper bounds of x in H .

The weighted volume of H , given a set D, is as follows:

vol(H ,D) =
∏

xi ∈XH

∫ Hu (xi)

Hl (xi)
pi (xi) dxi ■

Ideally, we would take a formula φ and rewrite it as a disjunction of hyperrectangles

∨
H , but

this disjunction is most likely infinite. To see why, consider the simple formula representing a

triangular polytope in Figure 5(a). Here, there is no finite number of rectangles whose union is the

full region in R2
enclosed by the triangle.

While the number of hyperrectangles enclosed in φ is infinite, we can characterize them sym-

bolically using universal quantifiers, as shown by Li et al. [2014]. Specifically, we define the

hyperrectangular decomposition of φ as follows:

Definition 4.2 (Hyperrectangular decomposition). Given φ, its hyperrectangular decomposition �φ
is: �φ ≡

(∧
x ∈Xφ

lx < ux

)
∧ ∀Xφ .

((∧
x ∈Xφ

lx ⩽ x ⩽ ux

)
⇒ φ

)
where lx ,ux are fresh free variables introduced for each x ∈ Xφ , and ∀Xφ is short for ∀x1, . . . ,xn ,
for xi ∈ Xφ .

Given a modelm |= �φ , we say that Hm
is the hyperrectangle induced bym, as defined below:

Hm ≡
∧
x ∈Xφ

m(lx) ⩽ x ⩽m(ux) ■

Intuitively, �φ characterizes every possible hyperrectangle that is subsumed by φ. The idea is
that the hyperrectangle Hm

induced by each modelm of �φ is subsumed by φ, that is, Hm ⇒ φ.
The following example illustrates this process.

Example 4.3. Consider the formula φ ≡ x ⩾ y ∧ y ⩾ 0, illustrated in Figure 5(c) as a gray,

unbounded polygon. The formula �φ , after eliminating the universal quantifier, is:

lx < ux ∧ ly < uy ∧ ly ⩾ 0 ∧ lx ⩾ uy

Figure 5(c) shows two models m1,m2 |= �φ and their graphical representation as rectangles

Hm1 ,Hm2
in R2

. Observe that both rectangles are subsumed by φ. ■

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:14 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

Infinitely many
rectangles are required to
cover this triangular
polytope

high probability

hi
gh

 p
ro

ba
bi

lit
y

Infinitely many
rectangles in low
probability regions
have negligible
volume

(a) (b)

5 7

5

7

8 10

Hm1

Hm2

Two examples of models
inducing rectangles

m2 |= ⌧'

lx = 5
ux = 7
ly = 0
uy = 5

m1 |= ⌧'

lx = 8
ux = 10
ly = 5
uy = 7

x

y
' ⌘ x > y ^ y > 0

(c)

Fig. 5. (a) R2
view of hyperrectangular decomposition. (b) Hyperrectangle sampling, where density is

concentrated in the top-left corner. (c) Illustration of models of �φ .

The following theorem states the soundness and completeness of hyperrectangular decomposi-

tion: models of �φ characterize all hyperrectangles in φ and no others.

Theorem 4.4 (Correctness of �). Let φ ∈ L.
• Soundness: Letm |= �φ . Then, H

m ⇒ φ is valid.

• Completeness: Let H be a hyperrectangle such that H ⇒ φ. Then, the following is satisfiable:�φ ∧
∧
x ∈Xφ

lx = Hl (x) ∧ ux = Hu (x)

Hyperrectangle Sampling Our symbolic weighted volume computation algorithm, symvol, is

shown in Figure 4 as two transition rules. Given a pair (φ,D), the algorithm maintains a state

consisting of two variables: (i) vol, the current lower bound of the weighted volume, and (ii) Ψ, a
constraint that encodes the remaining rectangles in the hyperrectangular decomposition of φ.

The algorithm is presented as guarded rules. Initially, using the rule hdecomp, vol is set to 0 and

Ψ is set to �φ . The algorithm then proceeds by iteratively applying the rule hsample. Informally,

the rule hsample is used to find arbitrary hyperrectangles in φ and compute their weighted volume.

Specifically, hsample finds a modelm of Ψ, computes the weighted volume of the hyperrectangle

Hm
induced bym, and adds the result to vol.

To maintain soundness, hsample ensures that it never samples two overlapping hyperrectangles,

as otherwise we would overapproximate the volume. To do so, every time a hyperrectangle Hm
is

sampled, we conjoin an additional constraint to Ψ—denoted block(Hm) and defined in Figure 4—that
ensures that for all modelsm′ |= Ψ, Hm′

does not overlap with Hm
, i.e., Hm′ ∧Hm

is unsatisfiable.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:15

Informally, the block(Hm) constraint specifies that any newly sampled hyperrectangle should be to

the left or right of Hm
for at least one of the dimensions.

The following theorem states the correctness of block: it removes all hyperrectangles that overlap

with Hm
(soundness), and it does not overconstrain Ψ by removing hyperrectangles that do not

overlap with Hm
(completeness).

Theorem 4.5 (Correctness of block). Given φ, let Ψ⇒ �φ , and letm1,m2 |= Ψ.

• Soundness: If Hm1 ∧ Hm2
is satisfiable, thenm2 ̸ |= Ψ ∧ block(Hm1).

• Completeness: If Hm1 ∧ Hm2
is unsatisfiable, thenm2 |= Ψ ∧ block(Hm1).

Lower and Upper Bounds The following theorem states the soundness of symvol: it maintains

a lower bound on the exact weighted volume.

Theorem 4.6 (Soundness of symvol). The following is an invariant of symvol(φ,D): vol ⩽
vol(φ,D).

Proof. At any point in the execution, vol =
∑l

i=1

∫
Hi

∏
pi (xi) dXφ , where l is the number of

applications of hsample and Hi is the hyperrectangle sampled at step i . By definition,

∨
Hi ⇒ φ.

Since pdfs are positive functions, vol ⩽ vol(φ,D). ■

It follows from the above theorem that we can use symvol to compute an upper bound on the exact

volume. Specifically, because we are integrating over pdfs, we know that vol(φ,D)+vol(¬φ,D) = 1.

Therefore, by using symvol to compute the weighted volume of ¬φ, we get an upper bound on the

exact volume of φ.

Corollary 4.7 (Upper bounds). The following is an invariant of symvol(¬φ,D): 1 − vol ⩾
vol(φ,D)

Proof. By definition of pdfs and integration,∫
Rn

∏
pi (xi) dXφ =

∫
φ

∏
pi (xi) dXφ +

∫
¬φ

∏
pi (xi) dXφ

for any φ ⊆ Rn
. From Theorem 4.6, it follows that at any point in the execution of symvol(¬φ,D),

we have 1 − vol ⩾ vol(φ,D). ■

4.2 Density-Directed Sampling
While the symvol algorithm is sound, it provides no progress guarantees. Consider, for example, that

the algorithm might diverge by sampling hyperrectangles in φ that appear in very low probability

density regions, as illustrated in Figure 5(b) on a triangular polytope in R2
.

Ideally, the rule hsample would always find a modelm yielding the hyperrectangle Hm
with the

largest weighted volume. Finding such a model amounts to solving the optimization problem:

arg max

m |=Ψ

∏
xi ∈Xφ

∫ Hm
u (xi)

Hm
l (xi)

pi (xi) dxi

From a practical perspective, there are no known tools or techniques for finding models of first-

order formulas that maximize such complex objective functions—with integrals over probability

density functions.

