
On Conditional Covering Problem

Balasubramanian Sivan, S. Harini and C. Pandu Rangan

Abstract. The Conditional Covering Problem (CCP) aims to locate facilities
on a graph, where the vertex set represents both the demand points and the
potential facility locations. The problem has a constraint that each vertex can
cover only those vertices that lie within its covering radius and no vertex can
cover itself. The objective of the problem is to find a set that minimizes the
sum of the facility costs required to cover all the demand points. An algorithm
for CCP on paths was presented by Horne and Smith (Networks, 46(4):177185,
2005). We show that their algorithm is wrong and further present a correct
O(n3) algorithm for the same. We also propose an O(n2) algorithm for the
CCP on paths when all vertices are assigned unit costs and further extend
this algorithm to interval graphs without an increase in time complexity.

Mathematics Subject Classification (2000). Primary 05C85; Secondary 90C39.

Keywords. Conditional Covering Problem, Facility Location, Total Domina-
tion Problem, Paths, Interval Graphs.

1. Introduction

Consider a simple, undirected, connected graph G = (V, E). The vertex set V de-
notes the set of sites / demand points that must be covered by some facility and
facilities must be located only on the vertices of the graph. Each vertex i ∈ V is
associated with a positive cost of locating a facility at i, denoted by c(i). Each
edge (i, j) is associated with a positive length eij . Let Dij be the shortest distance
between i and j. Each vertex i ∈ V , is associated with a positive covering radius
Ri such that, when we locate a facility at i, all the vertices within a distance of Ri

from i (except i itself) are covered by i, i.e. all the vertices in the set {j|Dij ≤ Ri

and j 6= i} are covered(No facility can cover itself). A set S ⊂ V covers all the
vertices in the set {j| ∃ i ∈ S and Dij ≤ Ri}.

The objective of the Conditional Covering Problem, CCP, is to minimize the sum
of the costs of the facilities required to cover all the vertices in V . A Conditional

2 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

Covering set or CCS, is a set of vertices which covers all the vertices of the graph.
The cost of a set S of vertices is given by c(S) =

∑

i∈S

c(i). The CCP aims to find a

CCS S, that minimizes c(S).

In this paper, we give a counter example for the algorithm given in [5] for solving
CCP on paths and provide a corrected O(n3) algorithm for the same in Section 2.
Additionally, when all the vertices are assigned the same cost (taken to be unity
without loss of generality), we give an O(n2) algorithm to solve the CCP on paths
in Section 3 and show how to extend this algorithm to interval graphs without any
increase in time-complexity in Section 4. Since, the algorithm proposed in [5] to
solve CCP on paths is incorrect, it can be seen that the extension of the algorithm
to solve the CCP in star-graphs and trees given in [4] is also incorrect.

The CCP arises as an underlying graph theoretic problem in many real life facility
location problems. Consider the problem of locating rescue centers in a district.
Each potential site is associated with a covering radius and a cost of constructing
a facility there. Also no rescue center can help the site at which it is located in case
of a calamity at that site. Hence every facility should be covered by another facility.
This problem can be modeled as CCP on a graph. CCP can similarly be used to
model distribution centers and demand points where transhipment between distri-
bution centers is required [2]. In [1], an application involving the strategic location
of facilities having minimum and maximum coverage radii such as missile defense
systems is discussed.

The CCP is a generalized version of the Total Dominating Set problem. Let A ⊂ V
and B ⊂ V be two sets of vertices. A dominates B if every vertex in B -A is ad-
jacent to at least one vertex in A; A totally dominates B if every vertex in B is
adjacent to at least one vertex in A. A is called a dominating set of the graph if A
dominates V and is called a totally dominating set if it totally dominates V . The
Total Dominating Set problem is a special case of the CCP when Ri = 1, ∀i and
all the edge lengths eij and facility location costs c(i) are unity. Since the problem
of finding the minimum Total Dominating Set in general graphs has been proved
to be NP-Complete in the strong sense [9], it follows that CCP is NP-Complete
on general graphs.

The CCP was first introduced by Moon and Chaudhry in [7] where an integer
programming model for this problem was proposed and linear programming re-
laxation methods were applied to them. In [2], the authors consider seven greedy
heuristics for solving CCP and provide computational results for the same. In [8],
Moon and Papayanopoulos discuss a slight variation of CCP on tree graphs. In
this problem, each demand point has a specific radius such that a facility has to
be located in that radii. In [1] Smith et al. present an O(n2) algorithm for CCP
on paths when the covering radius is uniform for all the vertices and arbitrary

On Conditional Covering Problem 3

Figure 1. Diagram to depict the counter example. (c(i), Ri) for
each vertex i is given below the vertex.

positive costs are assigned to vertices. They also present an O(n) time algorithm
when the covering radius is uniform and cost is unity for all vertices of the path.
In [5] Horne and Smith extend the O(n2) algorithm in [1] to the case when vertices
are assigned arbitrary covering radius.

