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Abstract

We consider the problem of locating a core/median path in proper interval graphs

and threshold graphs. We give a polynomial time algorithm to compute the core

path in both these classes of graphs, when vertices are assigned arbitrary positive

and real weights and edges are assigned unit weights. Additionally, we establish the

NP-Completeness of locating the core path in both these graph classes when edges

are assigned arbitrary positive weights, even when vertices are assigned unit weights.

A variant of the above problem is called the conditional core problem, where the

requirement is to locate the core path in presence of some already established facilities.

We give a polynomial time algorithm for solving the conditional core problem in

threshold graphs.
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CHAPTER 1

Introduction

1.1 Introduction

Structures that can be represented as graphs are ubiquitous, and many problems of

practical interest can be represented by graphs. The link structure of a website could

be represented by a directed graph: the vertices are the web pages available at the

website and a directed edge from page A to page B exists if and only if A contains a

link to B. A similar approach can be taken to problems in travel, biology, molecular

chemistry, computer chip design, and many other fields. The development of algo-

rithms to handle graphs is therefore of major interest in computer science.

Unfortunately, if the input graph is an arbitrary graph, many problems in graph

theory remain intractable. We call a problem as intractable if it takes time exponential

in size of the input to solve the problem.The problems which are labeled NP-Complete

are those for which only exponential algorithms are known. Inspite of the current

lower bounds for NP-Complete problems being polynomial functions of very small

degree, there is little hope that a polynomial time algorithm exists for any of these

problems. But the crucial point is many problems that are of great practical interest

fall under the category of NP-Complete problems.

Though, many problems of practical relevance are NP-Complete in arbitrary graphs,

it turns out that graphs that occur in real life problems are not all that arbitrary.

They possess some definite structural properties because of which they often lend

themselves for polynomial time algorithms for many problems. So we have that, when

the input graph belongs to a restricted class of graphs, polynomial time solutions are



possible for many problems that are NP-Complete in arbitrary graphs.

Proper interval graphs and threshold graphs are two such classes of graphs. Proper

interval graphs form a sub-class of interval graphs and threshold graphs form a sub-

class of comparability graphs. The study of threshold graphs began in [4] with ap-

plications to the “aggregation” of linear inequalities in integer programming and set

packing problems. There have been several other application areas such as the syn-

chronization of parallel processes in [5], [8] and [14] and to cyclic scheduling in [9].

In this report, we solve a facility location problem - the core path problem in proper

interval graphs and threshold graphs.

1.2 Facility location and the core path problem

Facility location on networks has been and is still a topic of great importance in

fields such as transportation, communication and computer sciences. Network facility

location is concerned with the optimal selection of a site in a network. It aims to

find one or a set of points for placing new facilities in order to satisfy a given demand

arising from a set of potential customers. A natural extension of point facility location

problems are those problems in which facilities are extensive, that is those that cannot

be represented as isolated points but as some dimensional structures. The criteria for

optimality that have been extensively studied in literature are the minimax criteria in

which the distance to the farthest vertex from the site is minimized and the minisum

criteria where the total distance to the vertices from the site is minimized. The former

criterion is called the center criterion and the latter is called as the median/core

criterion function.

Hakimi et al. [7] first considered both minimax and minisum optimization problems

related to the location of one site or of several sites in a network, the sites being

either path shaped or tree shaped, the underlying graph being either a tree or an

arbitrary graph etc. and thus 64 variations of the facility location problem!! Almost

all the versions remain NP-Complete in arbitrary graphs. But in the recent years, the

problem that has been pursued extensively is the location of a path shaped facility
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in trees. There has been growing interest in this field, since in particular several

applications require the location of path-shaped facility instead of a single point or a

set of points. The location of pipelines, irrigation ditches, express lanes in a highway

and the design of public transportation routes, can be regarded as the location of

path shaped facilities.

1.2.1 Core Path

Let G = (V, E) be a simple, undirected, connected, weighted (positive, real vertex

and edge weights) graph. The length of a path P , denoted by length(P ) is defined as

sum of weights of edges in P . The distance between two vertices u and v, d(u, v) is

defined as the length of the shortest path between the two vertices. The set of vertices

of a path P is denoted by V (P ) and the set of vertices of V (P ) ∩ X for any set X,

is denoted by VX(P ). We extend the notion of distance between a pair of vertices in

a natural way to the notion of distance between a vertex and a path. The distance

between a vertex v and path P is d(v, P ) = Min
u∈V (P )

d(v, u). If v ∈ V (P ), then d(v, P )

is zero. The cost of a path P denoted by d(P ) is
∑

v∈V

d(v, P )w(v), where w(v) is the

weight of the vertex v.

Definition 1.2.1 [13] The Core path or Median path of a graph G is a path P in G

that minimizes d(P ) . 2

Definition 1.2.2 [12] Let P l be the set of all paths of length l in G. The Core path

of length l of a graph G is a path P ∈ P l where d(P ) ≤ d(P ′) for any path P ′ ∈ P l.

2

We consider the following two versions of the above problem for proper interval graphs

and threshold graphs :

1. Finding the core path of length l in a graph, with arbitrary positive weights

assigned to the edges and unit weights to vertices.

2. Finding the core path of length l in a graph, with arbitrary positive weights

assigned to the vertices and unit weights to edges.

3



In this report, for the above two classes of graphs, we give polynomial time algorithms

for version 2 and establish the NP-Completeness of version 1. Besides, we solve a

variant of the above problem called the conditional core problem in threshold graphs.

1.2.2 Related Work

In [13], Morgan and Slater give the first linear time algorithm to find the core path

of a tree with unit edge weights. In [11], [12] Minieka et al. extend the notion of core

path with a constraint on the length of the path. In their work, they have addressed

the problem of locating path or tree shaped facilities of specified length in a tree.

The algorithm runs in O(n3) time. In [15], Peng and Lo extend their work by giving

an O(nlogn) sequential and O(log2(n)) parallel algorithm using O(n) processors for

finding the core path of an unweighted tree with a specified length. In [3], Becker et

al. give an O(nl) algorithm for the unweighted case and an O(nlog2n) algorithm for

the weighted case for trees. In [1], Alstrup et al. give an O(nmin{lognα(n, n), l})

algorithm for finding the core path of a tree.

The problem has been analyzed so far only in trees. Recently there has been a study

of the core path in grid graphs in [2].

4



CHAPTER 2

Proper Interval Graphs and Threshold

Graphs

2.1 Proper Interval Graphs: Definitions and Characterization

Definition 2.1.1 A graph G is an interval graph if its vertices can be put in one-to-

one correspondence with a family F of intervals on the real line such that two vertices

are adjacent in G iff their corresponding intervals have nonempty intersection [6]. F

is known as the intersection model of the graph.

Let G = (V, E) be an interval graph with arbitrary positive weights for vertices and

unit weights for edges. For every interval Ii corresponding to a vertex vi of the graph,

we mark its left and right end points as ai and bi respectively.