However, wemake the key observation that ifp(x) is a step function—i.e., piecewise constant—then
we can symbolically encode

∫
p(x) dx in linear arithmetic. As such, we propose to (i) approximate

each density function p(x) with a step function step(x), (ii) encode the integrals
∫
step(x) dx as

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:16 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

(a) (b) (c)

Fig. 6. Three adfs (gray) of a Gaussian pdf (red) with mean 0 and a SD 3: (a) fine-grained ; (b) coarse; (c)
uniform.

linear arithmetic formulas, and (iii) direct sampling towards hyperrectangles that maximize these

integrals, thus finding hyperrectangles of large volume.

Approximate Density Functions We begin by defining approximate density functions (adfs).

Definition 4.8 (Approximate density functions). An approximate density function step(x) is of the
form:

step(x) =
{
ci , x ∈ [ai ,bi) for 1 ⩽ i ⩽ n

0, otherwise

where ci ,ai ,bi ∈ R, ci > 0, and all [ai ,bi) are disjoint. ■

We now show how to encode a formula step
ϕ (x) over the free variables δx , lx ,ux , where for

any modelm |= step
ϕ (x), the valuem(δx) is the area under step(x) betweenm(lx) andm(ux), i.e.:

m(δx) =
∫ m(ux)
m(lx)

step(x) dx . Intuitively, the value of this integral is the sum of the areas of each bar

in step(x), restricted to [m(lx),m(ux)].

Definition 4.9 (Encoding area under an adf). Given an adf step(x), we define stepϕ (x) as follows:

step
ϕ (x) ≡ δx =

n∑
i=1

ci ·
��[ai ,bi) ∩ [lx ,ux]�� ■

The finite sum in step
ϕ (x) computes the size of the intersection of [lx ,ux] with each interval

[ai ,bi) in step(x), and multiplies the intersection with ci , the value of the step in that interval. Note

that the constraint step
ϕ (x) is directly expressible in linear arithmetic, since��[ai ,bi) ∩ [lx ,ux]�� = max(min(bi ,ux) −max(ai , lx), 0)

The following theorem states the correctness of the adf encoding:

Theorem 4.10 (Correctness of step
ϕ
). Fix an adf step(x).

• Soundness: For any modelm |= step
ϕ
, the following is true:m(δx) =

∫ m(ux)
m(lx)

step(x) dx .
• Completeness: For any constants a,b, c ∈ R such that c =

∫ b
a step(x) dx , the following formula

is satisfiable: δx = c ∧ lx = a ∧ ux = b ∧ stepϕ (x).

adf-Directed Volume Computation We now present the algorithm adf-symvol (Figure 7),

an extension of our volume computation algorithm symvol that uses adfs to steer the sampling

process. The adfs are only used for guiding the rule hsample towards dense hyperrectangles,

and thus do not affect soundness of the volume computation. For example, Figure 6 shows three

approximations of a Gaussian; all three are valid approximations. In Sec. 6, we discuss the impact

of different adfs on performance.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:17

hdecomp

vol ← 0 Ψ← �φ lb← 1

decay

lb← λ ∗ lb

m |= Ψ ∧
∧

xi ∈Xφ

∃δxi . stepϕi (xi) ∧ δxi ⩾ lb

hsample

vol ← vol + vol(Hm ,D) Ψ← Ψ ∧ block(Hm)

Fig. 7. adf-symvol: adf-directed volume computation

Formally, we create a set of adfs A = {step
1
, . . . , stepn}, where, for each variable xi ∈ Xφ ,

we associate the adf stepi (xi). The rule hsample now encodes step
ϕ
i (xi) and attempts to find a

hyperrectangle such that for each dimension x , δx is greater than some lower bound lb, which is

initialized to 1. Of course, we need to reduce the value lb as we run out of hyperrectangles of a

given volume. Therefore, the rule decay is used to shrink lb using a fixed decay rate λ ∈ (0, 1) and
can be applied when hsample fails to find a sufficiently large hyperrectangle.

Example 4.11. Suppose we want to find the weighted volume of a single-variable formula

φ ≡ 0 ⩽ x ⩽ 1

where x is uniformly distributed over the interval [0, 1]. Its hyperrectangular decomposition is

�φ ≡ lx < ux ∧ ∀x . (lx ⩽ x ⩽ ux ⇒ 0 ⩽ x ⩽ 1)

or equivalently, if we eliminate the quantifier,

�φ ≡ lx < ux ∧ 0 ⩽ lx ⩽ 1 ∧ 0 ⩽ ux ⩽ 1

It’s clear that an arbitrary model of �φ can be any single interval I ⊆ [0, 1], and since x is uniformly

distributed over [0, 1], the weighted volume of I is exactly its size. Thus, we would like the models

to be large intervals; to do so, we employ a constraint based on the adf of x .
Since x is uniformly distributed, we can use its actual distribution as its adf. We then have that

step
ϕ (x) ≡ δx = 1 ·

��[0, 1) ∩ [lx ,ux]�� ≡ δx = max(min(1,ux) −max(0, lx), 0)

Here, δx represents the weighted volume contribution of the variable x (which happens to be

the only variable in φ), and so if we obtain a model not of �φ , but instead of the formula �φ ∧
∃δx . (stepϕ (x) ∧ δx ⩾ lb), explicitly written as

lx < ux ∧ 0 ⩽ lx ⩽ 1 ∧ 0 ⩽ ux ⩽ 1 ∧ ∃δx . (δx = max(min(1,ux) −max(0, lx), 0) ∧ δx ⩾ lb

)
then the weighted volume of the worst model approximately increases as a function of lb. In fact,

when lb = 1, the only model is the whole unit interval (where lx = 0 and ux = 1), which contains

all of the probability mass of x . ■

Note that, ideally, we would look for a modelm such that

∏
x ∈Xφ

δx is maximized, thus, finding

the hyperrectangle with the largest weighted volume with respect to the adfs. However, this

constraint is non-linear. To lower the complexity of the problem to that of linear arithmetic, we set

a decaying lower bound and attempt to find a model where each δx is greater than the lower bound.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:18 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

4.3 Convergence of Algorithm
We now discuss the convergence properties of adf-symvol. Suppose we are given a formula φ, a
set D, and a set A. Let R ⊂ Rn

be the region where all the adfs in A are non-zero. We will show

that adf-symvol monotonically converges, in the limit, to the exact weighted volume restricted to

R; that is, adf-symvol converges to ∫
φ∩R

∏
xi ∈Xφ

pi (xi) dXφ

The fascinating part here is that we do not impose any restrictions on the adfs: they do not have

to have any correspondence with the pdfs they approximate; they need only be step functions. Of

course, in practice, the quality of the approximation dictates the rate of convergence, but we delay

this discussion to Sec. 6.

The following theorem states convergence of adf-symvol; it assumes that hsample is applied

iteratively and decay is only applied when hsample cannot find a model.