Here, we show that the algorithm in [5] is wrong. Let P=123 . . . n be a path graph.
The authors use the following equation to find the cost of the optimal CCS.

z∗ = Min
i∈V,g(i)=n

p(i)

where z∗ is the cost of the optimal CCS, g(i) = Max{k|Dik ≤ Ri} is the highest
indexed vertex that i can cover i.e. the upper-reach of i and p(i) is the cost required
to optimally cover vertices 1 through i, by locating a facility at i and placing
no facilities at vertices i + 1, i + 2, . . . n. Consider the path in Figure 1. Their
algorithm will consider the p(i) values for all the vertices that have an upper-reach
equal to n and choose the minimum among them. In this case, vertices 3, 5 and 6
have an upper-reach equal to n i.e. g(3) = g(5) = g(6) = 6. Hence the algorithm
will compute the values p(3), p(5), p(6) and declare the minimum among them
as the cost of optimal solution to CCP. The algorithm used by them to compute
p(i) values, will compute these values as p(3) = p(5) = 6 , p(6) = 8 and hence the
cost of the optimal solution will be declared as 6. However, we can observe that
the set {3, 4} is the optimal CCS with a cost of three.

Their algorithm assumes that in any optimal CCS S, the highest indexed vertex in
S will always cover the vertex n. However, in the above example shown by Figure
1, where the optimal CCS is {3, 4}, the highest indexed vertex among {3, 4} is 4
and still 4 does not cover 6. Instead 6 is covered by 3. Similar techniques are used
by them for solving CCP in extended star and trees in [5, 4] and consequently these
algorithms also fail due to similar reasons. We also note that their algorithms are
incorrect even when all the vertices have unit costs as shown in Figure 2.

4 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

Figure 2. Diagram to depict the counter example when all the
vertex costs are constant. Ri for each vertex i is given below the
vertex. The cost given below each edge denotes the edge weight.
The optimal solution is {3,4} but the algorithm in [5] will not
even output a CCS.

2. Conditional Covering Problem on Paths

Let P be any path graph where V = {1, 2, . . . , n} and E = {(i, i + 1)|1 ≤ i ≤ n − 1}.
The vertices are assigned arbitrary positive costs and the edges are assigned arbi-
trary positive lengths. Let Pi denote the path 123 . . . i.
In this section, we give a polynomial time algorithm for solving the CCP on paths.

2.1. Preliminaries

From now on, we refer any two vertices i and j satisfying i < j as, i being to the
left of j and j being to the right of i. Let (a, b) denote all the vertices in the path
between the vertices indexed a and b not including a and b. Let [a, b] denote all
the vertices in the path between the vertices indexed a and b including a and b.

We borrow the following terminologies from [5]. For every vertex of the path, we
define the upper-reach g(i) of a vertex i as the largest indexed vertex lying within
the covering radius of i i.e. g(i) = Max{k ∈ V |Dik ≤ Ri} and lower-reach of a
vertex i, given by h(i), as defined as the smallest indexed vertex lying within the
covering radius of i i.e. h(i) = Min{k|Dki ≤ Ri}.

The protected cost for vertex i ∈ V , denoted by p(i), is the minimum cost to place
a facility at vertex i and cover vertices 1 through i, with no facilities placed at
vertices i + 1, . . . , n. (The protected cost for vertex 1 is taken to be infinity as it
is not possible to cover 1 as per the requirements of protected cost. Also whenever
it is not possible to meet the requirements of the protected cost for a particular
vertex, we take it to be infinity). The unprotected cost u(i) for vertex i ∈ V is the
minimum cost to locate a facility at vertex i and cover vertices 1 through i − 1,
with no facilities placed at vertices i + 1, . . . , n. For the unprotected cost, vertex i
is not necessarily required to be covered by smaller indexed vertices.

Further, we use the following terminologies from [5] to compute p(i) and u(i) ∀i ∈
V .

On Conditional Covering Problem 5

In order to calculate the protected cost for a vertex i, all vertices between 1 and
i − 1 that can cover vertex i are identified in two separate sets as follows.

GA1(i) = {k ∈ V : k + 1 ≤ i ≤ g(k) and h(i) > k} ∀i ∈ V
GB1(i) = {k ∈ V : k + 1 ≤ i ≤ g(k) and h(i) ≤ k} ∀i ∈ V

The set GA1(i) includes all vertices between 1 and i − 1 that cover vertex i, but
are not covered by vertex i.
The set GB1(i) includes all vertices between 1 and i − 1 that cover vertex i, and
are covered by vertex i.

In order to calculate the unprotected cost for vertex i, all vertices k ∈ V that can,
along with i, cover vertices k + 1 through i − 1, but such that k does not cover i,
are identified in two separate sets as follows.

GA2(i) = {k ∈ V : k + 1 ≤ h(i) ≤ g(k) + 1 ≤ i} ∀i ∈ V
GB2(i) = {k ∈ V : g(k) + 1 ≤ i and h(i) ≤ k} ∀i ∈ V

The set GA2(i) includes all vertices k between 1 and i − 1 such that i and k do
not cover each other, but do cover all vertices k + 1 through i − 1.
The set GB2(i) includes all vertices between 1 and i−1 that are covered by vertex
i, but do not themselves cover vertex i.

