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Abstract. A core path of a graph is a path P in G that minimizes d(P )
=

∑

v∈V

d(v, P )w(v). In this paper, we study the location of core path

of specified length in special classes of graphs. Further, we extend our
study to the problem of locating a core path of specified length under
the condition that some existing facilities are already located (known as
conditional core path of a graph). We study both the problems stated
above in vertex weighted bipartite permutation graphs, threshold graphs
and proper interval graphs and give polynomial time algorithms for the
core path and conditional core path problem in these classes. We also
establish the NP-Completeness of the above problems in the same classes
of graphs when arbitrary positive weights are assigned to edges.

Keywords: Core path, Conditional core path, Bipartite permutation
graphs, Threshold graphs, Proper Interval graphs.

1 Introduction

The objective of any facility location algorithm in a network is to locate a
site/facility that optimizes some criterion. The criteria that have been most
generally employed are the minimax and minisum criteria. In the minimax
criteria, the distance of the farthest vertex from the facility is minimized. In the
minisum criteria, the sum of the distances of the vertices of the graph from
the facility is minimized. Many practical facility location problems however, in-
volve the location of several facilities rather than just one facility. In particular,
the problem of locating a path-shaped or tree-shaped facility has received wide
attention due to applications in metro rail routing, pipeline planning, laying ir-
rigation ditches etc. When the path to be located is such that it satisfies the
minisum criterion,(i.e the sum of the distances of the vertices of the graph from
the path is minimized) then we call the path a core path which we will define
formally in this section.

Often, it might happen that some facilities have already been located and the
new facilities should be located such that the minisum criterion is optimized
taking into account both the already existing facilities and the newly located
facilities. For example, a district may already be equipped with a gas pipeline and
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we should plan the layout of a new pipeline. Any user can obtain a connection
either from the old or the new pipeline depending on which one is closer to
him. Where should we lay this new pipeline such that it minimizes the sum
of the distances of the users in the district from the pipelines (old and new).
This problem is called the conditional facility location problem. When the new
facility to be established is a path, the problem is known as conditional-core
problem (defined formally later). The network can be assigned vertex and edge
weights. Vertex weights can denote the population of a locality and edge weights
the distance between two localities. In this paper, we study the problem of
locating the core path and conditional core path of a specified length in bipartite
permutation graphs, threshold graphs and proper interval graphs. Specifically,
we give polynomial time algorithms for both the problems in the above classes
of graphs when vertices are assigned arbitrary positive weights and edges are
assigned unit weights. When the edges are assigned arbitrary weights, we prove
the NP-Completeness of both the problems in all the three classes of graphs.

Let G = (V, E) be a simple, undirected, connected, weighted (positive vertex
and edge weights) graph. The length of a path P is defined as sum of weights
of edges in P . Let d(u, v) be the shortest distance between two vertices u and
v. The set of vertices of a path P is denoted by V (P ) and the set of vertices of
V (P ) ∩ X for any set X ⊆ V , is denoted by VX(P ). We extend the notion of
distance between a pair of vertices in a natural way to the notion of distance
between a vertex and a path. The distance between a vertex v and path P is
d(v, P ) = Min

u∈V (P )
d(v, u). If v ∈ V (P ), then d(v, P ) is zero. The cost of a path

P denoted by d(P ) is
∑

v∈V

d(v, P )w(v), where w(v) is the weight of the vertex v.

Definition 1. [9] The Core path or Median path of a graph G is a path P
that minimizes d(P ) .

Definition 2. [8] Let P l be the set of all paths of length l in G. The Core path
of length l of a graph G is a path P ∈ P l where d(P ) ≤ d(P ′) for any path
P ′ ∈ P l.

Let S denote the set of vertices in which facilities have already been deployed.
The conditional cost of a path P denoted by
dc(P ) =

∑

v∈V

min(d(v, P ), d(v, S))w(v), where d(v, S) = Min
u∈S

d(v, u).

Definition 3. Let PS
l be the set of all paths of length l in G such that V (P )∩S =

∅. The Conditional Core path of length l of a graph G is a path P ∈ PS
l

where dc(P ) ≤ dc(P ′) for any path P ′ ∈ PS
l .