Theorem 4.12 (Monotone convergence to R). Assume adf-symvol is run on (φ,D) and a set
of adfs A that are non-zero for R ⊂ Rn

. Let voli be the value of vol after i applications of hsample.
Then,

lim

i→∞
voli =

∫
φ∩R

∏
xi ∈Xφ

pi (xi) dXφ and ∀j ⩾ k ⩾ 1. vol j ⩾ volk

Proof. The algorithm constructs two series in parallel: the actual volume computation series

∑
vi

and the approximated series

∑
ai , where each vi and ai correspond to the actual and approximate

volume of the i’th sampled hyperrectangle (note that the latter is not explicitly maintained in the

algorithm). Each series corresponds to a sequence of partial sums: Let

vΣ
i =

i∑
j=1

vj aΣi =
i∑
j=1

aj

It is maintained that

∀i .vΣ
i ⩽ EVolR∩φ =

∫
R∩φ

∏
p(x) dXφ

∀i . aΣi ⩽ AVol =

∫
R∩φ

∏
step(x) dXφ

Since vΣ
i and aΣi are non-decreasing sequences bounded from above, they converge to some limit;

call the limits vΣ
and aΣ, respectively. It does not matter what the value of aΣ is, but we would like

to ensure that vΣ
is actually equal to EVolR∩φ . Since the ai determine which hyperrectangles we

sample, the potential concern is that they negatively affect the limit vΣ
; we will prove below that

this is not possible.

Suppose, for the sake of obtaining a contradiction, that our sequence of samples to construct {vΣ
i }

and {aΣi } results in the limit vΣ
being strictly less than the actual weighted volume EVolR∩φ . Then

there is some subregion R′ ⊆ R that is completely disjoint from the infinite set of hyperrectangles

we sample and has non-zero weighted volume. In particular, there must exist some hyperrectangle

H ⊆ R′ contained in this unsampled region that also has non-zero weighted volume.

In the limit, aΣi approaches aΣ: by the definition of a limit, for all ϵ > 0, there exists N such that

for all n > N , aΣ −aΣn < ϵ . Let δ =
∫
H

∏
step(x) dXφ : at some point when we have fixed a threshold

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:19

τ < δ and have run out of samples in R \ R′ with an ⩾ τ (guaranteed when aΣ − aΣn < τ by letting

ϵ = τ) we would have sampled H ⊆ R′. This property ensures that the limit vΣ = EVolR∩φ . ■

Note that the above theorem directly gives us a way to approach the exact volume. Specifically,

by performing runs of adf-symvol on subsets in an infinite partition of Rn
induced by the adfs,

we can ensure that the sum over the adf-symvol processes approaches the exact volume. For all i ,
letAi be a set of adfs corresponding to an adf-symvol process Pi , where Ri ⊂ Rn

is the non-zero

region of Ai . We require an infinite set of Pi to partition Rn
: (i) for all i , j, Ri ∩ R j = ∅, and

(ii)

⋃∞
i=1 Ri = R

n
. The following theorem formalizes the argument:

Theorem 4.13 (Monotone convergence). Let P1, P2, . . . be adf-symvol processes that partition
Rn

. Assume an execution where each Pi executes infinitely often and each Pi performs hsample

infinitely often, and let voln be the total computed volume across all Pi after n successful calls to

hsample. Then,

lim

n→∞
voln = vol(φ,D) and ∀j ⩾ k ⩾ 1. vol j ⩾ volk

Proof. We require that adf-symvol calls hsample on each Pi (and its Ai defined over Ri)
infinitely often: we can refer to Hn as the nth hyperrectangle obtained by hsample in the serialized

execution. Clearly

∑i
n=1 vol(Hn ,D) is a non-decreasing series. It is bounded above by its supremum,

which is exactly vol(φ,D) since each individual Pi converges to the weighted volume restricted to

Ri . This completes the proof, since the limit of any non-decreasing sequence bounded above by its

supremum is identically its supremum. ■

Completeness inVerification Given thatwe have establishedmonotone convergence of adf-symvol,

we can use it to construct a verification procedure that is complete whenever the postcondition is

robust (as defined in Sec. 3). Given a robust postcondition φpost, for any subformula P[φ] > c in the

postcondition we have that P[φ] , c . Using this property, we can use adf-symvol to iteratively

improve a lower and an upper bound for P[φ], one of which will prove or disprove the subformula

P[φ] > c .

5 IMPLEMENTATION
We implemented our algorithms in a new tool called FairSquare, which employs Z3 [De Moura

and Bjørner 2008] for smt solving and Redlog
3
for quantifier elimination. FairSquare accepts as

input the population model and the decision-making program in a Python-like syntax, where the

definitions of predicates in the probability events are provided as program annotations.

FairSquare computes upper and lower bounds for each probability in the postcondition using

weighted volume computation. A round of sampling involves (i) obtaining a sample (hyperrectangle)

for each of the quantities, (ii) computing these samples’ weighted volumes, (iii) updating the bounds

on each quantity and (iv) checking if the bounds are precise enough to determine the validity of

the postcondition, i.e., to prove fairness or unfairness. Rounds of sampling are performed until a

proof is found or a timeout is reached.

Sample Maximization A key optimization implemented in FairSquare is the maximization of

hyperrectangles obtained during sampling. We use Z3’s optimization capability to maximize and

minimize the finite bounds of all hyperrectangles, while still satisfying the formula Ψ (in Figures 4

and 7). This process is performed greedily by extending a hyperrectangle in one dimension at a

time to find a maximal hyperrectangle. If a dimension extends to infinity, then we drop that bound,

thus resulting in an unbounded hyperrectangle.

3
http://www.redlog.eu/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

http://www.redlog.eu/

80:20 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

Numerical Precision All of the arithmetic performed by FairSquare is over arbitrary precision

rationals, and therefore we do not encounter any loss of precision. The only place where floating

point numbers appear is when we evaluate cdfs with scipy. We truncate (underapproximate) the

result and convert it to a rational number. Truncating the results ensures that our implementation

is sound—that at any point in our volume computation, the current volume is a lower bound—at

the cost of a small possibility of incompleteness.

6 EVALUATION
In this section, we evaluate the effectiveness and performance of FairSquare. Specifically, we

investigate the following questions:
4

Q1 Can FairSquare verify fairness properties of real machine-learned programs? (Sec. 6.2)

Q2 Do adfs and sample maximization improve the performance of FairSquare? (Sec. 6.3)

Q3 Can FairSquare verify fairness properties other probabilistic analysis tools cannot? (Sec. 6.4)

Q4 Can FairSquare verify the benchmarks solved by other probabilistic analysis tools? (Sec. 6.4)

6.1 Benchmarks

Fairness Postconditions In our experiments, we consider a group fairness postcondition aug-

mented with a notion of qualification. We ultimately obtained our benchmarks by datamining a

popular income dataset
5
used in related research on algorithmic fairness [Calders and Verwer 2010;

Feldman et al. 2015; Zemel et al. 2013]; accordingly, our postconditions are defined in terms of that

dataset’s features. Specifically, they are of the form:

P[high income | female ∧ qual(v)]
P[high income | male ∧ qual(v)] > 1 − ϵ

Suppose, for example, machine-learnedmodels inferred from the dataset would be used to determine

the salary of an employee: high (> $50,000) or low. We consider qual(v) in two different scenarios—

first, the case when qual is tautologically true, and second, when individuals are qualified if they

are at least 18 years of age. In short, we would like to verify whether salary decisions are fair to

qualified female employees. Throughout, we fix ϵ = 0.15.