2.2. Computing the optimal CCS

We give a property of the optimal solutions to CCP using the following lemma

Lemma 2.1. Consider the CCP for any path Pi. Let r be any vertex such that
g(r) = i and let S∗ be any optimal CCS of Pi. If r ∈ S∗, then atmost one vertex
v ∈ (r, i] will be in S∗.

Proof. Assume on the contrary that there exists an optimal CCS S′ such that
r ∈ S′ and, two vertices j and j′ between r and i are in S′. Assume without loss of
generality that h(j′) > h(j). All the vertices to the right of j′ till i are covered by
r (g(r) = i) and all vertices to the left of j′ till h(j′) are covered by j. Now, it can
be clearly seen that the facility at j′ does not cover any vertex that is not covered
by r and j put together. Hence even with the removal of the facility at j′ all the
vertices of Pi continue to remain covered and consequently we have a solution of
lesser cost which is a contradiction. �

For computing the optimal CCS, we define the following terms:

Let α(k, i) = Min{h(k), h(i)}-1. Let Z∗
j (i) denote the cost of optimally covering

all the vertices in [1, i] by using vertices from [1, j]. We define Z∗
j (i) only when

j ≥ i. Note that Z∗
1 (1) is taken to be infinity. We can use the following recursion

6 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

to compute Z∗
j (i):

Z∗
j (i) = Min

{

Z∗
i (i), Min

k∈[i+1,j]: h(k)≤i
{c(k) + Z∗

i (h(k) − 1)}

}

(1)

Similar to the argument given in Lemma 2.1, we can see that, atmost one vertex
can be chosen from [i+1, j] for optimally covering [1, i] with [1, j]. Hence, we have
just two cases, namely

1. No vertex is chosen from [i + 1, j] : In this case, we have to cover all the
vertices in [1, i] by locating facilities only in [1, i]. The optimal cost for doing
this is Z∗

i (i)
2. Exactly one vertex k is chosen from [i + 1, j] : All the vertices to the right

of h(k) − 1 are covered by the facility at k. So, we have to cover the vertices
in [1, h(k) − 1] by locating facilities only in [1, i]. The optimal cost for doing
this is Z∗

i (h(k) − 1)

Both the above cases have been accounted for in (1)

Clearly Z∗
n(n)(cost of optimally covering vertices [1, n] using vertices [1, n].) is

the cost of the optimal solution to CCP. For computing Z∗
n(n), we can use the

following equation:

Z∗
n(n) = Min

i∈V : g(i)=n

{

p(i), Min
k∈(i,n+1): h(k)≤i and g(k)<n

{c(k) + u(i)}

}

(2)

Consider all the vertices with an upper-reach equal to n (i.e. g(i) = n). Certainly,
a facility must be located in one of these vertices for n to get covered. Because of
Lemma 2.1, it follows that if we locate a facility at any vertex i for which g(i) =
n, we can locate atmost one facility to the right of i. Hence, we have the following
two cases,

1. We choose to locate no facility to the right of i : In this case, we must cover
all the vertices in [1, i] by locating facilities only in [1, i − 1] along with the
facility already located at i. The optimal cost for doing this task is precisely
p(i).

2. We choose to locate exactly one facility k to the right of i (with h(k) ≤ i
because otherwise there is no purpose in choosing k) : We restrict the facility
k to be such that g(k) < n because, the solution with g(k) = n would have
been accounted by the previous case i.e. the case where no facility is placed
to the right of k and g(k) = n and this would have been one of the solutions
considered in the previous case. So, in the present case, we have to cover all
vertices in [1, α(k, i)] by locating facilities in [1, i − 1] along with the facility
already located in i. The optimal cost of doing this task is Z∗

i−1α(k, i)+ c(i).
But in this case, since g(i) > g(k) and i < k, we have h(i) < h(k) and hence
Z∗

i−1α(k, i) + c(i) is the same as u(i). Finally, in such a case we would incur
a cost of u(i) + c(k) as given in (2).

The following two lemmas give the equations to compute p(i) and u(i) recursively.

On Conditional Covering Problem 7

Lemma 2.2. The following equation can be used to compute p(i) when p(k) and
u(k) is known ∀k < i and Z∗

b (a) is known ∀ a, b such that a ≤ b, b ≤ i-1.

p(i) = c(i)+Min

{

Min
k∈GA1(i)

{p(k)} , Min
k∈GA1(i)

{

u(k) + Min
j∈(k,i): h(j)≤k and g(j)<i

{c(j)}

}

,

Min
k∈GB1(i)

{

c(k) + Z∗
k−1α(k, i)

}

}

Proof. Consider all the vertices k that have an upper-reach equal to i(i.e. g(k) = i).
From the definition of protected cost, it follows that a facility must be located at
one of these vertices for i to get covered. Because of Lemma 2.1, it follows that,
we can place atmost one facility to the right of k. Hence, we have the following
two cases.

1. We consider the first case when no facility is placed to the right of k. Vertex
k covers i. Clearly, k ∈ GA1(i) ∪ GB1(i).
If k ∈ GA1(i), the vertex k will be covered by a vertex to its left and k
covers all vertices to its right till i. Hence, we should now cover vertices from
1 through k using vertices 1 through k(Note that a facility has already been
placed at k). We account for all such k ∈ GA1(i) in the equation using the
term, c(i) + Min

k∈GA1(i)
p(k).