Previous work: So far, the core-path problem has been analyzed only in trees
and recently in grid graphs. In [5] Hakimi, Schmeichel, and Labb’e have given
64 variations of the above problem and have also proved that finding the core
path is NP-Hard on arbitrary graphs. In [9] Morgan and Slater give a linear time
algorithm for finding core path of a tree with arbitrary edge weights. In [7], [8]
Minieka et al. consider the problem of finding the core path with a constraint on
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the length of the path. Their work considers locating path or tree shaped facilities
of specified length in a tree and they present an O(n3) algorithm. In [10] Peng
and Lo extend their work by giving a O(nlogn) sequential and O(log2(n)) parallel
algorithm using O(n) processors for finding the core path of a tree(unweighted)
with a specified length. In [3] Becker et al. give an O(nl) algorithm for the
unweighted case and a O(nlog2n) for the weighted case for trees. [2] presents a
study of the core path in grid graphs. In [1] Alstrup et al. give an O(n min{logn
α(n, n), l}) algorithm for finding the core path of a tree. The conditional location
of path and tree shaped facilities have also been extensively studied on trees. In
[11], Tamir et. al. prove that the continuous conditional median subtree problem
is NP-hard and they develop a fully polynomial time approximation scheme for
the same. They also provide an O(n log2 n) algorithm for the discrete conditional
core path problem with a length constraint and an O(n2) algorithm for the
continuous conditional core path problem with a length constraint. They also
study the conditional location center paths on trees. Further, in [13], Wang et al
improve the algorithms in [11] for both discrete and continuous conditional core
path problem with a length constraint. For the discrete case, they presented an
O(n log n) algorithm and for the continuous case they presented an O(n log n
α(n, n)) algorithm.

The rest of the paper is organized as follows. In section 2, we give a polyno-
mial time algorithm to solve the core path problem in vertex weighted bipartite
permutation graphs. In section 3, we solve the conditional core problem in vertex
weighted bipartite permutation graphs. We prove the NP-Completeness of the
core path problem in bipartite permutation graphs with arbitrary edge weights
in Appendix. We also briefly present our solution for core and conditional core
path problems in unit edge weighted threshold graphs and proper interval graphs
in Appendix.

2 Core Path of a Bipartite Permutation Graph with
Vertex Weights

2.1 Preliminaries

Let π = (π1,π2,. . . πn) be a permutation of the numbers 1, 2 . . . n. The graph
G(π) = (V, E) is defined as follows: V ={1, 2 . . . n} and (i, j) ∈ E ⇐⇒ (i −
j)(π−1

i − π−1
j ) < 0 where π−1

i is the position of number i in the sequence π. An
undirected graph G is called a permutation graph iff there exists a permutation
π such that G is isomorphic to G(π). A graph is a bipartite permutation graph,
if it is both a bipartite graph and a permutation graph. We assume that the
bipartite permutation graph G = (X, Y, E) has unit edge weights and arbitrary
vertex weights. We present a polynomial time algorithm for solving core path
problem on G. The next definition is taken from [6].

Definition 4. A strong ordering of the vertices of a bipartite graph G=(X, Y, E)
consists of an ordering <x of X and an ordering <y of Y such that for all (x, y),
(x′, y′) ∈ E, where x, x′ ∈ X and y, y′ ∈ Y , x <x x′ and y′ <y y imply (x, y′)
and (x′, y) ∈ E.
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From now on, we drop the subscripts for <x and <y and denote them by <,
interpreting the meaning from the context. For any two vertices a and b that are
in the same partition of the bipartite graph, if a < b, we say a is above b and b
is below a. Given an edge (xi, yj), we call the union of all the vertices above xi

and above yj as above the edge (xi, yj).

[6] A bipartite graph B is a bipartite permutation graph iff it admits a strong
ordering.

Ordered Paths: Any path P = v1v2v3v4v5v6 . . . of a bipartite permutation
graph G is said to be an ordered path iff v1 < v3 < v5 < . . . and v2 < v4 <
v6 < . . . . The following lemma relates every path with an ordered path of same
vertex set.

Lemma 1. In a bipartite permutation graph, for every path P , there exists an
ordered path Q, such that V (P )=V (Q).

Proof in Appendix.

In the above lemma, since V (P )=V (Q), it follows that d(P )=d(Q) and dc(P ) =
dc(Q). So, for every path there is an ordered path with the same cost and the
same set of vertices. Therefore, we consider only ordered paths henceforth.

2.2 Algorithm

Brief overview of the algorithm: The naive technique searches the set of all
paths in the graph to find the core path. Since we have proved that for every
path there exists an ordered path with the same set of vertices, we can cut down
on the search space for paths to ordered paths alone. The set of vertices adjacent
to a vertex u is called the neighborhood of u, and is written as N(u). Let L(u)
and R(u) be the vertices with smallest and largest index in N(u) according to
the strong ordering. Let P = v1v2v3 . . . vk be an ordered path in G. Then the
edge (v1, v2) is called the first edge of P and the edge (vk−1, vk) is called the
last edge of P . For every ordered path P , let αr(P ) denote the path obtained by
taking the first r edges of the ordered path P . In case, the path does not contain
r edges, then αr(P ) = ⊥. We define d(⊥) = ∞. Also, d(αr(P )v) = ∞, when
αr(P ) = ⊥, where αr(P )v denotes the concatenation of αr(P ) and vertex v.