Decision-Making Programs We obtained our set of decision-making programs by training a

variety of machine-learning models on the income dataset to classify high vs low income. Using the

Weka machine learning suite [Hall et al. 2009], we learned 11 different decision-making programs

(see, e.g., Bishop [2006] for background), which are listed in Figure 8: (i) four decision trees, named

dtn , where n is the number of conditionals in the program, and the number of variables and the

depth of the tree each varies from 2 to 3; (ii) four support vector machines with linear kernels,

named svmn , where n is the number of variables in the linear separator; (iii) three neural networks

using rectified linear units [Nair and Hinton 2010], named nnn,m , where n is the number of input

variables, andm is the number of nodes in the single hidden layer.

As we will show in the next section, some of these programs do not satisfy the fairness property

we consider. We introduced modifications of dt16 and svm4, called dt
α
16
and svm

α
4
, that implement

rudimentary forms of affirmative action for female applicants. For dt
α
16
, there is a 15% chance it

will flip a decision to give the low salary; for svm
α
4
, the linear separator is moved to increase the

likelihood of hiring.

4
All experiments are performed on an Intel Core i7 4.00GHz CPU with 16 GB of RAM.

5
https://archive.ics.uci.edu/ml/datasets/Adult/

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

https://archive.ics.uci.edu/ml/datasets/Adult/

FairSquare: Probabilistic Verification of Program Fairness 80:21

Decision

Program

Acc

Population Model

Independent Bayes Net 1 Bayes Net 2

Res # Vol QE Res # Vol QE Res # Vol QE

dt4 0.79 ✓ 10 1.3 0.5 ✗ 12 2.2 0.9 ✗ 18 6.6 2.2

dt14 0.71 ✓ 20 4.2 1.4 ✓ 38 52.3 11.4 ✓ 73 130.9 33.6

dt16 0.79 ✓ 21 7.7 2.0 ✗ 22 15.3 6.3 ✗ 22 38.2 14.3

dt
α
16

0.76 ✓ 18 5.1 3.0 ✓ 34 32.0 8.2 ✓ 40 91.0 19.4

dt44 0.82 ✓ 55 63.5 9.8 ✗ 113 178.9 94.3 ✗ 406 484.0 222.4

svm3 0.79 ✓ 10 2.6 0.6 ✗ 10 3.7 1.7 ✗ 10 10.8 6.2

svm4 0.79 ✓ 10 2.7 0.8 ✗ 18 13.3 3.1 ✗ 14 33.7 20.1

svm
α
4

0.78 ✓ 10 3.0 0.8 ✓ 22 15.7 3.2 ✓ 14 33.4 63.2

svm5 0.79 ✓ 10 8.5 1.3 ✗ 10 12.2 6.3 toq - - to

svm6 0.79

0.02
35.3 634 to 2.4

0.09
3.03 434 to 12.8 toq - - to

nn2,1 0.65 ✓ 78 21.6 0.8 ✓ 466 456.1 3.4 ✓ 154 132.9 7.2

nn2,2 0.67 ✓ 62 27.8 2.0 ✓ 238 236.5 7.2 ✓ 174 233.5 18.2

nn3,2 0.74

0.03
674.7 442 to 10.0

0.00
5.24 34 to 55.9 toq - - to

Fig. 8. Results of FairSquare applied to 39 fairness verification problems. Res: ✓ for fair; ✗ for unfair. Vol: time

(s) of the sampling procedure; #: number of smt calls. If sampling timed out (900s), Res denotes the latest
bounds on the fairness ratio. QE : time (s) of the quantifier elimination procedure used prior to sampling;

if QE times out (900s), no sampling is performed, denoted by toq for Res. Acc: training set accuracy of the

programs.

Population Models For our population models, we used three different probabilistic programs

that were inferred from the same dataset: (i) a set of independently distributed variables (Ind), (ii) a

Bayesian network using a simple graph structure (BN1), and (iii) the same Bayesian network, but

with an integrity constraint in the form of an inequality between two of the variables (BN2). Note

that the first model is sometimes a trivial case: since there is there is no dependence between

variables, a program will be fair if it does not access an individual’s sex; this simplicity serves well

as a baseline for our evaluation. The Bayesian models permit correlations between the variables,

allowing for more subtle sources of fairness or unfairness. The benchmarks we use are derived

from each combination of population models with decision-making programs.

6.2 Effectiveness of FairSquare
Figure 8 shows the results of applying FairSquare to 39 fairness verification problems, as described

earlier. Only the instances using the tautologically true notion of qualification are shown, since the

qualitative results are quite similar to the non-trivial qualification. FairSquare was able to solve 32

of the 39 problems within a timeout period of 900 seconds each, proving 21 fair and 11 unfair.

Consider the results for dt4: FairSquare proved it fair with respect to the independent population

model after 0.5 seconds of an initial quantifier elimination procedure and 1.3 seconds of the actual

volume computation algorithm, which required 10 smt queries. The more sophisticated Bayesian

network models took longer for sampling, but due to the correlations between variables, were

proved unfair.

In contrast, consider the results for dt44 under the Bayes Net 1 population model: FairSquare was

unable to conclude fairness or unfairness after 900 seconds of volume computation (denoted by to

in the Vol column). The lower and upper bounds of the fairness ratio it had computed at that time

are listed in the Res column: in this case, the value of the fairness ratio is within [0.70, 0.88], which

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:22 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

dt16 svm4

f
a
i
r
n
e
s
s
r
a
t
i
o
w
i
t
h
o
u
t
s
a
m
p
l
e

m
a
x
i
m
i
z
a
t
i
o
n

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DT16 nomax 5-step

DT16 nomax uniform

DT16 nomax none

(a)

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SVM4 nomax 5-step

SVM4 nomax uniform

SVM4 nomax none

(b)

dt16 svm4

f
a
i
r
n
e
s
s
r
a
t
i
o
w
i
t
h
s
a
m
p
l
e

m
a
x
i
m
i
z
a
t
i
o
n

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DT16 max 5-step

DT16 max uniform

DT16 max none

(c)

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SVM4 max 5-step

SVM4 max uniform

SVM4 max none

(d)

Fig. 9. Fairness ratio vs. rounds of sampling for dt16 and svm4 (Ind pop model) differing on adfs and sample

maximization. In (c) two runs end at the exact value. Outside the visible range are: (a)(b) upper and lower

bounds of uniform and none; (d) upper bounds of none.

is not precise enough for the ϵ = 0.15 requirement (but would be precise enough for ϵ outside of
[0.12, 0.30]).
In general, all conclusive results using the independent population model were proved to be

fair, as expected, but many are unfair with respect to the clusters and Bayes net models because

of the correlations those population models capture. This difference illustrates the sensitivity of

fairness to the population model; in particular, none of the decision trees syntactically access sex,

yet several are unfair.

Figure 8 shows that the affirmative action modifications in dt
α
16
and svm

α
4
are sufficient to make

the programs fair with respect to every population model without substantially impacting the

training set accuracy.

In summary, the answer toQ1 is that FairSquare is powerful enough to reason about group

fairness for many non-trivial machine-learned programs.