If k ∈ GB1(i) then k and i cover all vertices between min(h(i), h(k)) and
i. The vertices 1 through α(k, i) should be covered using vertices from 1 to
k−1, with optimum cost, which is given by Z∗

k−1(α(k, i)). We account for such
k ∈ GB1(i) in the equation using the term Min

k∈GB1(i)
{c(k)+Z∗

k−1(k, i)}+ c(i).

2. We now consider the second case when exactly one facility namely j is placed
to the right of k. Again k covers i. Clearly, k ∈ GA1(i) ∪ GB1(i).
Let k ∈ GA1(i). Clearly, h(j) ≤ k (If h(j) > k the purpose of j is lost)
and g(j) < i (If g(j) ≥ i, such j ∈ GA1(i) and they would get accounted
in the previous case). The only purpose of j is to cover k. Hence 1 through
k − 1 remains to be covered optimally using 1 through k. This can be done
in u(k) cost. Such k ∈ GA1(i) are accounted in the equation using the term

Min
k∈GA1(i)

{u(k) + Min
j∈(k,i): h(j)≤k and g(j)<i

{c(j)}} + c(i).

If k ∈ GB1(i), then any j placed to the right of k will be useful only when j
covers at least one vertex that k does not cover. This means that h(j) < h(k).
But since j > k, it follows that g(j) ≥ g(k) and hence g(j) ≥ i. So j ∈ GB1(i).
Such a solution would have been accounted for in the previous case and hence
we need not redundantly consider such solutions again.

�

Lemma 2.3. The following equation can be used to compute u(i) when p(k) and
u(k) is known ∀k < i and Z∗

b (a) is known ∀ a, b such that a ≤ b, b ≤ i-1.

u(i) = Min

{

p(i), Min
k∈GA2(i)

{p(k)}+c(i), Min
k∈GA2(i)

{

u(k) + Min
j∈(k,i): h(j)≤k and g(j)<h(i)−1

{c(j)}

}

+

8 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

c(i),

Min
k∈GB2(i)

{

c(k) + Z∗
k−1α(k, i)

}

+ c(i)

}

Proof. Sometimes, it might be cheaper to cover i also when covering [1, i−1] than
to leave it uncovered and so we have included p(i) as the first term in the equation
for u(i).

Now we consider the cases where i is left uncovered. Consider all the vertices
k that have g(k) < i and g(k) ≥ h(i) − 1 From the definition of unprotected
cost, it follows that a facility must be located at one of these vertices for every
vertex between k and i to get covered without covering i. Because of Lemma 2.1,
it follows that, we can place atmost one facility to the right of k. Hence, we have
the following two cases.

1. We consider the first case when no facility is placed to the right of k. Clearly,
k ∈ GA2(i) ∪ GB2(i).
If k ∈ GA2(i), the vertex k will be covered by a vertex to its left and k along
with i cover all vertices between them. We account for all such k ∈ GA2(i)
in the equation using the term, c(i) + Min

k∈GA2(i)
p(k).

If k ∈ GB2(i) then k and i cover all vertices between min{h(i), h(k)} and i.
The vertices 1 through α(k, i) should be covered using vertices from 1 to k−1.
The optimum cost for doing this is given by Z∗

k−1(α(k, i)). We account for
such k ∈ GB2(i) in the equation using the term Min

k∈GB2(i)
{c(k)+Z∗

k−1(k, i)}+

c(i).
2. We consider the second case when exactly one facility namely j is placed to

the right of k. Again k and i together cover all the vertices between them. So
k ∈ GA2(i) ∪ GB2(i).
Let k ∈ GA2(i). Clearly, h(j) ≤ k (If h(j) > k the purpose of j is lost)and
g(j) < h(i) − 1 (If g(j) ≥ h(i) − 1, such j would get included in GA2(i)
and they would get accounted in the previous case). The only purpose of j
is to cover k. Hence 1 through k − 1 remains to be covered optimally using 1
through k − 1 along with the facility already placed at k. This can be done
in u(k) cost. Such k ∈ GA2(i) are accounted in the equation using the term

Min
k∈GA2(i)

{u(k) + Min
j∈(k,i): h(j)≤k and g(j)<h(i)−1

{c(j)}} + c(i).

If k ∈ GB2(i), then any j placed to the right of k will be useful only when j
covers at least one vertex that k does not cover. This means that h(j) < h(k).
But since j > k, it follows that g(j) ≥ g(k) and hence g(j) ≥ h(i) − 1. So
j ∈ GB2(i). Such a solution would have been accounted for in the previous
case and hence we need not redundantly consider such solutions again.

�

For each i, we compute p(i), u(i) and Z∗
j (i) ∀j ≥ i in that order. As mentioned

above, Z∗
n(n) gives the optimal cost of CCP on P .