Remark 1. For every edge (x, y) ∈ E let pathl
xy denote the path with (x, y) as

its last edge such that it is the minimum cost ordered path of length l with (x, y)
as its last edge. The Min

(x,y)∈E
d(pathl

xy) will yield us the cost of core path of length

l of the graph G.

Remark 2. Let Gij be a graph induced by the vertices {x1, x2, . . . , xi} and {y1,
y2, . . . , yj}. The ordered path with (xi, yj) as the last edge cannot contain a
vertex v such that xi < v or yj < v. Hence for every edge (xi, yj), it is sufficient
to consider the ordered paths in Gij and not the entire graph G.
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Finding the cost of any ordered path: Here we give a method to com-
pute the cost of any ordered path efficiently. For all edges, (xi, yj) ∈ E we
define, U(xi, yj) = {v ∈ V |(v < xi or v < yj)}, WU (xi, yj) =

∑

v∈U(xi,yj)
w(v),

UAdj(xi, yj) = {v ∈ V |(v < xi and (v, yj) ∈ E) or (v < yj and (v, xi) ∈ E)},
WUAdj(xi, yj) =

∑

v∈UAdj(xi,yj)
w(v),

USUM(xi, yj) =
∑

v∈U(xi,yj)
min(d(v, xi), d(v, yj))w(v).

Intuitively, U(xi, yj) denotes the set of all vertices that are above (xi, yj) as per
the strong ordering. WU (xi, yj) is the sum of the weight of vertices in the set
U(xi, yj). The set UAdj(xi, yj) is the set of all vertices that are above (xi, yj)
and are adjacent to either xi or yj. USUM(xi, yj) denotes the sum of the costs
incurred by all the vertices above (xi, yj) in either reaching xi or yj(whichever is
closer). When all terms given above are preprocessed and stored for all the edges,
the cost of any path P can be computed in O(1) time. We know that WU (x1, y1)
= 0. We can compute WU (xi, yj) and WUAdj(xi, yj) for all (xi, yj) ∈ E in O(|E|)
time using the equations:

WU (xi, yj) =

{
WU (xi−1, yj) + w(xi−1) if (xi−1, yj) ∈ E

WU (xi, yj−1) + w(yj−1) if (xi−1, yj) /∈ E but (xi, yj−1) ∈ E

WUAdj(xi, yj) = WU (xi, yj) − WU (L(yj), L(xi)).

Lemma 2. The following equation can be used to compute the value of
USUM(xi, yj) iteratively

Let x′ = L(yj) and y′ = L(xi)
USUM(xi, yj) = USUM(x′, y′) + WU (x′, y′) + WUAdj(xi, yj).

Proof. We will first give an intuitive sketch of the proof. USUM(xi, yj) is the
cost incurred by all the vertices above (xi, yj) (i.e. vertices in U(xi, yj)) in reach-
ing the nearer of xi or yj . This cost can be viewed as a sum of two terms :
the cost due to vertices adjacent to and above (xi, yj) (i.e. in UAdj(xi, yj))
and the cost due to vertices above (x′, y′) (i.e. in U(x′, y′)). All the vertices in
UAdj(xi, yj) are at a distance of one from xi or yj and hence the cost incurred
by them is WUAdj(xi, yj). All the vertices in U(x′, y′) have to reach one of x′

or y′ to reach xi or yj. The cost incurred to reach x′ or y′ is USUM(x′, y′).
From (x′, y′), all the vertices have to travel a distance of one to reach xi or yj

and hence the cost incurred is WU (x′, y′). This completes the proof. We give an
inductive proof below.