Definition 2.1.2 A graph G is a proper interval graph, iff no interval is properly

contained within another interval of the graph. Any interval graph is a proper interval

graph iff a1 ≤ a2 ≤ a3 ≤ · · · ≤ an and b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn. For any two vertices

vi and vj, if ai ≤ aj and bi ≤ bj then we say that vi < vj. Such an ordering of vertices

of the proper interval graph is called the proper interval graph ordering.

There are several other interesting characterizations for proper interval graphs. We

state below without proof some of the other equivalent characterizations of proper

interval graphs.

Theorem 2.1.3 (Roberts) A graph is a proper interval graph if and only if it is an

interval graph that does not contain an induced subgraph isomorphic to K1,3.

A unit interval graph is defined to be the intersection graph of a family of closed

intervals of the real line, all of which have the same length (which is often taken to



Figure 2.1: Two graphs that are not proper interval graphs

be one). The following theorem states the relationship between a unit interval graph

and a proper interval graph.

Theorem 2.1.4 (Roberts) A graph is a proper interval graph if and only if it is a

unit interval graph.

Characterization based on consecutive ones property A maxclique of a graph

G is defined to be any complete subgraph that is not properly contained in another

complete subgraph. For any graph G with vertices indexed by {1, 2, . . . , n} and

maxcliques indexed by {1, 2, . . . , m}, define the maxclique-vertex matrix M(G) to be

the m × n matrix with entry mij=1 if the ith maxclique contains the jth vertex and

mij = 0 otherwise.

A matrix has the consecutive ones property for columns if its rows can be permuted

so as to make all the 1 entries in each column consecutive. The consecutive ones

property for rows is defined similarly.

Theorem 2.1.5 A graph G is a proper interval graph if and only if M(G) has the

consecutive ones property for both rows and columns.

2.2 Threshold Graphs : Definitions and Characterizations

Definition 2.2.1 A graph G is a split graph if V (G) can be partitioned into Q ∪ I,

where Q induces a complete graph and I induces an edgeless graph. Thus the graph

G has |Q|(|Q|−1)/2 edges within Q and anywhere between zero to |Q|.|I| other edges

between Q and I.
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Figure 2.2: Two threshold graphs having thresholds 4 and 7, respectively, using v(i)

to denote that vertex v has weight wv = i
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Figure 2.3: Another view of the graph on the right in 2.2

Threshold graphs are special split graphs that were introduced by Chvátal & Hammer

and have been extensively studied since that time.

Definition 2.2.2 For each vertex v of a graph G, let wv denote a nonnegative real

number, the weight of v. A graph G is a threshold graph if there is an assignment

of weights to the vertices of G and a nonnegative real number t, the threshold, such

that, for every X ⊆ V (G), X is an independent set if and only if
∑

v∈X

wv ≤ t - in

other words, if weights can be assigned to vertices of G so that a subset of vertices

is independent if and only if the total weight of the set is no greater than a certain

constant threshold.

The notion of degree partition of a vertex set is crucial to the understanding of

threshold graphs. Let G be a graph whose nonisolated vertices have the distinct

degrees δ1 < δ2 < δ3 < · · · < δm. Set δ0 = 0 and δm+1 = |V |−1, and let Di be the set

of all vertices having degree δi for i = 0, 1, 2, . . . , m. The sequence D0, D1, . . . , Dm is

7



called the degree partition of G.

Example 1 The threshold graph on the left in Figure 2.2 has m = 2 with δ1 = 1,

δ2 = 4, D0 = ∅, D1 = {a, b, d, e}, and D2 = {c}. The threshold graph on the right

has m = 4 with D0 = ∅, D1 = {b}, D2 = {d, e, f}, D3 = {c}, and D4 = {a}.

Figure 2.3 shows another view of the graph on the right in Figure 2.2, with its vertices

now grouped into “cells” corresponding to the degree partition. The Di’s in the left

column represent independent sets, the Di’s in the right column represent complete

subgraphs, and a line between cells Di and Dj means that every vertex in Di is

adjacent to every vertex in Dj.

The graph in Example 1 is a split graph, with the union of the cells in Figure 2.3

forming the independent set I and the union of those on the right including the

complete subgraph Q. It can also be seen that the open neighborhood of every vertex

in the left column is contained in the open neighborhood of every vertex below it;

similarly, the closed neighborhoods of every vertex in the right column is contained

in the closed neighborhood of every vertex above it.

Theorem 2.2.3 (Chvátal and Hammer) Let G = (V, E) be a graph with degree par-

tition D0, D1, . . . , Dm. Then the following statements are equivalent:

1. G is a threshold graph;

2. for x ∈ Di and y ∈ Dj, xy ∈ E if and only if i + j > m;

3. there exist nonnegative integer weights wv and threshold t such that, for distinct

vertices u and v, uv ∈ E if and only if wu+wv > t

4. G does not contain P4, C4, or 2K2 as an induced subgraph;

5. G is a split graph where the open neighborhoods of the vertices of the indepen-

dent set I can be nested with respect to set inclusion;

6. G can be obtained from K1 by recursively adding either an isolated vertex or a

vertex adjacent to every existing vertex.

It follows from condition (4) of Theorem 2.2.3 that the complement of a threshold

8
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graph is a threshold graph. This is because we know that P4 is self-complementary

and that C4 and 2K2 are complements of each other.

2.3 Threshold Graphs as Intersection Graphs

Let G be an interval graph. A threshold interval representation for G is an interval

representation for G that consists of a family of intervals {Jvi
} such that Jvi

is either

the interval [0, ri] or the trivial interval [si, si] where sj 6= sk for j 6= k and where

sj 6= rk for all j and k. The following is from [10]

Theorem 2.3.1 A graph is a threshold graph if and only if it is an interval graph

with a threshold interval representation.

Proof: Assume G is an interval graph with a threshold interval representation.

Then the nontrivial intervals in the representation correspond to vertices that induce a

maxclique Q of G, the trivial intervals correspond to vertices that form an independent

set i in G, and the neighborhoods of vertices in I are nested in the order in which their

representing trivial intervals appear along the real line. Therefore, G is a threshold

graph by part (5) of Theorem 2.2.3.

Conversely, suppose that G is a threshold graph. By part (5) of Theorem 5.1, G is a

split graph with V (G) partitioned into the complete subgraph Q and the independent

set I with the neighborhoods of I nested. Assign each vertex v in Q an interval Jv =

[0,rv] such that N [u] ⊆ N [v] if and only if ru ≤ rv for all u, v ∈ Q. For each w ∈ I,

let r(w) = max{rv : wv ∈ E(G)}. Each such w can be assigned a trivial interval Jw

that is a small distance ǫw to the left of r(w) in such a way that the intervals form a

threshold interval representation for G. 2

Example 2 The threshold graph on the left in Figure 2.2 could receive the threshold

interval representation determined by 0 < sa < sb < sd < se < rc. The threshold

graph on the right could receive the threshold interval representation determined by

o < sd < se < sf < rc < sb < ra.

10



Figure 2.5: An interval graph that requires only two lengths of intervals, yet is not a

threshold graph.

There are threshold graphs that are unit interval graphs (Kn for example) and others

that are not unit interval graphs (K1,3 for example). However a threshold graph will

never require more than two distinct lengths of intervals in its interval representation.

Theorem 2.3.2 Every threshold graph has an interval representation whose intervals

have at most two distinct lengths.

