
Toward Industrial-Strength Keyword Search
Systems over Relational Data

Akanksha Baid, Ian Rae, AnHai Doan, Jeffrey F. Naughton
Computer Science Department, University of Wisconsin, Madison

1210 W. Dayton St, Madison, WI, USA.
{baid, ian, anhai, naughton}@cs.wisc.edu

Abstract – Keyword search (KWS) over relational data, where
the answers are multiple tuples connected via joins, has received
significant attention in the past decade. Numerous solutions have
been proposed and many prototypes have been developed.
Building on this rapid progress and on growing user needs,
recently several RDBMS and Web companies as well as
academic research groups have started to examine how to build
industrial-strength keywords search systems. This task clearly
requires addressing many issues, including robustness, accuracy,
reliability, and privacy, among others. A major emerging issue,
however, appears to be performance related: current KWS
systems have unpredictable run time. In particular, for certain
queries it takes too long to produce answers, and for others the
system may even fail to return (e.g., after exhausting memory).

In this paper we begin by examining the above problem and
arguing that it is a fundamental problem unlikely to be solved in
the near future by software and hardware advances. Next, we
argue that in an industrial-strength setting, to ensure real-time
interaction and facilitate user adoption, KWS systems should
produce answers under an absolute time limit and then provide
users with a description of what could be done next, should he or
she choose to continue. Next, we show how to realize these
requirements for DISCOVER, an exemplar of a recent KWS
solution approach. Our basic idea is to produce answers as in
today’s KWS systems up to the time limit, then show users these
answers as well as query forms that characterize the unexplored
portion of the answer space. Finally, we present some
preliminary experiments over real-world data to demonstrate the
feasibility of the proposed solution approach.

I. INTRODUCTION
The success of search engines demonstrates that naïve

users are comfortable using keyword search to find documents
of interest to them. Over the past decade, this success has
spawned tremendous interest in keyword search (KWS) over
relational databases, in order to accommodate users who
cannot issue a formal structured query or are unaware of the
database schema. DBXplorer [1], DISCOVER [15], and
BANKS [4] were amongst the first systems that supported
keyword search over relational databases, and many other
systems [e.g. 2, 9, 13, 14, 16, 20, 22, 24, 25, 26, 28, 31] have
since been developed. As more structured data become
available at organizations and on the Web, and as more naïve
users want to use such data, we expect that more and more
efforts will be devoted to transition research solutions into
industrial-strength systems.

Naturally, building such systems requires addressing many
issues, including robustness, accuracy, reliability, and privacy,
among others. However, from our own effort, we have been
struck by how quickly we were hit with a roadblock: current
KWS solutions have unpredictable performance issues.
Specifically, while for many user queries the system produces
answers quickly, for many others it takes unacceptably long
(e.g., tens of minutes), or even fails to produce any answer
after exhausting memory. Clearly, such a performance profile
is unacceptable in an industrial-strength system.

We argue that in an industrial-strength setting, KWS
systems should produce answers under an absolute time limit
(say a few seconds); even if such answers are only partial in
some sense. We then argue that when showing these (possibly
partial) answers, the system should also somehow characterize
the portion of the answer space that is as yet unexplored, so
the user knows what it is that he or she is potentially missing.
The system then provides a way for the user to explore this
portion of the answer space should he or she choose to do so.
We propose that one way to do so is to provide form
interfaces to characterize the yet-unexplored answer space.
Overall, we believe that the above two requirements of “time
limit” and “overview of the yet-unseen” can help increase the
chances that the KWS system will be perceived as useful and
will be widely adopted by real-world customers.

Overall, we hope that our work will be viewed as an
attempt to open the debate on what it takes to transition the
wealth of current KWS solutions from prototype to industrial-
strength systems that will be widely adopted by real-world
customers.

Toward this goal, we make the following contributions:
(1) An examination of the performance bottlenecks of current

KWS solutions
(2) A proposed fix, based on the ideas of “time limit” and

“overview of the yet-unseen using query forms” for
industrial-strength KWS systems.

(3) A prototype implementation of the fix for DISCOVER,
an exemplar of a recent major KWS solution approach,
and

(4) Experiments with a real-world dataset to demonstrate the
effectiveness and feasibility of the proposed approach

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

0
200
400
600
800

1000
1200
1400
1600

2 3 4 5 6 7

Ti
m

e
(s

ec
)

Number of Joins

tutorial vldb

dewitt widom

dewitt naughton
raghu

Figure 1: The performance of KWS degenerates as the number of joins grows.

II. LIMITATIONS OF CURRENT KEYWORD SEARCH SOLUTIONS
OVER RELATIONAL DATA

KWS systems suffer from a fundamental problem: they
cannot guarantee a performance “cap” in the sense that certain
queries may take a very long time to run. To illustrate this
point, we have conducted some experiments with DISCOVER
on DBLife (dblife.cs.wisc.edu) [7, 8], a real-world data set
that describes entities and relationships in the database
research domain.