On Conditional Covering Problem 9

2.2.1. Time Complexity: For a given i and j, Z∗
j (i) takes O(j− i) time to be com-

puted. For computing Z∗
j (i) ∀j ≥ i, we need

n
∑

j=i

(j − i) operations. For computing

Z∗
j (i) ∀j ≥ i, 1 ≤ i ≤ n we need

n
∑

i=1

n
∑

j=i

(j − i) = O(n3) operations. Similarly, to

compute each p(i) and u(i) it takes atmost

i
∑

k=1

(i − k) operations. For computing

p(i) and u(i), 1 ≤ i ≤ n we need

n
∑

i=1

i
∑

k=1

(i − k) = O(n3) operations. Thus, the

algorithm takes O(n3) time.

3. Conditional Covering Problem on Paths when the cost is unity

3.1. Preliminaries

In this section, we consider the variation of CCP when each vertex is assigned a
unit cost and arbitrary covering radius and we give an O(n2) algorithm for the
same. Also, we show how this algorithm can be used to solve CCP on interval
graphs in Section 4. Let span(i) = {k|Dik ≤ Ri} ∀i ∈ V . Note that span(i) =
{The set of vertices that i can cover in V (G)} ∪ {i}. A vertex i is said to be a
non-maximal vertex if span(i) ⊂ span(j) for some j ∈ V . Else, i is said to be
a maximal vertex. Let M be the set of maximal vertices and M ′ be the set of
non-maximal vertices in V (G) respectively. (V (G) = M ∪ M ′)

Let S be a CCS of G and let v ∈ S. A vertex v is said to uniquely cover a vertex
u if 6 ∃v′ ∈ S such that v′ covers u. We define a CCS S to be a proper CCS
if every v ∈ S ∩ M ′ uniquely covers some vertex i ∈ S ∩ M which satisfies the
property, span(v) ⊂ span(i) i.e. every non-maximal vertex v in S uniquely covers
some maximal vertex i ∈ S which satisfies span(v) ⊂ span(i). The next Lemma
relates every CCS with a proper CCS.

Lemma 3.1. For every CCS S, on a graph G, there exists a proper CCS S′ such
that c(S′) ≤ c(S).

Proof. Assume S is not proper. Consider every v ∈ S ∩M ′ that does not uniquely
cover any vertex i ∈ M ∩ S such that span(v) ⊂ span(i). We can remove every
such v in S and add a vertex i ∈ M such that span(v) ⊂ span(i) and call the
resultant set S′. Since i was not uniquely covered by v in S, i remains covered in
S′. Any other vertex covered by v in S is now covered by i in S′. So the set S′ still
remains a CCS of G and since every vertex incurs only a unit cost, c(S′) ≤ c(S). (
Note that if i is already present in S, then we would just end up removing a vertex
and no new vertex which is not present in S actually gets added to S′). �

10 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

3.2. Algorithm

For path graphs, we can see that, span(i) = {k|h(i) ≤ k ≤ g(i)}. First, we make
the following remark regarding maximal vertices.

Remark 3.2. 1. For any i ∈ M and j ∈ M ′ if span(j) ⊂ span(i), then i can
cover all vertices in span(j) except i itself.

2. For i, j ∈ M and i < j, g(i) ≤ g(j) and h(i) ≤ h(j).

For any CCS S, we define g(S) = Max{g(i)|i ∈ S} i.e. S cannot cover any vertex j
where j > g(S). Given a proper CCS S, we say that a vertex i is the last maximal
vertex of S, if i ∈ M ∩ S and 6 ∃j ∈ M ∩ S such that j > i. The following lemma
gives the property of g(S) when S is a proper solution.

Lemma 3.3. If S is a proper CCS, then g(S) = g(i) = n, where i is the last
maximal vertex of S.

Proof. Let i be the last maximal vertex of a CCS S. Let us assume on the contrary
that g(i) 6= n and that g(v) = n where v ∈ S ∩ M ′. In any proper CCS S, if
v ∈ S ∩ M ′ then there exists a j ∈ S ∩ M such that span(v) ⊂ span(j) and v
uniquely covers j. Clearly, given such a v and j, g(j) ≥ g(v). Also, since i is the
last maximal vertex, i ≥ j and hence g(i) ≥ g(j) (by the second point of Remark
3.2). Therefore, g(i) ≥ g(j) ≥ g(v) which is a contradiction. �

We will now restrict our search for the optimal CCS for the CCP on the path
P only to the set of proper CCS on the path P . The next Theorem states how
the optimal solution can be obtained by searching among proper solutions. Let
Zi be the minimum cost proper CCS for path P such that i is the last maximal
vertex of the CCS. Note that, this does not mean i is the last vertex in the CCS
corresponding to Zi. There can be a non-maximal vertex after i. Also we observe
that Zi is defined only when i is a maximal vertex and Zi does not exist for some
maximal vertices j ∈ M , when g(j) < n (as a consequence of Lemma 3.3).

Theorem 3.4. The cost of the optimal CCS of P , is given by z∗ = Min
i∈M,g(i)=n

c(Zi).