By definition, we know that USUM(x1, y1) = 0. We can verify by inspection
that the expression for USUM is true for (x1, y) ∈ E ∀y satisfying L(x1) ≤ y ≤
R(x1). By induction hypothesis we assume that USUM is correctly computed
for all (xi, y), 1 ≤ i ≤ r − 1 and y = L(xi) to R(xi). We prove the claim for the
edge (xr, yj) where yj = L(xr) and the proof follows similarly for the case where
L(xr) < yj . By definition,

USUM(xr, yj) =
∑

v∈U(xr,yj)
min(d(v, xr), d(v, yj))w(v).
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USUM(xr, yj) =
∑

v∈U(x′,y′)
min(d(v, xr), d(v, yj))w(v) + WUAdj(xr , yj).

where x′ = L(yj) and y′ = L(xr).
For every v ∈ U(x′, y′), min(d(v, x′), d(v, y′)) ≤ min(d(v, x′′), d(v, y′′)) where

x′ < x′′ and y′ < y′′. This statement implies each vertex v ∈ U(x′, y′) can reach
one of (xr or yj) only through one of (x′ or y′). Therefore we have that,

∑

v∈U(x′,y′)
min(d(v, xr), d(v, yj))w(v) = USUM(x′, y′) + WU (x′, y′).

The cost WU (x′, y′) is attributed to the extra distance of length one per vertex
in U(x′, y′) to reach xr or yj.

For all edges (xi, yj) ∈ E we define,B(xi, yj) = {v ∈ V |(xi < v or yj < v)},
WB(xi, yj) =

∑

v∈B(xi,yj)
w(v), BAdj(xi, yj) = {v ∈ V |(xi < v and (v, yj) ∈ E) or

(yj < v and (v, xi) ∈ E )}, WBAdj(xi, yj) =
∑

v∈BAdj(xi,yj)
w(v),

BSUM(xi, yj) =
∑

v∈B(xi,yj)
min(d(v, xi), d(v, yj))w(v).

Similar to USUM , we can compute BSUM value for every (x, y) ∈ E in
O(|E|) time. We define,

W =
∑

v∈V

w(v) and W (P ) =
∑

v∈V (P )
w(v) for any path P .

W can be computed in O(|V |) time and we give a method to calculate W (P ) in
Lemma 4.

The following Lemma gives a method to compute cost of any ordered path.

Lemma 3. For any ordered path P , the cost d(P ) can be computed in O(1) time
after O(|E|) preprocessing.

Proof. Let xa and xb be the vertices of VX(P ) such that they have respectively
the smallest and largest index in the strong ordering. Similarly, let ya and yb be
the vertices of VY (P ) such that they have respectively the smallest and largest
index in the strong ordering. We claim that

d(P ) = USUM(xa, ya)+BSUM(xb, yb)+W −W (P )−WB(xb, yb)−WU (xa, ya)

Using the above formula, d(P ) can be computed in O(1) time after O(|E|) pre-
processing. For v ∈ {X ∪ Y } - V (P ) - B(xb, yb) - U(xa, ya) , we know that
d(v, P ) = 1. For all of these vertices, the total cost incurred is W - W (P ) -
WB(xb, yb) - WU (xa, ya). Value USUM(xa, ya) accounts ∀v ∈ U(xa, ya) and
BSUM(xb, yb) accounts ∀v ∈ B(xb, yb). Note that we still have not calculated
W (P ) which is necessary for calculating d(P ). We specify the method to compute
this in Lemma 4.

Finding the core path: As noted by Remark 1, we have to find pathl
xy ∀xy ∈

E. Let P l
xiyj

denote an ordered path of length l and of minimum cost among all
ordered paths of length l in Gij with (xi, yj) as the last edge and yj being the
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vertex of degree one in the path P . Let P l
yjxi

denote an ordered path of length
l and of minimum cost among all ordered paths of length l in Gij with (xi, yj)
as the last edge and xi being the vertex of degree one in the path P . From P l

xiyj

and P l
yjxi

, we can compute pathl
xiyj

which is defined such that d(pathl
xiyj

) =
Min{d(P l

xiyj
), d(P l

yjxi
)}. The path corresponding to the cost Min

xy∈E
d(pathl

xy) will

yield a core path of length l of graph G.
P 1

xiyj
= xiyj , P 1

yjxi
= yjxi and their costs can be computed using Lemma 3.

We now give, equations to compute the path of least cost of length r from the
knowledge of the same for length r−1. Initially we give the equations that follow
from definition and later we give a dynamic programming equation to compute
the same efficiently.