We posed some randomly sampled queries to DISCOVER
and measured the time it takes from when a query is posed
until all its answers are displayed. Figure 1 shows this time for
three queries plotted against the allowed number of joins. The
figure shows that for the queries “dewitt widom” and “dewitt
naughton raghu”, as we increase the number of allowed joins
beyond 3 or 4, the run time increases dramatically.

There are two fundamental reasons for this degradation of
performance. First, at its core the candidate network (CN)
generation problem contains the problem of searching a graph
to find all sub-graphs that satisfy certain properties. It is well
known that variations of this problem are NP-complete [21]. It
has been shown that it is possible to further optimize
DISCOVER to reduce the absolute run time as well as
memory consumed [11, 21]. However, it is unlikely that we
can escape the exponential growth for both, due to the NP-
completeness of the problem.

Second, the SQL execution step also often takes a large
amount of time. Perhaps not surprisingly, as the number of
allowed joins increases, increasingly more expensive SQL
queries are generated. Query optimization carried out by
DISCOVER mitigates the problem somewhat. Nevertheless,
the fundamental problem remains.

This unpredictability is fundamental, and poses a serious
problem for adopting such systems in practice. In the next
section we propose our solution to address this problem.

III. BASIC IDEAS OF OUR SOLUTION
Our solution builds on two key ideas. First, we believe that

an industrial-strength KWS solution, if it is to be adopted
widely, must be responsive and predictable in that it should
produce some answers in a matter of seconds.

Figure 2: A mock screenshot of our proposed solution approach, which
returns both data tuples (left pane) and forms (right pane) as the answer to a
keyword query.

Second, keyword search is often interactive and iterative
by nature, in that a user issues a keyword query, examines the
result, then issues another query, then examines the result, and
so on. To enable this paradigm, it is important that keyword
search takes only a few seconds, so that users feel that the
process is naturally interactive and iterative.

To implement the above idea, a natural solution is to
impose an absolute time limit on the keyword search system:
when the time limit has been reached, a result must be
returned to the user no matter what. We note that a similar
time-limit idea is used in virtually all major keyword search
engines on the Web.

Now suppose the system has reached the time limit and
has returned some (possibly partial) answers to the user. If the
system terminates here, then clearly it has explored only a
portion of the answer space, and so it runs the risk of having
shown the users only some suboptimal answers, or worse,
missed desired answers all together.

The above observation leads us to the second idea. In such
cases, we believe it is highly desirable that the system can
somehow give the user an idea about what the unexplored
portion of the answer space “looks like” and what the user can
do to explore that portion. This will also give the user a way to
continue the search for the desired answer, in an interactive
and iterative fashion.

We propose that one way to do this is to use query forms
(KWS-F) as proposed in [6]. Intuitively the answer space can
be characterized using a set of SQL queries. This set of SQL
queries in turn can be characterized using a set of query forms,
which most users know and can easily use. Figure 2 illustrates
this proposal. Given the keyword query “dewitt widom”, after
an absolute time limit has been reached, the system returns a
set of answers on the left (of the result page), just like in a
traditional KWS system. But unlike these KWS systems, our
system also returns a set of forms to characterize the
unexplored potion of the answer space (on the right of the
result page). The first form in this figure, for example, would
allow the user to explore all answers that relate persons via
co-authorship.

If the user does not find what he or she wants in the
answers on the left, he or she can examine the forms on the
right, and then click on a desired form to fill and submit.

Number of joins

2

While applicable, we have found that KWS-F alone is

clearly not a good idea. While KWS-F is highly appropriate
for hard queries (with long join sequences), it is not well
suited for easy queries (for which KWS systems are both more
efficient and more user-friendly). We argue that adding KWS-
F, the form-based approach, to DISCOVER in a sense is
combining the best of both approaches. Based on this
argument we propose a hybrid approach in the next section.

IV. HYBRID APPROACH
As pointed out earlier, CN generation can take up a large

portion of the total query execution time in DISCOVER.
DISCOVER restricts CN generation time by restricting the
size of the join trees considered with a tunable parameter Mmax.
Doing so however can severely restrict query coverage and
leave the user with no option for queries that DISCOVER
cannot evaluate. In the hybrid approach, we propose that
forms be displayed for any queries for which CNs were not
generated.

Having this option of presenting forms for which CNs
were not generated yields a two-fold benefit – (i) the user can
now issue queries that DISCOVER could not express, and (ii)
overall CN generation time can be reduced by setting lower
termination thresholds for CN generation without
compromising query coverage.