6.3 Effect of Parameters
The experiments in Figure 8 were all performed using sample maximization (as described in Sec. 5);

additionally, to guide volume computation, all Gaussian distributions with mean µ and variance

σ 2
use adfs (see Sec. 4.2) with 5 equal-width steps spanning (µ − 3σ 2, µ + 3σ 2)—analogous to

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:23

a
v
e
r
a
g
e
w
e
i
g
h
t
e
d

v
o
l
u
m
e
p
e
r
s
a
m
p
l
e

5-step uniform
none

0

0.05

0.1

0.15
(a)

dt16 max dt16 nomax

5-step uniform
none

0

0.05

0.1

0.15
(b)

svm4 max svm4 nomax

a
v
e
r
a
g
e
t
i
m
e
p
e
r

r
o
u
n
d

5-step uniform
none

0

0.5

1

1.5

2

(c)

dt16 max dt16 nomax

5-step uniform
none

0

0.5

1

1.5

2

(d)

svm4 max svm4 nomax

Fig. 10. Effect of optimizations on FairSquare for dt16 and svm4 (Ind pop model). (a) and (b) show the average

weighted volume per sample (averaged across all probabilities). (c) and (d) show the average time (s) per

round of sampling.

Figure 6(a). In this section, we explore the effects of the approximate density functions and of the

sample maximization optimizations. These results are captured in Figures 9 and 10.

There are three instances of adfs in Figure 9 used to guide the sampling to high-probability re-

gions: (i) none indicates that no adf is used, i.e., we used symvol instead of adf-symvol; (ii) uniform

indicates that each gauss(µ,σ 2) is approximated by a uniform function spanning (µ − 3σ 2, µ + 3σ 2)
(similar to Figure 6(c)); and (iii) 5-step indicates that each Gaussian is approximated by a step

function of 5 equal-width regions spanning that same domain (similar to Figure 6(a)). Another

variable, max or nomax, denotes whether the sample maximization optimization is enabled.

Each combination of these techniques is run on two of our benchmarks: dt16 and svm4 under

the independent population model. Figure 9(a) and (b) show how convergence to the fairness ratio

is improved by the choice of adfs when sample maximization is not employed: in particular, the

runs using uniform and none are not even visible, as the bounds never fall within [0.01, 4.0]. Plots
(c) and (d) show that when sample maximization is employed, the choice between the uniform and

5-step adfs is not as substantial on these benchmarks, although (i) the better approximation gets

better bounds faster, and (ii) using none results in substantially worse bounds.

Figure 10 plot (a) and (b) show that employing adfs and using sample maximization each increases

the average weighted volume per sample, allowing volume computation to be done with fewer

samples. Plots (c) and (d) illustrate the trade-off: the average time per sampling round tends to be

greater for more complex optimizations.

We present these results for two particular problems and observe the same results across our suite.

In summary, the answer to Q2 is that adfs and sample maximization improve the perfor-

mance of FairSquare, and FairSquare requires both of these features to verify most benchmarks.

6.4 Comparison to Other Tools
We ran our benchmarks on the two other recent probabilistic program analysis tools that accept

the same class of problems and provide exact guarantees on probabilities. First, we compare to the

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:24 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

I
n
d

B
N
1

B
N
2

I
n
d

B
N
1

B
N
2

I
n
d

B
N
1

B
N
2

0

2

4

6

8

10

12

FairSquare psi vc

DT SVM NN

Fig. 11. Comparison of the number of benchmarks that FairSquare, psi [Gehr et al. 2016], and vc [Sankara-

narayanan et al. 2013] were able to solve.

tool of Sankaranarayanan et al. [2013] (vc),
6
which is algorithmically similar to our tool: it finds

bounds for probabilities on individual paths by approximating convex polytopes with bounding

and inscribed hyperrectangles. Second, we compare to psi [Gehr et al. 2016],
7
which symbolically

computes representations of the posterior distributions of variables.

Figure 11 shows the number of benchmarks solved per category per tool. Tools were deemed to

have failed on a benchmark when they timed out after a 900s period or returned an inconclusive

solution (in the case of psi). For instance, in the case of the population model BN1, FairSquare

solved 11 benchmarks, while psi and vc only solved 3 (the decision trees). For BN2, neither psi nor

vc was able to complete any benchmark.

The figure illustrates some qualitative properties of the applicability of the tools. In general, most

of the decision trees are solvable because they partition the decision space with inequalities between

a single variable and a constant. However, inequalities involving multiple variables can result in

(i) the lack of closed form posterior cdfs, as reflected in the output of psi, and (ii) angled boundaries

in the decision space that are hard to approximate with hyperrectangles; these inequalities occur

in the svms, neural networks, and the BN2 population model. Consequently, vc fails to produce

good bounds in these cases. Similarly, psi fails because the integrals do not have closed forms or

cannot be constructed within the timeout period.

In summary, the answer to Q3 is that FairSquare can verify fairness properties that other

tools cannot and therefore extends the class of problems that can be solved by state-of-the-art

probabilistic analysis tools.

We now discuss the results of applying the weighted volume computation algorithm of FairSquare

to the benchmarks from vc. (We omit a comparison to the benchmarks from psi, since the output

of psi is a posterior distribution—which can be used to compute probabilities, but not vice-versa.)

We first focus on vc’s three loop-free benchmark programs, which have thousands of paths; vc

computes various probabilities within two hours for each program. In FairSquare, however, the

quantifier elimination procedure employed before beginning sampling does not terminate within

two hours.

Second, we consider two of vc’s programs, cart and invPend, which have loops explicitly bounded

by constants and could be encoded in our framework using loop unrolling. The programs’ loops have

6
Acquired directly from the authors.

7
Artifact available from http://psisolver.org/.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

http://psisolver.org/

FairSquare: Probabilistic Verification of Program Fairness 80:25

maximum depths of 5 and 10 iterations, respectively, (and the loop bodies contain if statements and

probabilistic assignments). The fully unrolled versions of these programs are very large and cause

FairSquare’s quantifier elimination to timeout; to better understand the limitations of FairSquare, we

tried unrolling the programs up to 4 and 7 iterations, respectively, which were the largest unrollings

for which the quantifier elimination procedure would terminate within two hours. However, we

found that the program paths corresponding to these fewer number of loop iterations have zero

probability mass, so FairSquare was not able to compute non-trivial bounds for any probabilities.

In summary, the answer to Q4 is that FairSquare currently cannot solve the verification

benchmarks solved by the tool vc.

Quantifier elimination is difficult on programs with this many paths. vc is well-designed for

these tasks because it performs weighted volume computation only on the most important paths.

Specifically, vc heuristically picks a program path π through simulation, with the assumption that

traversed paths will likely have a larger probability mass for the event of interest. vc then computes

the probability of executing π and a given property being true at the end. By iteratively choosing

more and more paths through the program, it improves the computed bounds. Our approach

considers the full set of paths symbolically by encoding them as a formula. As described above,

this methodology works well for decision-making programs. Our evaluation indicates that our

two techniques can complement each other, providing an important direction for future work.

Specifically, we plan to investigate a lazily-evaluated quantifier elimination procedure, where we

heuristically sample disjuncts (i.e., program paths), so that FairSquare can scale to benchmarks

used by vc—where explicit quantifier elimination is prohibitively expensive.