Proof: Let G be a threshold graph with V (G) partitioned into the maxclique Q

and independent set I, and suppose {Jv} is a threshold interval representation as

constructed in the proof of Theorem 2.3.1. By that construction, there exists a z ∈ Q

such that rx ≤ rz for all x ∈ Q. For each u ∈ Q assign the interval J ′
u = [ru − rz, ru],

while for each w ∈ I let J ′
w = Jw. Then J ′

v is an interval representation for G using

only the two lengths rz and 0. 2

The converse to Theorem 2.3.2 fails since the nonthreshold graph P4 is a unit interval

graph.

11



CHAPTER 3

Core path of a Proper interval graph with

vertex weights

3.1 Introduction

In this chapter, we provide a polynomial time algorithm for solving the core path

problem in proper interval graphs in the case when arbitrary positive weights are

assigned to vertices and unit weights are assigned to edges. Additionally, we prove

the NP-Completeness in solving the problem when arbitrary positive weights are

assigned to edges, even when unit weights are assigned to vertices.

Let G = (V, E) be an interval graph with arbitrary positive weights for vertices and

unit weights for edges. Recalling the notation from chapter 2, we note that for every

interval Ii corresponding to a vertex vi of the graph, we mark its left and right end

points as ai and bi respectively.

From now on, we consider a proper interval graph G whose vertices V = {v1, v2, . . .,

vn} are labeled such that vi < vj iff i < j.

Remark 3.1.1 For a proper interval graph, the core path (when there is no constraint

on the length of the path) is the Hamiltonian path. The path P = v1v2v3 . . . vn is a

Hamiltonian path and it is also a core path with d(P ) = 0.

Our algorithm finds the core path with a specified length. Since we have assigned

unit weights to all the edges, the length of the path is just the number of edges in

the path. In this section alone, for technical considerations, we hold the length of the

path = 1 + number of edges in the path i.e. the number of vertices in the path



3.2 NP-Completeness of Core path problem in edge-weighted proper in-

terval graphs

PROBLEM A

INSTANCE: A complete graph, L, K

QUESTION: Is there a path P of length utmost L satisfying d(P ) ≤ K ?

Theorem 3.2.1 Problem A is NP-Complete.

Proof: The problem of finding a Hamiltonian path in an arbitrary graph G = (V, E)

is known to be NP-Complete. We construct a complete graph G′ = (V ′, E ′) from G

as follows : V ′ = V ∪ a and E ′ = E ∪ Enew where Enew = {(vi, vj)|(vi, vj) /∈ E} ∪

{(a, v)|v ∈ V ′ - a}. In G′, we assign a weight of |V | to all edges e ∈ Enew and unit

weights to all edges e ∈ E ′ −Enew. We assign unit weights to all the vertices. We set

L = |V | − 1 and K = |V |

We now have to establish that G has a Hamiltonian path iff G′ has a path of length

utmost L and cost utmost K.

Suppose G had a Hamiltonian path P , then the path P in G′ will have a length of

|V | - 1 and d(P ) = |V | .

Suppose G′ had a core path of length utmost |V |−1 and d(P ) ≤ |V |, then it will imply

that no edge e ∈ Enew was selected in the core path for otherwise, length(P ) ≥ |V |.

This means that the path comprises only of the vertices from X ∪ Y and edges from

E. Also the path should have been of length |V | - 1, else d(P ) ≥ |V | + 1 (|V | due

to vertex a, and at least 1 due to vertices in V ). Therefore we have a path of length

|V | - 1 comprising only of vertices from V and edges from E, which is nothing but a

Hamiltonian path in the graph G. 2

Corollary 3.2.2 Since every complete graph is a proper interval graph, it follows

that the problem is NP-Complete for proper interval graphs.

13



3.3 Preliminaries

We call a path P = x1x2 . . . xk of G ordered, iff x1 < x2 < · · · < xk. We say that an

ordered path P begins at vi if vi < v, ∀v ∈ V (P ) and ends at vi if v < vi, ∀v ∈ V (P ).

We use ≤ to denote the reflexive closure version of the relation < between the vertices.

Lemma 3.3.1 In a proper interval graph, for every path P , there exists an ordered

path Q, such that V (P ) = V (Q).

Proof: Let P = x1x2 . . . xk be an arbitrary path. By induction hypothesis, assume

that the Lemma is true for all paths of length utmost k − 1. Hence there is a path

P ′ = y1y2 . . . yk−1, such that y1 < y2 < · · · < yk−1 and V (P ′) = {x1, x2, . . . , xk−1}.

Case 1 : yk−1 < xk

P ′xk is the required path Q, where P ′xk is the path obtained by concatenation of

P ′ and xk. As P ′ ends at yk−1, we have that xk−1 ≤ yk−1. But we also know that

(xk−1, xk) ∈ P and hence (xk−1, xk) ∈ E. Since xk−1 ≤ yk−1 < xk and (xk−1, xk) ∈ E,

it follows from proper interval graph ordering property that (yk−1, xk) ∈ E

Case 2 : xk < y1

By a similar argument as for Case 1, xkP
′ is the required path Q.

Case 3 : yi−1 < xk < yi for some 2 ≤ i ≤ k − 1

Since (yi−1, yi) ∈ E, (yi−1xk), (xkyi) ∈ E due to proper interval graph ordering. Hence

y1y2 . . . yi−1xkyi . . . yk−1 is the required path Q. 2

In the above lemma, since V (P )=V (Q), it follows that d(P )=d(Q). So, for every

path there is an ordered path with the same cost and same set of vertices. Hence

from now on, we consider only the set of ordered paths. For every vertex vi ∈ V (G),

we find the ordered path of length l of minimum cost that ends at vi. Such a path

for vi is denoted by P l
vi

. It is now easy to see that the core path of the graph is the

path which has minimum cost among P l
vi
∀vi.

Let Gi be the graph induced by the vertices {v1, v2, . . . vi} in G and let G′
i be the

graph induced by the vertices {vi, vi+1, . . . , vn} in G.

14



Remark 3.3.2 Any ordered path that ends at vi cannot contain a vertex v such that

vi < v. Hence to compute d(Pvi
), it is sufficient to consider the ordered paths in Gi.

3.4 Algorithm

For every ordered path P that ends at vi, we define di(P ) to be the cost of the path

P in the graph Gi. Similarly for an ordered path P that begins at vi, we define d′
i(P )

to be the cost of the path P in the graph G′
i. We have that P 1

vi
= vi; Also, d1(P

1
v1

) =

0;

Lemma 3.4.1 di(P
1
vi

) = dj(P
1
vj

) + w(v1) + w(v2) + . . . + w(vi−1), where vj is such

that (vj,vi) ∈ E and (vk,vi) /∈ E ∀k < j.

Proof: All the vertices from v1 to vj−1 incur a total cost of dj(P
1
vj

) + w(v1) +

w(v2) + . . . + w(vj−1). The sum w(v1) + w(v2) + . . . + w(vj−1) is due to cost

incurred in traveling the extra edge (vj , vi) for each vertex in {v1,v2, . . . , vj−1}. Ver-

tices vj ,vj+1, . . . , vi−1 are adjacent to vi due to the property of proper interval graphs.