Proof. We restrict our search for the optimal solution only in the set of proper
CCS of P due to Lemma 3.1. Every proper CCS must have some vertex i ∈ M to
be the last maximal vertex. By definition, Zi is the minimum cost proper CCS for
path P such that i is the last maximal vertex of Zi. Hence, We have to minimize
c(Zi) ∀i ∈ V . Due to Lemma 3.3, g(Zi) = g(i) and Zi is CCS of P only when g(i)
= n. Hence we minimize c(Zi) for all Zi such that g(i) = n to get z∗. �

3.2.1. Calculation of c(Zi): We next describe how to find c(Zi) efficiently for i ∈
M . We define protected and unprotected costs for all the maximal vertices i ∈ M
of the path P denoted by p(i) and u(i) as follows. Let Ai be the minimum cost
proper CCS for the vertices 1 through i such that i is the last maximal vertex
of Ai. The Protected cost p(i) is c(Ai). Let Bi be the minimum cost proper CCS
for the vertices 1 through i − 1 such that i is the last maximal vertex of Bi.

On Conditional Covering Problem 11

The unprotected cost u(i) is c(Bi). Similar to the set Zi, in Ai and Bi too, we
can place a non-maximal vertex even to the right of i, as long as the solution is
proper. The vertex i is necessarily covered by Ai (i is protected by Ai) but may not
be necessarily covered by Bi(i may remain unprotected by Bi). For each i ∈ M ,
we define Qi = {v ∈ M ′|v covers i and span(v) ⊂ span(i)}. The next Lemma
characterizes the vertices which can cover i in Ai.

Algorithm 1 : Algorithm to compute p(i) ∀i ∈ M - {min}

Require: A Path P = 123 . . . n along with Ri, ∀i ∈ V (P) .
/* Preprocessing Step */
Compute g(i), h(i) ∀i ∈ V (P).
Find the sets M and M ′ such that V = M ∪ M ′.
Find GA1(i), GA2(i), GB1(i), GB2(i) and Qi ∀i ∈ M .
/* Dynamic Programming Step */
for i=min + 1 to n do

if i ∈ M then
if (GA1(i) = GB1(i)) = ∅ then

p′(i) = ∞
else

p′(i) = Min{ Min
k∈GA1(i)

p(k), Min
k∈GB1(i)

u(k)} + 1.

end if
if (GA2(i) = GB2(i)) = ∅ and p′(i) = ∞ then

u(i) = ∞
else

u(i) = Min{p′(i), Min
k∈GA2(i)

p(k) + 1, Min
k∈GB2(i)

u(k) + 1}.

end if
if u(i) 6= p′(i) and Qi 6= ∅ then

p(i) = Min{p′(i), u(i) + 1}.
else

p(i) = p′(i).
end if

end if
end for

Lemma 3.5. In Ai, the vertex i should either be covered by a j ∈ M ∩Ai such that
j < i or be uniquely covered by a v ∈ Qi.

Proof. In Ai, let i be covered by a maximal vertex j. By definition of Ai, i is the
last maximal vertex of Ai and hence j < i.
On the other hand, if no maximal vertex covers i, then some non-maximal vertex
v ∈ M ′ ∩Ai must be covering i. If v ∈ M ′ ∩Ai is covering i then v ∈ Qi. (Assume

12 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

v /∈ Qi. Ai is a proper CCS and it would imply the existence of a maximal vertex
which is also covering i contradicting our assumption) Such a v must be uniquely
covering i. To see this, note that Ai is a proper CCS. If v is not uniquely covering
i, it must be uniquely covering some other maximal vertex in Ai. This maximal
vertex will also cover i, contradicting our assumption. Hence the proof. �

We will now give a set of dynamic programming equations for solving p(i) and
u(i) ∀i ∈ M . First, the following Remark will solve them for the base case.
Let min be the least indexed maximal vertex.

Remark 3.6. Clearly h(min) = 1 due to Remark 3.2. Hence Bmin = {min} and
u(min) = 1. To find Amin, we pick a vertex v from Qmin (if Qmin 6= ∅) and
append it to Bmin. So we have Amin = Bmin ∪ {v}. The cost p(min) = 2. If
Qmin = ∅, we set p(min) = ∞ and Amin does not exist for the vertex min. The
correctness of this remark is due to Lemma 3.5.

For all the maximal vertices i ∈ M - {min} we define the following sets. These
definitions are borrowed from [5] but unlike the previous section, where the fol-
lowing sets are defined for all the vertices in V , we define them only on maximal
vertices and further use them to calculate the p(i) and u(i). If these sets do not
exist for any of the maximal vertex, we set them to be null.

1. GA1(i) = {k ∈ M |k + 1 ≤ i ≤ g(k) and h(i) > k}
2. GB1(i) = {k ∈ M |k + 1 ≤ i ≤ g(k) and h(i) ≤ k}
3. GA2(i) = {k ∈ M |k + 1 ≤ h(i) ≤ g(k) + 1 ≤ i}
4. GB2(i) = {k ∈ M |g(k) + 1 ≤ i and h(i) ≤ k}

Let p′(i) be the cost corresponding to the minimum cost proper CCS for the
vertices 1 through i such that i is the last maximal vertex of CCS and i is covered
by a maximal vertex k, k < i. Now, we use the following Theorem to find p(i) and
u(i) for i ∈ M - {min}. There may be some maximal vertices i for which Ai or
Bi may not exist. Ai will not exist when GA1(i) = GB1(i) = ∅ and Bi will not
exist when (GA2(i) = GB2(i)) = ∅ and p′(i) = ∞. In all such cases we will set
p(i) and u(i) to be infinity explicitly in the algorithm. We will now consider only
those cases when Ai and Bi exists and state the following Theorem.