7 DISCUSSION AND RELATEDWORK

Algorithmic Fairness Our work is inspired by recent concern in the fairness of modern decision-

making programs [Barocas and Selbst 2014; Zarsky 2014]. A number of recent works have explored

algorithmic fairness [Calders and Verwer 2010; Datta et al. 2016, 2015; Dwork et al. 2012; Feldman

et al. 2015; Hardt et al. 2016; Pedreshi et al. 2008; Zemel et al. 2013]. Most works are interested

in fairness from a machine learning perspective: how does one learn a fair classifier from data?

For example, Zemel et al. [2013] and Feldman et al. [2015] aim to transform training data so as

to erase correlations between the sensitive attributes of individuals and the rest of their features.

Within this context, classification utility is important. Hardt et al. [2016] recently proposed a new

fairness definition—equality of opportunity—that improves on demographic parity in terms of

classification utility. Discrimination in black-box systems has been studied through the lens of

statistical analysis [Datta et al. 2016, 2015; Sweeney 2013]. Notably, Datta et al. [2015] created an

automated tool that analyzes online advertising: it operates dynamically by surveying the ads

produced by Google.

In this paper, we viewed fairness through the lens of program specification and verification. We

are given a decision-making program—perhaps written by an expert or automatically generated

from data—and we would like to prove that it satisfies some fairness criterion with respect to a

probabilistic model of the population. We envision that in the future, for instance, governing bodies

might issue population models, and those employing automated decision-making have to certify

fairness of their procedures with respect to those models. Along those lines, in the US, two recent

White House reports [WH 2014, 2016] warn that “Powerful algorithms ... raise the potential of

encoding discrimination in automated decisions,” and recommend that federal agencies “should take

extra care to ensure the efficacy and fairness of those systems, based on evidence-based verification

and validation.”

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:26 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

Probabilistic Abstract Interpretation We refer the reader to Gordon et al. [2014] for a thorough

survey on probabilistic program analysis. A number of works tackled analysis of probabilistic

programs from an abstract interpretation perspective [Claret et al. 2013; Mardziel et al. 2011;

Monniaux 2000, 2001a,b]. The comparison between our solution through volume computation and

abstract interpretation is perhaps analogous to smt solving and software model checking versus

abstract interpretation. For example, techniques proposed by Monniaux [2000] sacrifice precision

of the analysis (through joins, abstraction, etc.) for the benefit of efficiency. Our approach, on the

other hand, is aimed at eventually producing a proof, or iteratively improving probability bounds

while guaranteeing convergence.

Sampling-Based Inference In probabilistic verification, some techniques perform probabilistic

inference by compiling programs or program paths to Bayesian networks [Koller and Friedman

2009] and applying hypothesis testing [Sampson et al. 2014]. The verification technique proposed

by Sampson et al. [2014] applies to properties of the form P[φ] > c . The approach relies on

concentration inequalities to determine a number of samples (executions) that would provide a

result within an ϵ additive error with 1 − δ probability. In the case of properties where we have

a ratio over two probabilities—like the ones considered here—we cannot a priori determine the

number of samples required to achieve (ϵ,δ) guarantees.
Probabilistic programming languages often rely on sampling to approximate the posterior

distribution of a program. The Church [Goodman et al. 2008] programming language, for instance,

employs the Metropolis–Hastings algorithm [Chib and Greenberg 1995], a Markov Chain Monte

Carlo (mcmc) technique. In mcmc techniques, there is usually no guarantee on how different the

Markov chain is from the actual distribution at any point in execution, although the Markov chain

is guaranteed to converge in the limit.

Volume Computation The computation of weighted volume is known to be hard—even for a

convex polytope, volume computation is #P-hard [Khachiyan 1993]. Two general approaches exist:

approximate and exact solutions. Note that in general, any approximate technique at best can prove

facts with high probability.

Our volume computation algorithm is inspired by (i) the formula decomposition procedure of Li

et al. [2014], where quantifier elimination is used to underapproximate an lra constraint as a

Boolean combination of monadic predicates; and (ii) the technique for bounding the weighted

volume of a polyhedron introduced by Sankaranarayanan et al. [2013], which is the closest volume

computation work to ours. (The general technique of approximating complex regions with unions

of orthogonal polyhedra is well-studied in the hybrid systems literature [Bournez et al. 1999].)

A number of factors differentiate our work from that of Sankaranarayanan et al. [2013], which we

compared with experimentally in Sec. 6. First, our approach is more general, in that it can operate

on Boolean formulas over linear and polynomial inequalities, as opposed to just conjunctions of

linear inequalities. Second, our approach employs adfs to guide the sampling of hyperrectangles

with large volume, which, as we have demonstrated experimentally, is a crucial feature of our

approach. Third, we provide theoretical convergence guarantees.

LattE is a tool that performs exact integration of polynomial functions over polytopes [De Loera

et al. 2012]. Belle et al. [2016, 2015a] compute the volume of a linear real arithmetic (lra) formula

by, effectively, decomposing it into dnf—a set of polytopes—and using LattE to compute the volume

of each polyhedron with respect to piece-wise polynomial densities. Our volume computation

algorithm is more general in that it (i) handles formulas over real closed fields, which subsumes lra,

and (ii) handles probability distributions for which we can evaluate the cdf. Our implementation

also supports polynomial approximations of the adfs. Polynomial approximations provide better

samples, but since the polynomials introduce non-linear constraints, the actual smt calls become

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

FairSquare: Probabilistic Verification of Program Fairness 80:27

dramatically slower due to the lack of scalable solvers for non-linear arithmetic. This includes

Z3’s non-linear solver [Jovanović and de Moura 2013], which implements a variant of cylindrical

algebraic decomposition (cad) [Basu et al. 2006], a technique for solving non-linear constraints

implemented in tools such as Mathematica and Maple. Although Z3 was shown to be faster than

all other non-linear solvers [Jovanović and de Moura 2013], it still does not scale to formulas of

size we consider, making polynomial approximations currently ineffective in practice. The same

applies to Redlog, which we used for quantifier elimination, and other state-of-the-art tools such

as qepcad [Brown 2003]; they implement cad and are comparable to Z3’s non-linear solver in

performance [Jovanović and de Moura 2013].

Chistikov et al. [2015] present a framework for approximate counting with probabilistic guaran-

tees in smt theories, which they specialize for bounded lra. In contrast, our technique (i) handles

unbounded formulas in lra as well as real closed fields, (ii) handles arbitrary distributions, and

(iii) provides converging lower-bound guarantees. It is important to note that there is a also a rich

body of work investigating randomized polynomial algorithms for approximating the volume of a

polytope, beginning with the seminal work of Dyer et al. [1991] (see Vempala [2005] for a survey).

Probabilistic Verification with Model Counting A number of works have also addressed

probabilistic analysis through symbolic execution [Filieri et al. 2013; Geldenhuys et al. 2012; Sampson

et al. 2014; Sankaranarayanan et al. 2013]. Filieri et al. [2013] and Geldenhuys et al. [2012] attempt

to find the probability a safety invariant is preserved. Both methods reduce to a weighted model

counting approach and are thus effectively restricted to variables over finite domains. Note that

our technique is more general than a model counting approach, as we can handle discrete cases

with a proper encoding of the variables into a continuous domain without loss of precision.

8 CONCLUSION
We formalized notions of fairness as probabilistic postconditions of decision-making programs.

We presented a novel probabilistic verification technique that is well-suited in its expressiveness,

performance, and guarantees to the fairness verification problem. We implemented our proposed

ideas and applied them to a range of decision-making programs. Our results highlight the power of

our approach and the importance of our design decisions.