Hence they contribute a cost of w(vj) + . . . + w(vi−1). The total cost di(P
1
vi
) =

dj(P
1
vj

) + w(v1) + w(v2) + . . . + w(vi−1). 2

From the above Lemma, it follows that the computation of di(P
1
vi

) ∀i takes O(n) time.

Lemma 3.4.2 ∀vi ∈ V and ∀2 ≤ k ≤ |V |,

di(P
k
vi
) =















Min
∀vj |vj<vi,(vj ,vi)∈E

{di(P
k−1
vj

vi)} if such vj’s exist

∞ otherwise

Also di(P
k−1
vj

vi)= dj(P
k−1
vj

) + w(vj+1) + w(vj+2) . . . + w(vi−1).

Proof: Proof of the first statement follows from the definition of di(P ). In the second

statement of lemma, dj(P
k−1
vj

) is the sum of the costs due to vertices v1,v2 . . . vj .

Vertices vj+1, vj+2 . . . vi−1 contribute the cost equal to the sum of their respective

weights as they are at a distance one from P k−1
vj

vi and hence the proof. 2
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3.4.1 Finding the core path:

We shall initially compute di(P
l
vi

) ∀vi which is the cost of P l
vi

in Gi using Algorithm

1. But we need their costs with respect to graph G. For a path P l
vi

, we have not

added the costs due to vertices vi+1, vi+2, . . . , vn. Now, it is easy to see that d(P l
vi
)

= di(P
l
vi

) + d′
i(P

1
vi
). Therefore we require d′

i(P
1
vi

) for each vi ∈ V . But d′
i(P

1
vi
) can

be calculated in O(n) time ∀v ∈ V by following a procedure analogous to the one

specified in Lemma 3.4.1. After computing d(P l
vi

) ∀1 ≤ i ≤ n, we find the minimum

of d(P l
vi
) ∀1 ≤ i ≤ n. The path corresponding to this minimum cost is the core path

of the graph.

Algorithm 1 : Algorithm to compute the core path of length l in a proper interval

graph

Require: A proper interval graph G = (V, E) with proper interval ordering

v1,v2,v3 . . . vn.

Compute di(P
1
vi

) ∀vi as discussed in Lemma 3.4.1.

Compute d′
i(P

1
vi

) ∀vi similar to the procedure discussed in Lemma 3.4.1.

for length=2 to l do

for each vertex vi, ∀1 ≤ i ≤ n. do

di(P
length
vi

) =















Min
∀vj |vj<vi,(vjvi)∈E

{di(P
length−1
vj

vi)} if such vj ’s exist

∞ otherwise

end for

end for

for i = 1 to n do

d(P l
vi
) = di(P

l
vi

) + d′
i(P

1
vi

).

end for

Compute Mincost = Min
1≤i≤n

d(P l
vi

)

Output the path corresponding to Mincost

Theorem 3.4.3 Algorithm 1 outputs the core path of length l in a proper interval

graph in O(l|E|) time.
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Proof: The algorithm uses Lemma 3.4.2 to compute the values of d(P l
vi
) and then

finds the minimum cost path by finding Min
1≤i≤n

d(P l
vi
). Hence the correctness follows.

Time Complexity: The algorithm performs utmost deg(vi) computations to compute

the value of di(P
length
vi

) for each i and each value of length. Therefore the algorithm

does l(deg(v1) + deg(v2) + · · · + deg(vn)) = O(l|E|) computations. Additionally it

takes O(|V |) time to find the minimum among |V | elements. Hence, the total time

taken is O(|V | + l|E|) = O(l|E|) for connected graphs. 2
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CHAPTER 4

Core Path in Threshold Graphs

In this chapter, we solve the core-path problem in threshold graphs by providing a

polynomial time algorithm that runs in O(l|E|) time. We assume that G has ar-

bitrarily positive vertex weights and unit edge weights. As we saw in chapter 2,

every threshold graph is a split graph and hence V (G) can be partitioned such that

V = X + Y where X is an independent set and the graph induced by Y is a clique.

Let x1, x2, . . . , x|X| be the vertices of X and y1, y2, . . . , y|Y | be the vertices of Y , such

that deg(x1) ≤ deg(x2) ≤ · · · ≤ deg(x|X|) ≤ deg(y|Y |) ≤ deg(y|Y |−1) ≤ · · · ≤ deg(y1).

We define the following ordering on the vertices of X and Y : x1 < x2 < · · · < x|X|

and y1 < y2 < · · · < y|Y |.

The set of vertices adjacent to a vertex u is denoted by N(u). N [u] = N(u) ∪ {u},

is the closed neighborhood of u. By Definition, N(x1) ⊆ N(x2) ⊆ . . . N(x|X|) and

N [y1] ⊇ N [y2] ⊇ . . . N [y|Y |]. Let L(xi) and R(xi) be the vertices with smallest and

largest index in N(xi) for any xi ∈ X and let L(yi) and R(yi) be the vertices with

smallest and largest index in N(yi) ∩ X for any yi ∈ Y in the order defined above.

4.1 NP-Completeness of core path problem in edge-weighted threshold

graphs

PROBLEM B

INSTANCE: A complete split graph, L, K

QUESTION: Is there a path P of length utmost L satisfying d(P ) ≤ K ?



Theorem 4.1.1 Problem B is NP-Complete.

Proof: We will prove the NP-Completeness of problem B by reducing it from the

problem of Hamiltonian path in bipartite graphs. The problem of finding a Hamilto-

nian path in a bipartite graph G = (X, Y, E) is known to be NP-Complete [6]. We

construct a complete split graph G′ = (X ′, Y ′, E ′) from G as follows : X ′ = X ∪ a,

Y ′ = Y ∪ b and E ′ = E ∪ Enew where Enew = {(xi, yj)|(xi, yj) /∈ E, xi ∈ X, yj ∈ Y }

∪ {(a, y)|y ∈ Y ′} ∪ {(b, x)|x ∈ X ′} ∪ {(u, v)|u, v ∈ Y ′}. In G′, we assign a weight of

|V | to all edges e ∈ Enew and unit weights to all edges e ∈ E ′ −Enew. We assign unit

weights to all the vertices. We set L = |V | − 1 and K = 2|V |.

We now have to establish that G has a Hamiltonian path iff G′ has a path of length

utmost L and cost utmost K.

Suppose G had a Hamiltonian path P , then the path P in G′ will have a length of

|V | - 1 and d(P ) = 2|V | .