In the hybrid approach, we allow CN generation to be
restricted using two parameters – (1) Timeouts: The idea here
is simple. Most users expect the search results to be returned
to them in a reasonable time. In our implementation of the
hybrid approach we limit CN generation time to a tunable
threshold time T. All CNs generated within time T are
evaluated using DISCOVER. Forms are displayed for the
remaining CNs. (2) Number of Joins: Like DISCOVER, the
hybrid approach also uses a value M (maximum number of
allowed joins) to restrict the number of CNs that the system
evaluates.

We also find that as the number of queries grows, a small
number of queries (typically those involving long joins) take
up a disproportionately large portion of the execution time.
Evaluating these expensive queries might be unnecessary if

we are not even sure if the user is interested in them.
Consequently, in the hybrid system the queries generated from
the CNs are partitioned into two sets.

The first set contains queries that have a cost <= C, where
C is measured in disk-page-fetches. These queries are
executed on the underlying data and the corresponding tuples
are returned to the user. The second set contains all queries
with estimated cost > C. The queries in the second set are not
executed. Instead forms corresponding to these queries are
presented to the user and the queries are evaluated only if the
user chooses to do so.

The system architecture for the proposed hybrid approach
is presented in Figure 3. In this system, a keyword query Q is
first sent to DISCOVER’, which is the DISCOVER system
modified to operate within the limits of M, T, C and L (where,
L is defined as a combination of M , L and C).

Specifically, the modified system does not generate CNs
of size greater than M. It takes only up to time T to generate
CNs, and it executes only SQL queries estimated to cost no
more than C. Eventually DISCOVER’ will terminate, either
because (a) it has finished executing all generated SQL
queries, or (b) the time limit L has been reached, whichever is
earlier.

At this point, DISCOVER’ sends query Q together with a
status report on its execution to the KWS-F form-based
system. This system executes query Q to obtain a ranked list
of forms like in a KWS-F system [6]. The hybrid system then
combines this list of forms with the list of answers produced
by DISCOVER’, then presents this combination to the user.

V. EXPERIMENTAL EVALUATION
We now experimentally evaluate our approach. We used a

40M snapshot of the DBLife data set as of June 2007, which
has 801,189 tuples in 14 tables. We ran our experiments using
PostgreSQL 8.3.6 on an Intel(R) Core(TM) 2 Duo 2.33 GHz
system with 3GB of RAM. All algorithms were implemented
in Java and JDBC was used to connect to the database.

We focus on the three “hard” queries – (a) “tutorial vldb”,
(b) “dewitt widom”, and (c) “dewitt naughton raghu”. For
DISCOVER, we measure its time to be the time between the
moment a query is issued and the time the system stops. For
the hybrid approach we measure the time it takes from when a
query is issued until when the system stops.

We set the time limit to 90 seconds and T = 60 seconds
and C = 30,000 pages. Given this setting, Figure 4 shows the
run time of DISCOVER versus the hybrid approach on the
three selected queries, as we increase the number of allowed
joins (parameter M) on the X-axis. The figure shows a stark
difference in run time. First, it is clear that after a certain M
threshold, DISCOVER’s time grows exponentially. In fact, it
failed to return results for queries (b) and (c) for large M
values. In contrast, the hybrid system maintains a low run time
throughout.

Figure 3: The architecture of the hybrid system.

3

0
20
40
60
80

100
120
140

2 3 4 5 6 7

Ti
m

e(
se

c)

Number of joins

Hybrid

KWS

Q="tutorial vldb"

0
100
200
300
400
500
600
700

2 3 4 5 6 7

Ti
m

e(
se

c)

Number of joins

Hybrid

KWS

Q="dewitt widom"

0
100
200
300
400
500
600
700
800

2 3 4 5 6 7 8

Ti
m

e(
se

c)

Number of joins

Hybrid

KWS

Q="dewitt naughton raghu"

Figure 4: Comparison of the performance of KWS vs. Hybrid on three selected queries.

We easily found cases where DISCOVER could not answer

the queries due to the many joins required or to the large
intermediate results. Examples include finding papers co-
authored by DeWitt and three other persons, finding papers
co-authored by four persons, and finding interesting
relationships among four given persons. In all of these cases,
the hybrid approach stopped, the right forms appeared in the
list of forms displayed, and executing these forms took only
milliseconds.

In summary, the experiments demonstrate that DISCOVER
has a severe performance problem for certain queries, and that
the hybrid approach consistently maintained a low run time
and could handle these queries.

VI. CONCLUSION
 Our goal in this paper was to explore techniques that allow

keyword search over relational data to be implemented in such
a way that the system can guarantee a reasonable response
time. Our main idea is to let the traditional keyword search
generate all the answers it can within some time bound, and to
augment the search with a form-based approach that “covers”
potential answers that the keyword search could not find in the
specified time limit. Results from experiments with this
approach indicate that it is successful in always returning a
covering combination of answers and forms in a bounded and
predictable amount of time. We regard this work as a first step
toward building this kind of system, and hope that it is a
springboard for follow-on work that improves the
performance and quality of such systems.