An important direction for future research is investigating how to repair an unfair program.

In recent work [Albarghouthi et al. 2017], we began investigating this problem for a simple class

of loop-free programs and properties. Another interesting problem is pinpointing parts of the

program that lead to unfairness—in other words, explaining why the program is unfair. In traditional

verification, a counterexample is a clear artifact that falsifies a postcondition. In the probabilistic

setting, however, there is no single execution trace that explains why a postcondition does not

hold. Exploring debugging in the probabilistic setting is an interesting problem for future work.

Acknowledgements We would like to thank Thomas Reps and Aaron Roth for giving us feedback

on earlier drafts of the paper, Shuchi Chawla and Jerry Zhu for long and detailed discussions,

Sriram Sankaranarayanan for help with his tool, and the oopsla reviewers for their suggestions.

This paper is based upon work supported by the National Science Foundation under Grant numbers

1566015 and 1704117.

REFERENCES
Ifeoma Ajunwa, Sorelle Friedler, Carlos E Scheidegger, and Suresh Venkatasubramanian. 2016. Hiring by algorithm:

predicting and preventing disparate impact. Available at SSRN 2746078 (2016).

Aws Albarghouthi, Loris D’Antoni, and Samuel Drews. 2017. Repairing Decision-Making Programs Under Uncertainty.

Springer, Cham, 181–200.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

80:28 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016. Machine Bias: There’s Software Used Across

the Country to Predict Future Criminals. And it’s Biased Against Blacks. https://www.propublica.org/article/

machine-bias-risk-assessments-in-criminal-sentencing. (May 2016). (Accessed on 06/18/2016).

Eugene Asarin, Olivier Bournez, Thao Dang, and Oded Maler. 2000. Approximate reachability analysis of piecewise-linear

dynamical systems. In International Workshop on Hybrid Systems: Computation and Control. Springer, 20–31.

Mike Barnett and K Rustan M Leino. 2005. Weakest-precondition of unstructured programs. In ACM SIGSOFT Software

Engineering Notes, Vol. 31. ACM, 82–87.

Solon Barocas and Andrew D Selbst. 2014. Big data’s disparate impact. Available at SSRN 2477899 (2014).

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information Flow by Self-Composition. In CSFW.

Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, César Kunz, and Pierre-Yves Strub. 2014. Proving

Differential Privacy in Hoare Logic. In IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna, Austria,

19-22 July, 2014. 411–424. https://doi.org/10.1109/CSF.2014.36

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori, and Antonio Criminisi. 2016.

Measuring Neural Net Robustness with Constraints. CoRR abs/1605.07262 (2016). http://arxiv.org/abs/1605.07262

Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Algorithms in Real Algebraic Geometry (Algorithms and

Computation in Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Vaishak Belle, Guy Van den Broeck, and Andrea Passerini. 2016. Component Caching in Hybrid Domains with Piecewise

Polynomial Densities. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,

Phoenix, Arizona, USA. 3369–3375. http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12542

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. 2015a. Probabilistic Inference in Hybrid Domains by Weighted

Model Integration. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,

Buenos Aires, Argentina, July 25-31, 2015. 2770–2776. http://ijcai.org/Abstract/15/392

Vaishak Belle, Guy Van den Broeck, and Andrea Passerini. 2015b. Hashing-based approximate probabilistic inference in

hybrid domains. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence (UAI).

Nate Berg. 2014. Predicting crime, LAPD-style. https://www.theguardian.com/cities/2014/jun/25/

predicting-crime-lapd-los-angeles-police-data-analysis-algorithm-minority-report. (June 2014). (Accessed on

06/18/2016).

Christopher M Bishop. 2006. Pattern recognition. Machine Learning 128 (2006).

Olivier Bournez, Oded Maler, and Amir Pnueli. 1999. Orthogonal Polyhedra: Representation and Computation. Springer

Berlin Heidelberg, Berlin, Heidelberg, 46–60. https://doi.org/10.1007/3-540-48983-5_8

Christopher W. Brown. 2003. QEPCAD B: A Program for Computing with Semi-algebraic Sets Using CADs. SIGSAM Bull.

37, 4 (Dec. 2003), 97–108. https://doi.org/10.1145/968708.968710

Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for discrimination-free classification. Data Mining and

Knowledge Discovery 21, 2 (2010), 277–292.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying quantitative reliability for programs that execute on

unreliable hardware. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming

Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 33–52.

https://doi.org/10.1145/2509136.2509546

Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama. 2014. Bridging boolean and quantitative synthesis using

smoothed proof search. In POPL, Vol. 49. ACM, 207–220.

Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara Navidpour. 2011. Proving Programs Robust. In Proceedings

of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE

’11). ACM, New York, NY, USA, 102–112. https://doi.org/10.1145/2025113.2025131

Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-hastings algorithm. The american statistician

49, 4 (1995), 327–335.

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. 2015. Approximate Counting in SMT and Value Estimation for

Probabilistic Programs. In Tools and Algorithms for the Construction and Analysis of Systems - 21st International Conference,

TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,

April 11-18, 2015. Proceedings. 320–334. https://doi.org/10.1007/978-3-662-46681-0_26

Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gordon, and Johannes Borgström. 2013. Bayesian inference

using data flow analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM,

92–102.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking ANSI-C programs. In International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 168–176.

Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. 1991. Efficiently computing static

single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems

(TOPLAS) 13, 4 (1991), 451–490.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.1109/CSF.2014.36
http://arxiv.org/abs/1605.07262
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12542
http://ijcai.org/Abstract/15/392
https://www.theguardian.com/cities/2014/jun/25/predicting- crime-lapd-los-angeles-police-data-analysis-algorithm-minority-report
https://www.theguardian.com/cities/2014/jun/25/predicting- crime-lapd-los-angeles-police-data-analysis-algorithm-minority-report
https://doi.org/10.1007/3-540-48983-5_8
https://doi.org/10.1145/968708.968710
https://doi.org/10.1145/2509136.2509546
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1007/978-3-662-46681-0_26

FairSquare: Probabilistic Verification of Program Fairness 80:29

Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic Transparency via Quantitative Input Influence. In Proceedings

of 37th IEEE Symposium on Security and Privacy.

Amit Datta, Michael Carl Tschantz, and Anupam Datta. 2015. Automated experiments on Ad privacy settings. Proceedings

on Privacy Enhancing Technologies 2015, 1 (2015), 92–112.

JA De Loera, Brandon Dutra, Matthias Koeppe, Stanislav Moreinis, Gregory Pinto, and Jianqiu Wu. 2012. Software for exact

integration of polynomials over polyhedra. ACM Communications in Computer Algebra 45, 3/4 (2012), 169–172.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

Cynthia Dwork. 2006. Differential privacy. In Automata, languages and programming. Springer, 1–12.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. 2012. Fairness through awareness. In

Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012. 214–226. https://doi.org/10.

1145/2090236.2090255

Martin Dyer, Alan Frieze, and Ravi Kannan. 1991. A random polynomial-time algorithm for approximating the volume of

convex bodies. Journal of the ACM (JACM) 38, 1 (1991), 1–17.

Martin E. Dyer and Alan M. Frieze. 1988. On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17,

5 (1988), 967–974.