Suppose G′ had a core path of length utmost |V | − 1 and d(P ) ≤ 2|V |, then it will

imply that no edge e ∈ Enew was selected in the core path for otherwise, length(P ) ≥

|V |. This means that the path comprises only of the vertices from X ∪ Y and edges

from E. Also the path should have been of length |V | - 1 else d(P ) ≥ 2|V | + 1 (2|V |

due to vertices a and b, and at least 1 due to vertices in V ). Therefore we have a path

of length |V | - 1 comprising only of vertices from X ∪ Y and edges from E, which is

nothing but a Hamiltonian path in the graph G. 2

Corollary 4.1.2 We have proved the NP-Completeness of the core-path problem in

complete split graphs. Since every complete split graph is a threshold graph, it follows

that the problem is NP-Complete for threshold graphs.
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4.2 Ordered Paths

A path P is said to be ordered iff P = xa1
yb1xa2

yb2 . . . xak
(ybk

ybk+1
ybk+2

. . . ybr
if

they exist) such that xa1
< xa2

< · · · < xak
, yb1 < yb2 < · · · < ybr

or P =

yb1xa1
yb2xa2

. . . ybk
xak

(ybk+1ybk+2
ybk+3

. . . ybr
if they exist) such that xa1

< xa2
< · · · <

xak
and yb1 < yb2 < · · · < ybr

. For every ordered path P , let αr(P ) denote the path

obtained by taking the first r edges of the ordered path P . In case, the path does

not contain r edges, then αr(P ) = ⊥. We define d(⊥) = ∞. Also, d(αr(P )v) = ∞,

when αr(P ) = ⊥, where αr(P )v denotes the concatenation of αr(P ) and vertex v.

The following lemma relates every path with an ordered path with same vertex set

Lemma 4.2.1 In a threshold graph, for every path P , there exists an ordered path Q

such that V (P )=V (Q).

Proof: Let VX(P ) = {xa1
, xa2

, . . . , xak
} and VY (P ) = {yb1 , yb2, . . . , ybr

} such that

xa1
< xa2

< · · · < xak
and yb1 < yb2 < · · · < ybr

. Note that k ≤ r + 1.

First we will prove using induction that,

if k = r + 1, then (xai
, ybi

) ∈ E ∀1 ≤ i ≤ k − 1 and

if k < r + 1, then (xai
, ybi

) ∈ E ∀1 ≤ i ≤ k.

Base case: i = 1

Suppose (xa1
, yb1) /∈ E, then because xa1

∈ P , we have that (xa1
, ybj

) ∈ P for j > 1.

But this will mean that (xa1
, yb1) ∈ E due to the threshold graph property, which is

a contradiction.

By induction hypothesis, we will assume that (xai
, ybi

) ∈ E ∀1 ≤ i ≤ t - 1.

We should now prove that (xat
, ybt

) ∈ E. Assume on the contrary that (xat
, ybt

) /∈ E.

This will imply that (xat
, ybj

) /∈ E ∀j ≥ t and (xai
, ybt

) /∈ E ∀1 ≤ i ≤ t. So all the

edges of the path P incident on {xa1
, xa2

, . . . , xat
} should be incident on {yb1 , yb2 ,

. . . , ybt−1
}. Now, we know that, even if both the single degree vertices of the path P

are in X, the degree sum of xa1
, xa2

, . . . , xat
for the edges in path P is 2t - 2.

But | (ybj
, xai

) ∈ P, 1 ≤ j ≤ t− 1, 1 ≤ i ≤ t | ≤ 2(t− 1)− 1 = 2t-3, i.e. the maximum

number of edges between {yb1, yb2, . . . , ybt−1
} and {xa1

, xa2
, . . . , xat

} in the path P
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is 2(t - 1) - 1 = 2t - 3. The 2(t - 1) term is due to the t - 1 vertices yb1 , yb2, . . . ,

ybt−1
each of degree two. We have subtracted 1 for the following reason. For the

path to be connected, at least one of the vertices in {xat+1
, xat+2

, . . . , xak
} ∪ {ybt

,

ybt+1
. . . ybr

} should be adjacent to at least one of the vertices in {xa1
, xa2

, . . . xat
}

∪ {yb1 , yb2, . . . ybt−1
}. But since we have assumed that (xat

, ybt
) /∈ E, we have that

(xai
, ybj

) /∈ E ∀1 ≤ i ≤ t and j ≥ t. Hence at least one of the vertices of {yb1, yb2 ,

. . . , ybt−1
} is adjacent to at least one of the vertices in {xat+1

, xat+2
, . . . , xak

} ∪ {ybt
,

. . . , ybr
} in the path P . So we have subtracted one from 2(t - 1). As 2t - 2 > 2t -

3 the degree sum does not match, leading to a contradiction. Therefore (xat
, ybt

) ∈ E.

Due to the inclusion property, (xai
, ybi

) ∈ E will imply that (xai+1
, ybi

) ∈ E ∀1 ≤ i ≤ k

- 1. This will prove that there exists an ordered path Q = xa1
yb1xa2

yb2 . . . xak
(ybk

ybk+1
. . . ybr

if they exist) in the graph. 2

4.3 Finding the cost of any ordered path:

Remark 4.3.1 Given any ordered path P , VX(P ) = {xa1
,xa2

,. . . , xak
} and VY (P ) =

{yb1,yb2,. . . , ybr
} where k ≤ r + 1 and xa1

< xa2
< · · · < xak

, yb1 < yb2 < · · · < ybr
,

we have that,

1. For all vertices yi ∈ Y -VY (P ), d(yi, P ) = 1 as Y is a clique.

2. For all vertices xi ∈ X-VX(P ), if xa1
< xi, then d(xi, P )=1 and if xi < xa1

,

then d(xi, P ) ≤ 2 due to the existence of the path xiy1xa1
( as y1 is a universal

vertex). In the latter case if L(yb1) ≤ xi < xa1
, then d(xi, P )=1. Otherwise

d(xi, P )=2.

3. If VX(P ) = ∅, then ∀xi satisfying x1 ≤ xi < L(yb1), d(xi, P ) = 2 and ∀xi

satisfying L(yb1) ≤ xi, d(xi, P ) = 1.

We define the following:

1. W (G) =
∑

∀v∈V

w(v).
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2. W (P ) =
∑

∀v∈V (P )

w(v) for any path P .

3. U(xi) = {v ∈ X|v < xi}.

4. WU(xi) =
∑

v∈U(xi)

w(v).

5. UAdj(xi, yj) = {v ∈ X|(v < xi and vyj ∈ E)}.

6. WUAdj(xi, yj) =
∑

v∈UAdj(xi,yj)

w(v).

7. USUM(xi, yj) =
∑

v∈U(xi)

min(d(v, xi), d(v, yj))w(v).

By the above definitions and Remark 4.3.1, we have the following Lemma.

Lemma 4.3.2 1. WU(x1) = 0, WU(xi) = WU(xi−1) + w(xi−1).

2. WUAdj(xi, yj) = WU(xi) - WU (L(yj)).

3. USUM(xi, yj) = 2WU(L(yj)) + WUAdj(xi, yj).

The above values can be computed for all (xi, yj) ∈ E in O(|E|) time.

Proof: From equation 1 of the lemma, we can compute WU (xi) ∀xi ∈ X in (O|V |)

time.

From equation 2 of the lemma and from the precomputed values of WU , we can com-

pute WUAdj(xi, yj) ∀(xi, yj) ∈ E in O(|E|) time.

We shall prove the third equation of the above lemma now. While calculating

USUM(xi, yj), we have to add the cost incurred by all the vertices of X above xi

in reaching (xi, yj). The vertices of X that are above L(yj) incur a cost of two and

the total cost is thus 2WU(L(yj)). The vertices that are in between L(yj) and xi

(including L(yj)) incur a cost of one and their cost is WUAdj(xi, yj).