Theorem 3.7. The following are the dynamic programming equations to solve for
p(i) and u(i) ∀i ∈ M - {min}:

p′(i) = Min{ Min
k∈GA1(i)

p(k), Min
k∈GB1(i)

u(k)} + 1. (3)

u(i) = Min{p′(i), Min
k∈GA2(i)

p(k) + 1, Min
k∈GB2(i)

u(k) + 1}. (4)

p(i) =

{

Min{p′(i), u(i) + 1} p′(i) 6= u(i) and Qi 6= ∅

p′(i) otherwise
(5)

On Conditional Covering Problem 13

Proof. We assume that the above equations correctly calculate p(j) and u(j) ∀j ∈
M and j < i. We should prove that p(i) and u(i) are correctly calculated. By
Lemma 3.5, We know that i can be covered in two possible ways. For each of the
two possible ways, we analyze the terms in all the three equations.

1. i is covered by a k ∈ M such that k < i:
p′(i): Clearly, by definition k ∈ GA1(i) ∪GB1(i). For a k ∈ GA1(i), i cannot
cover k and k should be covered by some other vertex. Hence, we take the
protected cost of k for calculations in equation (3). For a k ∈ GB1(i), i covers
k. Hence, we take the unprotected cost of k for calculations in equation (3).
We add a cost one due the facility placed at i.
u(i): A vertex k ∈ GA2(i) is not covered by i and hence we use the protected
cost p(k) in (4). Similarly, a vertex k ∈ GB2(i) is covered by i and hence we
use the unprotected cost u(k) in (4). We add a cost one due to the facility
placed at i. Sometimes, it may be cheaper to cover vertex i than to leave it
uncovered. The optimal cost of doing this is p′(i) and hence we include the
term p′(i) in (4).
p(i): When the i in p(i) is covered by a maximal vertex, the cost is just p′(i).

2. i is uniquely covered by a vertex v ∈ Qi:
p′(i): By definition of p′(i), i is covered by a maximal vertex and hence i
cannot be uniquely covered by a vertex in Q(i) in this case.
u(i): Since it is not necessary to cover i in u(i), we will not choose any non-
maximal vertex v to cover i. This is because, if the solution has to be a
proper solution, then v has to uniquely cover i. But since span(v) ⊂ span(i),
by removing v, all the vertices covered by v except i are still covered by i (i
need not be covered in u(i) anyway). Hence v can be removed.
p(i): If Qi = ∅, this case cannot be considered at all and p(i) = p′(i). We
assume Qi is not empty and we use a v ∈ Qi to cover i uniquely. Now, vertices
1 to i − 1 should be covered using minimum cost and this cost is clearly given
by u(i). So, If Qi is not empty, we can pick a vertex v from it and append it
to Bi. The cost of this new CCS (Bi ∪{v}) of Pi is given by u(i) + 1. Also, if
u(i) = p′(i), then p(i) = p′(i). This is because, u(i) = p′(i) means that in Bi,
i is covered by a maximal vertex and a v ∈ Qi will no longer cover i uniquely
and hence v will not cover any maximal vertices uniquely. Therefore for the
case u(i) = p′(i), we set p(i) = p′(i).

Those vertices i, for which we were able to find a CCS in the second case (when
p′(i) 6= u(i) and Qi 6= ∅), we finally set p(i) = Min{p′(i), u(i) + 1} as in equation
(5). �

Remark 3.6 is used to find the protected and unprotected costs for min. Algorithm
1, uses Theorem 3.7 to find p(i) , u(i) and hence z(i)(if it exists) for all i ∈ M -
{min} and hence the CCS is always a proper CCS. It first does the preprocessing
to calculate all the required values. Then the dynamic programming equations are
used to find the protected and unprotected costs. After calculating these values,
we use Theorem 3.4 to find the cost of the optimal solution for CCP on paths. The

14 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

calculation of GA1(i), GA2(i), GB1(i) and GB2(i) for all i takes O(n2) time. Sim-
ilarly, the dynamic programming step also takes O(n2) time. All other calculations
take linear time. Thus Algorithm 1 runs in O(n2) time.

4. Conditional Covering Problem on Interval Graphs

A graph G is an interval graph if its vertices can be put in one-to-one correspon-
dence with a family F of intervals on the real line such that two vertices are
adjacent in G iff their corresponding intervals have nonempty intersection [3]. F
is known as the intersection model of the graph. Let Ii = [ai, bi] be the interval
corresponding to a vertex i of the graph. We can assume that the set of 2n left
and right end points are distinct for the graph. A graph G is a proper interval
graph, iff no interval is properly contained within another interval of the graph.
Any interval graph is a proper interval graph iff a1 < a2 < a3 < . . . an and
b1 < b2 < b3 < . . . bn.

Consider an interval graph G = (V, E) such that G has unit edge weights. But each
vertex i has an arbitrary positive covering radius value Ri and unit cost values.
We give a O(n2) algorithm to solve CCP on such a graph. But first, we make
the following Remark about CCP on proper interval graphs.(When each vertex
is assigned positive arbitrary covering radius and unit cost.)