EEOC. 2014. Code of Federal Regulations. https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol4/xml/

CFR-2014-title29-vol4-part1607.xml. (July 2014). (Accessed on 06/18/2016).

Virginia Eubanks. 2015. The dangers of letting algorithms enforce policy. http://www.slate.com/articles/technology/

future_tense/2015/04/the_dangers_of_letting_algorithms_enforce_policy.html. (April 2015). (Accessed on 06/18/2016).

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian. 2015. Certifying

and Removing Disparate Impact. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Sydney, NSW, Australia, August 10-13, 2015. 259–268. https://doi.org/10.1145/2783258.2783311

Antonio Filieri, Corina S Păsăreanu, and Willem Visser. 2013. Reliability analysis in symbolic pathfinder. In Proceedings of

the 2013 International Conference on Software Engineering. IEEE Press, 622–631.

Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2016. On the (im)possibility of fairness. CoRR

abs/1609.07236 (2016). http://arxiv.org/abs/1609.07236

Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In Computer

aided verification. Springer.

Jaco Geldenhuys, Matthew B Dwyer, and Willem Visser. 2012. Probabilistic symbolic execution. In Proceedings of the 2012

International Symposium on Software Testing and Analysis. ACM, 166–176.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a

language for generative models. In UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence,

Helsinki, Finland, July 9-12, 2008. 220–229.

Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. 2014. Probabilistic programming. In

Proceedings of the on Future of Software Engineering. ACM, 167–181.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten. 2009. The WEKA data

mining software: an update. ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of Opportunity in Supervised Learning. CoRR abs/1610.02413

(2016). http://arxiv.org/abs/1610.02413

Dejan Jovanović and Leonardo de Moura. 2013. Solving Non-linear Arithmetic. ACM Commun. Comput. Algebra 46, 3/4

(Jan. 2013), 104–105. https://doi.org/10.1145/2429135.2429155

Leonid Khachiyan. 1993. Complexity of polytope volume computation. Springer.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2017. Inherent Trade-Offs in the Fair Determination of Risk

Scores. In ITCS.

Nicole Kobie. 2016. Who do you blame when an algorithm gets you fired? http://www.wired.co.uk/article/

make-algorithms-accountable. (January 2016). (Accessed on 06/18/2016).

Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.

Dexter Kozen. 1981. Semantics of probabilistic programs. J. Comput. System Sci. 22, 3 (1981), 328–350.

Yi Li, Tian Huat Tan, and Marsha Chechik. 2014. Management of time requirements in component-based systems. In FM

2014: Formal Methods. Springer, 399–415.

Piotr Mardziel, Stephen Magill, Michael Hicks, and Mudhakar Srivatsa. 2011. Dynamic enforcement of knowledge-based

security policies. In Computer Security Foundations Symposium (CSF), 2011 IEEE 24th. IEEE, 114–128.

Claire Cain Miller. 2015. Can an Algorithm Hire Better Than a Human? http://www.nytimes.com/2015/06/26/upshot/

can-an-algorithm-hire-better-than-a-human.html. (June 2015). (Accessed on 06/18/2016).

David Monniaux. 2000. Abstract interpretation of probabilistic semantics. In Static Analysis. Springer, 322–339.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol4/xml/CFR-2014-title29-vol4-part1607.xml
https://www.gpo.gov/fdsys/pkg/CFR-2014-title29-vol4/xml/CFR-2014-title29-vol4-part1607.xml
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorithms_enforce_policy.html
http://www.slate.com/articles/technology/future_tense/2015/04/the_dangers_of_letting_algorithms_enforce_policy.html
https://doi.org/10.1145/2783258.2783311
http://arxiv.org/abs/1609.07236
http://arxiv.org/abs/1610.02413
https://doi.org/10.1145/2429135.2429155
http://www.wired.co.uk/article/make-algorithms-accountable
http://www.wired.co.uk/article/make-algorithms-accountable
http://www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-than-a-human.html
http://www.nytimes.com/2015/06/26/upshot/can-an-algorithm-hire-better-than-a-human.html

80:30 Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori

David Monniaux. 2001a. An abstract Monte-Carlo method for the analysis of probabilistic programs. In ACM SIGPLAN

Notices, Vol. 36. ACM, 93–101.

David Monniaux. 2001b. Backwards abstract interpretation of probabilistic programs. In Programming Languages and

Systems. Springer, 367–382.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning (ICML-10). 807–814.

Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. 2008. Discrimination-aware data mining. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 560–568.

Walt L Perry. 2013. Predictive policing: The role of crime forecasting in law enforcement operations. Rand Corporation.

John Rawls. 2009. A theory of justice. Harvard university press.

Salvatore Ruggieri. 2014. Using t-closeness anonymity to control for non-discrimination. Transactions on Data Privacy 7, 2

(2014), 99–129.

Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S McKinley, Dan Grossman, and Luis Ceze. 2014. Expressing

and verifying probabilistic assertions. In ACM SIGPLAN Notices, Vol. 49. ACM, 112–122.

Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static analysis for probabilistic programs:

inferring whole program properties from finitely many paths. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. 447–458. https://doi.org/10.1145/2462156.2462179

Latanya Sweeney. 2013. Discrimination in online ad delivery. Queue 11, 3 (2013), 10.

Andrew Tutt. 2016. An FDA for Algorithms. Available at SSRN 2747994 (2016).

Jennifer Valentino-Devries, Jeremy Singer-Vine, and Ashkan Soltani. 2012. Websites Vary Prices, Deals Based on Users’

Information. http://www.wsj.com/articles/SB10001424127887323777204578189391813881534. (December 2012). (Accessed

on 06/18/2016).

Santosh Vempala. 2005. Geometric random walks: a survey. Combinatorial and computational geometry 52, 573-612 (2005),

2.

WH. 2014. Big Data: Seizing Opportunities, Preserving Values. https://www.whitehouse.gov/sites/default/files/docs/

big_data_privacy_report_may_1_2014.pdf. (May 2014). (Accessed on 06/18/2016).

WH. 2016. Preparing for the Future of Artificial Intelligence. https://www.whitehouse.gov/sites/default/files/whitehouse_

files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf. (Octorber 2016). (Accessed on 10/15/2016).

Tal Zarsky. 2014. Understanding discrimination in the scored society. Washington Law Review 89, 4 (2014).

Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork. 2013. Learning Fair Representations. In

Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013.

325–333. http://jmlr.org/proceedings/papers/v28/zemel13.html

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 80. Publication date: October 2017.

https://doi.org/10.1145/2462156.2462179
http://www.wsj.com/articles/SB10001424127887323777204578189391813881534
https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf
https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf
https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
http://jmlr.org/proceedings/papers/v28/zemel13.html

	Abstract
	1 Introduction
	2 Overview and Illustration
	3 A Framework for Verifying Fairness Properties
	3.1 Program Model and Semantics
	3.2 Fairness as a Probabilistic Program Property
	3.3 Probabilistic Inference through Volume Computation

	4 Symbolic Probabilistic Inference
	4.1 Weighted Volume Computation Algorithm
	4.2 Density-Directed Sampling
	4.3 Convergence of Algorithm

	5 Implementation
	6 Evaluation
	6.1 Benchmarks
	6.2 Effectiveness of FairSquare
	6.3 Effect of Parameters
	6.4 Comparison to Other Tools

	7 Discussion and Related Work
	8 Conclusion
	References