From the third equation and from the precomputed values of WU and WUAdj , we can

compute USUM(xi, yj) ∀(xi, yj) ∈ E in O(|E|) time.

So the overall time taken is O(|V | + |E|) which is O(|E|) for connected graphs. 2

As we form the path, we can compute W (P ) for any path P . We show a method to

do this in Lemma 4.4.2.
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Lemma 4.3.3 For any ordered path P , the cost of the path d(P ) can be computed in

O(1) time after O(|E|) preprocessing.

Proof: We claim that d(P ) = W (G) - W (P ) - WU(xa1
) + USUM(xa1

, yb1), where

(xa1
, yb1) is the first edge of the ordered path P . W (G) - W (P ) - WU(xa1

) accounts

for the cost of all vertices except vertices in U(xa1
). USUM(xa1

, yb1), accounts for

the cost due to vertices in U(xa1
).

Also, note that if the path P does not contain any x ∈ X, then in the above equation

for d(P ), we set xa1
= L(yb1) where yb1 is the vertex of least index in the ordered

path. 2

4.4 Finding the core path:

4.4.1 Algorithm

Let Gij be a graph induced by the vertices {x1, x2, . . . , xi} and {y1, y2, . . . , yj}.

Remark 4.4.1 For every edge (x, y) ∈ E let pathl
xy denote the path with (x, y) as its

last edge such that

1. The path is ordered and it is of length l.

2. It is the minimum cost ordered path of length l with (x, y) as its last edge.

As noted by Remark 4.4.1, we have to find pathl
xy ∀xy ∈ E.

1. Let P l
xiyj

denote an ordered path of length l and of minimum cost among all

ordered paths of length l in Gij with (xi, yj) as the last edge and yj being the

vertex of degree one in the path P .

2. Let P l
yjxi

denote an ordered path of length l and of minimum cost among all

ordered paths of length l in Gij with (xi, yj) as the last edge and xi being the

vertex of degree one in the path P .

From P l
xiyj

and P l
yjxi

, we can compute pathl
xiyj

which is defined such that d(pathl
xiyj

)

= Min{d(P l
xiyj

), d(P l
yjxi

)}. Let P l
yiyj

be an ordered path of length l and of minimum
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cost among all ordered paths of length l in G with (yi, yj) as the last edge and yj

being the degree one vertex. We first find Min1 = Min
(x,y)∈E

d(pathl
xy) and hence the

path corresponding to that cost. We then find Min2 = Min
(yi,yj)∈E|i<j

d(P l
yiyj

) and the

corresponding path. We have put in the restriction i < j because from our definition

of ordered path it follows that an ordered path cannot have (yi, yj) as the last edge

such that yj is the vertex of degree one in the path and j < i. Finally we find

Mincost = Min{Min1, Min2}. The path corresponding to Mincost will yield the

core path of length l in a threshold graph.

P 1
xiyj

= (xi, yj),P
1
yjxi

= (yj, xi), P 1
yiyj

= (yi, yj) and their costs can be computed using

Lemma 4.3.3. We give the dynamic programming equations and the Algorithm below.

Also note that to compute d(P ) we need W (P ) which is given as a part of Lemma

4.4.2.

The following equations can be used to find the costs of P q
xiyj

, P q
yjxi

, P q
yjyi

,∀q ≥ 2.

Lemma 4.4.2 In graph Gij ∀1 ≤ i ≤ |X| and ∀1 ≤ j ≤ |Y | and (xi, yj) ∈ E(G) we

have that,

d(P q
xiyj

) =















Min
∀(yk ,xi)∈E,k<j

d(P q−1
ykxi

yj) if such yk’s exist

∞ otherwise

(4.1)

=











Min{d(P q−1
yj−1xi

yj), d(αq−1(P
q
xiyj−1

)yj)} if j > 1 and (xi, yj−1) ∈ E

∞ otherwise

(4.2)

d(P q
yjxi

) =















Min
∀(xk,yj)∈E,k<i

d(P q−1
xkyj

xi) if such xk’s exist

∞ otherwise

(4.3)

=











Min{d(P q−1
xi−1yj

xi), d(αq−1(P
q
yjxi−1

)xi)} if i > 1 and (xi−1, yj) ∈ E

∞ otherwise

(4.4)
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In graph G ∀1 ≤ i ≤ |Y | and ∀1 ≤ j < i such that (yj, yi) ∈ E(G) we have that

d(P q
yjyi

) = Min{ Min
∀(yk ,yj)∈E,k<j

d(P q−1
ykyj

yi), Min
∀(xk,yj)∈E

d(P q−1
xkyj

yi)} (4.5)

Note that in the above equation, such a xk or yk will always exist due to the threshold

graph property.

When i > j + 1

d(P q
yjyi

) = d(αq−1(P
q
yjyj+1

)yi) (4.6)

The weights of the corresponding paths can be computed from the following equations.

W (P q−1
ykxi

yj) = W (P q−1
ykxi

) + w(yj), W (P q−1
xkyj

xi) = W (P q−1
xkyj

) + w(xi),

W (P q−1
ykyj

yi) = W (P q−1
ykyj

) + w(yi), W (P q−1
xkyj

yi) = W (P q−1
xkyj

) + w(yi)

Proof: The proof for equations (4.1), (4.3), (4.5) and the equations for computing

the weights follow from their respective definitions. So we have to prove (4.2), (4.4)

and (4.6). We will first prove (4.2) and the proof for (4.4) will follow from that.

Claim: d(αr−1(P
r
xiyj−1

)yj) = Min
∀(yk ,xi)∈E|k<j−1

d(P r−1
ykxi

yj)

It is clear that if the above claim is established, then equations (4.2) and (4.1) will

become the same and thus (4.2) is proven.

Let αr−1(P
r
xiyj−1

) be such that it has (yt, xi) as the last edge.

⇒ d(P r−1
ytxi

yj−1) = Min
∀(yt′ ,xi)∈E|t′<j−1

d(P r−1
yt′xi

yj−1)

⇒ d(P r−1
ytxi

) = Min
∀(yt′ ,xi)∈E|t′<j−1

d(P r−1
yt′xi

)

⇒ d(P r−1
ytxi

yj) = Min
∀(yt′ ,xi)∈E|t′<j−1

d(P r−1
yt′xi

yj)

which is precisely the statement of our claim.

We will now prove equation (4.6)

Claim : d(αq−1(P
q
yjyj+1

)yi) = Min{ Min
∀(ykyj)∈E,k<j

d(P q−1
ykyj

yi), Min
∀(xkyj)∈E

d(P q−1
xkyj

yi)}
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If the above claim is established, equations (4.6) and (4.5) will become the same and

thus (4.6) is proven.

Case 1 : Let αq−1(P
q
yjyj+1

) be such that it has (xt, yj) as its last edge.