Remark 4.1. Consider a proper interval graph. For any two vertices i and j, if
ai < aj and bi < bj then we say that i < j. Such an ordering of vertices of the
proper interval graph is called the proper interval graph ordering. We can observe
that for any vertex i, span(i) = {k|h(i) ≤ k ≤ g(i)}. Remark 3.2 and hence Lemma
3.3 holds correct for proper interval graphs. As a consequence all the algorithms
used for paths hold good in this case also without any modification.

Now, we turn our attention to interval graphs. The first property stated in
Remark 3.2 holds true for any graph with any ordering. However we should prove
that the second property of the Remark 3.2 is valid for the maximal vertices of
the interval graph.
We order all the vertices of the interval graph according to their left endpoints ai

(i.e., i < j iff ai < aj).

Lemma 4.2. If i, j ∈ M such that i < j, then g(i) ≤ g(j) and h(i) ≤ h(j).

Proof. We prove that we will get a contradiction otherwise.
If g(i) ≤ g(j) and h(i) > h(j), then span(i) ⊂ span(j) and i is not maximal
anymore i.e. i /∈ M .
If g(i) > g(j) and h(i) ≤ h(j), then span(j) ⊂ span(i) and j is not maximal
anymore i.e. j /∈ M
If g(i) > g(j) and h(i) > h(j), then we consider two cases.
Case 1: bi < bj. Since i < j, ai < aj . Now, ai < aj and h(i) > h(j) imply that
Rj > Ri. Also bi < bj and g(i) > g(j) imply that Ri > Rj . This leads to a

On Conditional Covering Problem 15

contradiction.
Case 2: bi > bj . Since i < j, ai < aj. Clearly Ij ⊂ Ii. Now, ai < aj and h(i) > h(j)
imply that Rj > Ri. Also since Ij ⊂ Ii, we see that the upper-reach of i can be
reached by j in atmost Ri + 1 steps. But since Rj > Ri, we have Rj ≥ Ri+1 and
hence g(j) ≥ g(i) which is a contradiction. Hence the proof. �

As a consequence of Lemma 4.2, we see that Remark 3.2 and hence Lemma
3.3 hold good for interval graphs. Hence, as stated above for proper interval graphs,
all the algorithms used for paths hold good for interval graphs without any modi-
fication.

5. Conclusion

In this paper, we studied the Conditional Covering Problem on some special classes
of graphs such as paths and interval graphs. We showed that Horne and Smith’s
algorithm[5] for CCP on paths, and its extension to star and trees in [5, 4] is
incorrect and gave a correct O(n3) algorithm for CCP on paths. We also presented
a O(n2) algorithm for CCP on paths when unit cost is assigned to all vertices and
further extended the algorithm to interval graphs without increasing the time
complexity. It is an interesting open problem to see if our O(n3) algorithm for
paths can be extend to stars and trees. Additionally, CCP can be examined on
special classes of graphs such as series-parallel and asteroidal triple free graphs on
which the total domination problem can be solved efficiently [9, 6].

References

[1] Jeffrey B, Goldberg Brian, J.Lunday, and J. Cole Smith. Algorithms for solving the
conditional covering problem on paths. Naval Research Logistics, 52(4):293–301, 2005.

[2] Sohail S. Chaudhry, I. Douglas Moon, and S. Thomas McCormick. Conditional cov-
ering: Greedy heuristics and computational results. Computers & OR, 14(1):11–18,
1987.

[3] M. C Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press New
York, 1980.

[4] Jennifer A. Horne and J. Cole Smith. A dynamic programming algorithm for the
conditional covering problem on tree graphs. Networks, 46(4):186–197, 2005.

[5] Jennifer A. Horne and J. Cole Smith. Dynamic programming algorithms for the condi-
tional covering problem on path and extended star graphs. Networks, 46(4):177–185,
2005.

[6] Dieter Kratsch. Domination and total domination on asteroidal triple-free graphs.
Discrete Applied Mathematics, 99(1-3):111–123, 2000.

[7] I. Douglas Moon and S.S. Chaudhry. An analysis of network location problems with
distance constraints. Management Science, 30:290–307, 1984.

[8] I. Douglas Moon and Lee Papayanopoulos. Facility location on a tree with maximum
distance constraints. Computers & OR, 22(9):905–914, 1995.

16 Balasubramanian Sivan, S. Harini and C. Pandu Rangan

[9] J. Pfaff, R. Laskar, and S.T. Hedetniemi. Linear algorithms for independent domina-
tion and total domination in series-parallel graphs. Management Science, 30:290–307,
1984.

Balasubramanian Sivan
Computer Sciences Department
University of Wisconsin Madison
Wisconsin - 53706, USA
e-mail: bsivan@wisc.edu

S. Harini
Department of Computer Science and Engineering
Indian Institute of Technology Madras
Chennai- 600036, India
e-mail: harini.santhanam@gmail.com

C. Pandu Rangan
Department of Computer Science and Engineering
Indian Institute of Technology Madras
Chennai - 600036, India
e-mail: rangan@iitm.ernet.in