ACKNOWLEDGEMENT
 We thank Yannis Papakonstantinou and Vagelis Hristidis

for providing us with their implementation of DISCOVER.

REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System for

Keyword-Based Search over Relational Databases. ICDE, 2002.
[2] Balmin, A., Hristidis, V., Papakonstantinou, Y. “ObjectRank:

authority-based keyword search in databases”, VLDB, 2004.
[3] A. Bernstein and E. Kaufmann. Making the semantic web accessible to

the casual user: Empirical evidence on the usefulness of semiformal
query languages. IEEE TKDE, under review.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword Searching and Browsing in Databases using BANKS. ICDE,
2002.

[5] K. Chakrabarti, S. Chaudhuri, S. Hwang. Automatic Categorization of
Query Results. SIGMOD 2004.

[6] E. Chu, A. Baid, X. Chai, A. Doan, J. Naughton, “Combining
Keyword Search and Forms for Ad Hoc Querying of Databases”
SIGMOD 2009.

[7] P. DeRose et al. DBLife: A Community Information Management
Platform for the Database Research Community. CIDR 2007 Demo.

[8] P. DeRose, W. Shen, F. Chen, A. Doan, R. Ramakrishnan “Building
Structured Web Community Portals: A Top-Down, Compositional, and
Incremental Approach”. VLDB 2007.

[9] Ding, B., Yu, J. X., Wang, S., Qin, L., Zhang, X., Lin, X. “Finding
topk min-cost connected trees in databases”, ICDE, 2007.

[10] D. W. Embley. NFQL: The Natural Forms Query Language. ACM
Transaction Database System, 1989.

[11] K. Golenberg, B. Kimelfeld, Y. Sagiv, ”Keyword proximity Search in
Complex Data Graphs”. SIGMOD 2008.

[12] A. Halevy et al. Crossing the Structure Chasm. CIDR 2003.
[13] He, H., Wang, H., Yang, J., Yu, P., “BLINKS: ranked keyword

searches on graphs”, SIGMOD, 2007.
[14] V. Hristidis, L. Gravano, Y. Papakonstantinou. Efficient IR-Style

Keyword Search over Relational Databases. VLDB 2003.
[15] V. Hristidis, Y. Papakonstantinou. DISCOVER: Keyword Search in

Relational Databases. VLDB, 2002.
[16] Hristidis, V., Papakonstantinou, Y., Balmin, A. “Keyword

proximitysearch on XML graphs”, ICDE, 2003.
[17] M. Jayapandian, H. V. Jagadish. Automated Creation of a Form-based

Database Query Interface. VLDB 2008.
[18] M. Jayapandian, H. V. Jagadish. Automating the Design and

Construction of Query Forms. ICDE 2006.
[19] M. Jayapandian, H. V. Jagadish. Expressive Query Specification

through Form Customization. EDBT 2008.
[20] Kacholia, V., et al., Bidirectional expansion for keyword search on

graph databases, VLDB 2005.
[21] B. Kimelfeld , Y. Sagiv, “Finding and Approximating Top-k Answers

in Keyword Proximity Search”. PODS 2006.
[22] R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, H. Zhu. Using

Structured Queries for Keyword Information Retrieval. IBM Technical
Report RJ 10413.

[23] G. Koutrika, Z. Mohammadi Zadeh, H. Garcia-Molina. Data Clouds:
Summarizing Keyword Search Results over Structured Data. EDBT
2009.

[24] F. Liu, C. Yu, W. Meng, A. Chowdhury. Effective Keyword Search in
Relational Databases. SIGMOD 2006.

[25] Luo, Y., Lin, X., Wang, W., Zhou, X. “SPARK: Top-k keyword
queryin relational databases”, SIGMOD, 2007.

[26] Markowetz, A., Yang, Y., Papadias, D., “Keyword search on relational
data streams”, SIGMOD, 2007.

[27] A. Nandi , H.V. Jagadish, “QUNITS :queried units for database
search”. CIDR 2009

[28] M Sayyadian, H. LeKhac, A. Doan, L Gravano, “Efficient keyword
search across heterogeneous relational databases”, ICDE, 2007.

[29] A. Simitsis, G. Koutrika, and Y. Ioannidis. Pr´ecis:from unstructured
keywords as queries to structured databases as answers. VLDB Journal,
pages 117–149, 2008.

[30] R. Song, Z. Luo, J. Wen, Y. Yu, and H. Hon. Identifying ambiguous
queries in web search. WWW 2007.

[31] Tata, S. and G.M. Lohman, SQAK: doing more with keywords.
SIGMOD 2008.

[32] M.M. Zloof. Query-by-Example: the Invocation and Definition of
Tables and Forms. VLDB 1975.

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