⇒ d(P q−1
xtyj

yj+1) = Min{ Min
∀(yk ,yj)∈E,k<j

d(P q−1
ykyj

yj+1), Min
∀(xkyj)∈E

d(P q−1
xkyj

yj+1)}

⇒ d(P q−1
xtyj

) = Min{ Min
∀(yk ,yj)∈E,k<j

d(P q−1
ykyj

), Min
∀(xkyj)∈E

d(P q−1
xkyj

)}

⇒ d(P q−1
xtyj

yi) = Min{ Min
∀(yk ,yj)∈E,k<j

d(P q−1
ykyj

yi), Min
∀(xkyj)∈E

d(P q−1
xkyj

yi)}

But this is precisely the statement of the claim.

Case 2 : Let αq−1(P
q
yjyj+1

) be such that it has (yt, yj) as its last edge The proof

in this case is similar to case 1. Hence proved. 2

Theorem 4.4.3 The Algorithm 2 computes the core path of a threshold graph in

O(l|E|) time.

Proof: The algorithm first computes the values of d(pathl
xy) for each edge (x, y) ∈ E

and d(P l
yiyj

) ∀(yi, yj) ∈ E using Lemma 4.4.2. It then computes the minimum cost

path by finding Min { Min
(yi,yj)∈E|i<j

d(P l
yiyj

), Min
(x,y)∈E

d(pathl
xy)} and hence the correctness

follows.

Time complexity:For a given length and a given edge (xi, yj) or (yj, xi) ∈ E, the

algorithm takes O(1) time to compute the value of d(P length
xiyj

) or d(P length
yixj

). Therefore

to compute the value of d(P l
xiyj

) and d(P l
yixj

) for all edges (xi, yj) and (yi, xj) ∈ E,

it takes O(l|E|) time. Also for a given length and a given edge (yj, yi) ∈ E, the

algorithm takes O(1) time to compute d(P length
yjyi

) when i > j +1. When i = j +1, the

algorithm takes utmost deg(yj) time to compute d(P length
yjyi

). But there are only |Y |-1

edges (yj, yi) that satisfy i = j + 1 and hence the total time taken for these edges is

utmost deg(y1) + deg(y2) + · · · + deg(y|Y |−1) which is utmost O(|E|). Therefore to

compute the value of d(P l
yjyi

) for all edges (yj, yi) ∈ E, it takes O(l|E|) time. 2
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Algorithm 2 : Algorithm to compute the core path of length l in a threshold graph.

Require: A Threshold graph G = (V, E) with ordering {x1, x2 . . . x|X|} and

{y1, y2 . . . y|Y |} .

Compute d(P 1
xiyj

), d(P 1
yjxi

) and d(P 1
yiyj

) ∀i, j.

for length=2 to l do

for i = 1 to |X| do

for y = L(xi) to R(xi) do

Compute d(P length
yxi

) by using equation (4.4)

end for

end for

for i=1 to |Y | do

for x = L(yi) to R(yi) do

Compute d(P length
xyi

) by using equation (4.2)

end for

end for

for i = 1 to |Y |-1 do

d(P length
yiyi+1

) = Min{ Min
∀(yk ,yi)∈E,k<i

d(P length−1
ykyi

yi+1), Min
∀(xk,yi)∈E

d(P length−1
xkyi

yi+1)}

end for

for i=3 to |Y | do

for j = 1 to i − 2 do

d(P length
yjyi

) = d(αlength−1(P
length
yjyj+1

)yi)

end for

end for

end for

Compute d(pathl
xiyj

) = Min{d(P l
xiyj

), d(P l
yjxi

)} ∀(xi, yj) ∈ E

Compute Min1 = Min
(x,y)∈E

d(pathl
xy)

Compute Min2 = Min
(yi,yj)∈E|i<j

d(P l
yiyj

)

Mincost = Min{Min1, Min2}

Output the path corresponding to Mincost
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CHAPTER 5

Conditional Core in Threshold Graphs

5.1 Introduction

In this chapter, we consider a minor variant of the core path problem − the conditional

core problem. In this problem, it is required to locate a path shaped facility in the

network under the condition that some facilities have already been located. Here, we

solve the conditional core problem in threshold graphs. We define S to be the set of

facilities that have already been located. The new facility that is to be located has

to be a path that does not include any of the vertices in S.

The objective here is to minimize d(P ) =
∑

v∈V

(d(v, P ), d(v, S))w(v). For all vertices

v ∈ S, we assign w(v) = 0.

We use here the same approach as for the core path problem in threshold graphs i.e.

for each edge, we find the ordered path of least cost and of length l, which ends at

that edge. From these values, we compute the conditional core path by choosing the

path of minimum cost. The only differences in the definition of notations that we

make here are,

1. The definition of d(P )

2. The definition of USUM(xi, yj).

We present below a method to compute the value of USUM(xi, yj) under the new

definition. All other notations mean the same according to their definition and usage

in the previous chapter.



5.2 Conditional Core

We recall the following definitions from the previous chapter.

1. W (G) =
∑

∀v∈V

w(v).

2. W (P ) =
∑

∀v∈V (P )

w(v) for any path P .

3. U(xi) = {v ∈ X|v < xi}.

4. WU(xi) =
∑

v∈U(xi)

w(v).

5. UAdj(xi, yj) = {v ∈ X|(v < xi and vyj ∈ E)}.

6. WUAdj(xi, yj) =
∑

v∈UAdj(xi,yj)

w(v).

For the definition of USUM we make the following modification.

7. USUM(xi, yj) =
∑

v∈U(xi)

min(d(v, xi), d(v, yj), d(v, S))w(v).

Additionally, we define the following quantity.

8. TOSUB(xi) =
∑

v∈U(xi),d(v,S)=1

w(v).

Lemma 5.2.1 1. TOSUB(x1) = 0.

2. TOSUB(xi) =











TOSUB(xi−1) + w(xi−1) if d(xi−1, S) = 1

TOSUB(xi−1) otherwise

3. USUM(xi, yj) = 2 ∗ WU(L(yj)) − TOSUB(xi) + WUAdj(xi, yj)

Proof: The proof for equation on TOSUB(xi) follows from definition. We will prove

the equation for USUM(xi, yj). For computing USUM(xi, yj), we need to add the

cost incurred by vertices that are in WU(xi) and adjacent to yj, and the cost incurred

by those vertices that are in WU(xi) but not adjacent to yj. The cost incurred by

those vertices that are in WU(xi) and adjacent to yj, is WUAdj(xi, yj). Among the

vertices that are in WU (xi) but not adjacent to yj, those vertices that are adjacent to

a vertex in S incur a cost of 1, and those that are not adjacent to any vertex in S,

incur a cost of 2. This value is captured by 2*WU(L(yj)) - TOSUB(xi). 2
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From now on, we follow the same procedure to compute the conditional core path, as

was done to compute the core path i.e. with the above definition of USUM(xi, yj),

we can use the same formulas and algorithms as for the core path problem to compute

the conditional core path in threshold graphs.

Lemma 5.2.2 The cost of any ordered path d(P ) can be computed in O(1) time,

after (O|E|) preprocessing.

Proof: We claim that d(P ) = W (G) − W (P ) − WU(xa1
) + USUM(xa1

, yb1), where

(xa1
, yb1) is the first edge of the ordered path P . W (G) - W (P ) - WU(xa1

) accounts

for the cost of all vertices except vertices in U(xa1
). USUM(xa1

, yb1), accounts for

the cost due to vertices in U(xa1
).

Also, note that if the path P does not contain any x ∈ X, then in the above equation

for d(P ), we set xa1
= L(yb1) where yb1 is the vertex of least index in the ordered

path. 2

Since we require that the path located, should not contain any vertex v ∈ S, we

have to run the algorithm provided in previous chapter on each component of V −S.

If vertices in S are removed from V , the graph can either remain connected or be

disconnected. In case the graph becomes disconnected and has t(> 1) components,

because of the properties of a threshold graph, it follows that, of these t components

t−1 components are single vertices in X. So if at all, a path of length l were to exist,

it must be in the remaining component. Let us call this component Ct and let V ′ and

E ′ denote respectively the set of vertices and the set of edges in component Ct.

Let X ′ = {x′: x′ ∈ X∩Ct} and let Y ′ = {y′: y′ ∈ Y ∩Ct}. Let x′
1, x

′
2, . . . , x

′
|X′| denote

the vertices of X ′ arranged according to the order in which they appear in the order-

ing x1 < x2 < · · · < x|X| which we defined for vertices of X and let y′
1, y

′
2, . . . , y

′
|Y ′|

denote the vertices of Y ′ arranged according to the order in which they appear in the

ordering y1 < y2 < · · · < y|Y | which we defined for vertices of Y .

The following equations can be used to find the costs of P q

x′

iy
′

j
, P q

y′

jx′

i
, P q

y′

jy′

i
,∀q ≥ 2.

They are analogous to what was stated for computing these quantities for threshold
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graphs in the previous chapter. But we state them below for the sake of completeness.

Lemma 5.2.3 In graph G′
ij ∀1 ≤ i ≤ |X ′| and ∀1 ≤ j ≤ |Y ′| and (x′

i, y
′
j) ∈ E ′(G)

we have that,

d(P q

x′

iy
′

j
) =















Min
∀(y′

k
,x′

i)∈E,k<j
d(P q−1

y′

k
x′

i
y′

j) if such y′
k’s exist

∞ otherwise

(5.1)

=











Min{d(P q−1
y′

j−1
x′

i
y′

j), d(αq−1(P
q

x′

iy
′

j−1

)y′
j)} if j > 1 and (x′

i, y
′
j−1) ∈ E

∞ otherwise

(5.2)

d(P q

y′

jx′

i
) =















Min
∀(x′

k
,y′

j
)∈E′,k<i

d(P q−1
x′

k
y′

j
x′

i) if such x′
k’s exist

∞ otherwise

(5.3)

=











Min{d(P q−1
x′

i−1
y′

j
x′

i), d(αq−1(P
q

y′

jx′

i−1

)x′
i)} if i > 1 and (x′

i−1, y
′
j) ∈ E

∞ otherwise

(5.4)

In graph G ∀1 ≤ i ≤ |Y ′| and ∀1 ≤ j < i such that (y′
j, y

′
i) ∈ E ′(G) we have that

d(P q

y′

jy′

i
) = Min{ Min

∀(y′

k
,y′

j)∈E′,k<j
d(P q−1

y′

k
y′

j
y′

i), Min
∀(x′

k
,y′

j)∈E′

d(P q−1
x′

k
y′

j
y′

i)} (5.5)

Note that in the above equation, such a x′
k or y′

k will always exist due to the threshold

graph property.

When i > j + 1

d(P q

y′

jy
′

i
) = d(αq−1(P

q

y′

jy′

j+1

)y′
i) (5.6)

We compute the conditional core path by executing Algorithm 3 below. The proof

of correctness is identical to the proof given to the core path algorithm for threshold

graphs in the previous chapter.
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Algorithm 3 : Algorithm to compute the core path of length l in a threshold graph.

Require: A Threshold graph G′ = (V ′, E ′) with ordering {x′
1, x

′
2 . . . x′

|X′|} and

{y′
1, y

′
2 . . . y′

|Y ′|} .

Compute d(P 1
x′

iy
′

j
), d(P 1

y′

jx′

i
) and d(P 1

y′

iy
′

j
) ∀x′

i ∈ X ′andy′
j ∈ Y ′.

for length=2 to l do

for i = 1 to |X ′| do

for y′ = L(x′
i) to R(x′

i) do

Compute d(P length

y′x′

i
) using equation (5.4)

end for

end for

for i=1 to |Y ′| do

for x′ = L(y′
i) to R(y′

i) do

Compute d(P length

x′y′

i
) using equation (5.2)

end for

end for

for i = 1 to |Y ′|-1 do

d(P length

y′

i
y′

i+1

) = Min{ Min
∀(y′

k
,y′

i)∈E′,k<i
d(P length−1

y′

k
y′

i
y′

i+1), Min
∀(x′

k
,y′

i)∈E′

d(P length−1
x′

k
y′

i
y′

i+1)}

end for

for i=3 to |Y ′| do

for j = 1 to i − 2 do

d(P length

y′

jy′

i
) = d(αlength−1(P

length

y′

jy′

j+1

)y′
i)

end for

end for

end for

Compute d(pathl
x′

iy
′

j
) = Min{d(P l

x′

iy
′

j
), d(P l

y′

jx′

i
)} ∀(x′

i, y
′
j) ∈ E ′

Compute Min1 = Min
(x′,y′)∈E′

d(pathl
x′y′)

Compute Min2 = Min
(y′

i,y
′

j)∈E′|i<j
d(P l

y′

iy
′

j
)

Mincost = Min{Min1, Min2}

Output the path corresponding to Mincost
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CHAPTER 6

Conclusion

In this report, we have solved the core path problem in proper interval graphs and

threshold graphs by giving polynomial time algorithms for both. Additionally, we

have established the NP-Completeness of the core path problem in the above classes

of graphs, when arbitrary positive, real weights are assigned to edges and unit weights

to vertices. The central theme in solving both of these problems is in identifying an

ordering among vertices of the graph. This enables us to reduce the search space of

the problem from exponential to polynomial. With the help of this ordering among

vertices, dynamic programming equations were established to obtain the core path

efficiently.

On the other hand, in higher classes of graphs like permutation graphs, where such

an ordering of vertices is not found, it is not possible to use this approach to find

the core path. The most interesting open problem in this domain is that, in interval

graphs and permutation graphs, the complexity of the longest path problem is still

unresolved. Therefore the existence of a path of length l is unresolved. Consequently,

the core path problem is open in these classes of graphs.



References

[1] Stephen Alstrup, Peter W. Lauridsen, Peer Sommerlund, and Mikkel Thorup.

Finding cores of limited length. WADS ’97: Proceedings of the 5th International

Workshop on Algorithms and Data Structures, pages 45–54, 1997.

[2] Ronald Becker, Isabella Lari, Andrea Scozzari, and Giovanni Storchi. The loca-

tion of median paths on grid graphs. Annals of Operations Research, 150(1):65–

78, 2007.

[3] Ronald I. Becker, Yen I. Chang, Isabella Lari, Andrea Scozzari, and Giovanni

Storchi. Finding the l-core of a tree. Discrete Appl. Math., 118(1-2):25–42, 2002.
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