Lemma 4. The following equations can be used to find the costs of P r
xiyj

, P r
yjxi

∀r ≥ 2. In graph Gij , ∀(xi, yj) ∈ E(Gij) we have that,

d(P r
xiyj

)=

⎧
⎨

⎩

Min
∀(yk,xi)∈E,k<j

d(P r−1
ykxi

yj) if such yk’s exist

∞ otherwise
(1)

=

{
Min{d(P r−1

yj−1xi
yj), d(αr−1(P r

xiyj−1
)yj)} if j > 1 , (xi, yj−1) ∈ E

∞ otherwise
(2)

d(P r
yjxi

)=

⎧
⎨

⎩

Min
∀(xk,yj)∈E,k<i

d(P r−1
xkyj

xi) if such xk’s exist

∞ otherwise
(3)

=

{
Min{d(P r−1

xi−1yj
xi), d(αr−1(P r

yjxi−1
)xi)} if i > 1 , (xi−1, yj) ∈ E

∞ otherwise
(4)

d(pathr
xiyj

) = Min{d(P r
xiyj

), d(P r
yjxi

)} (5)

Also, for calculating the cost d(P ) of a path P , we need W (P ). This can be
calculated while we construct the path using the following equations

W (P r−1
ykxi

yj) = W (P r−1
ykxi

) + w(yj), W (P r−1
xkyj

xi) = W (P r−1
xkyj

) + w(xi)

Proof. We will prove equations (1) and (2). The proofs for (3) and (4) follow
analogously.

Proof for (1)
(1) states that we can the compute minimum cost path of length r having (xi, yj)
as the last edge, by considering minimum cost paths of length r−1 having (yk, xi)
as last edge ∀k < j. We choose the minimum cost path among them, and ap-
pend it with (xi, yj) to get the required path. Note that yk’s are chosen such
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that k < j because ∀k > j, the path is not ordered and we have proved that it is
enough to search the set of all ordered paths to find the core path. The number
of operations in (1) to compute d(P r

xiyj
) can be as high as degree(xi)

Proof for (2)
For computing d(P r

xiyj
), we note that it is just enough to consider the path of

least cost of length r − 1 having (yj−1, xi) as the last edge and the path of least
cost of length r − 1 having (yk, xi) as the last edge ∀ k < j − 1. The latter term
is d(αr−1(P r

xiyj−1
)yj). Note that this value would have already been computed

while computing d((P r
xiyj−1

)yj) and hence no special effort is required now.

Claim. d(αr−1(P r
xiyj−1

)yj) = Min
∀(yk,xi)∈E|k<j−1

d(P r−1
ykxi

yj)

It is clear that if the above claim is established, then equations (2) and (1) will
become equivalent and (2) is proven.

Let αr−1(P r
xiyj−1

) be such that it has (yt, xi) as the last edge.

⇒ d(P r−1
ytxi

yj−1) = Min
∀(yt′ ,xi)∈E|t′<j−1

d(P r−1
yt′ xi

yj−1)

⇒ d(P r−1
ytxi

) = Min
∀(yt′ ,xi)∈E|t′<j−1

d(P r−1
yt′ xi

)

⇒ d(P r−1
ytxi

yj) = Min
∀(yt′ ,xi)∈E|t′<j−1

d(P r−1
yt′ xi

yj)

which is precisely the statement of our claim. Thus the number of operations if
(2) is used to compute d(P r

xiyj
) is just two.

Theorem 1. The Algorithm computes the core path of a bipartite permutation
graph in O(l|E|) time.

Proof. The algorithm computes the values of d(pathl
xy) for each edge (x, y) ∈ E

using Lemma 4 and then computes the minimum cost path by finding Min
(x,y)∈E

d(pathl
xy) and hence the correctness follows.

Time complexity: For a given length and a given edge (x, y) or (y, x) ∈ E, the
algorithm takes O(1) time to compute the value of d(P length

xy ) or d(P length
yx ).

Therefore to compute the value of d(P l
xy) and d(P l

yx) for all edges (x, y) and
(y, x) ∈ E, it takes O(l|E|) time. To compute the value of Mincost from these
values, the algorithm takes utmost O(|E|) time.

3 Conditional Core Path of a Bipartite Permutation
Graph with Vertex Weights

In this section, we give a polynomial time algorithm for the problem of find-
ing conditional core path of a bipartite permutation graph G = (X, Y, E)(
G has arbitrary vertex weights and unit edge weights). Let S (⊂ V ) denote
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the subset of vertices of V where the facilities have already been located. As
already defined, the conditional cost of a path P denoted by dc(P ) =∑

v∈V

Min(d(v, P ), d(v, S))w(v), where d(v, P ) = Min
u∈P

d(v, u) and d(v, S) = Min
v′∈S

d(v, v′) ∀v ∈ V .

Computing d(v,S): Let N(S) − S = {v ∈ V − S|(v, u) ∈ E, u ∈ S}. We give
here an efficient method to compute d(v, S) ∀ v ∈ V .

∀ v ∈ S, initialize d(v, S) = 0.
∀ v ∈ N(S) − S initialize d(v, S) = 1.
For all the remaining vertices, initialize d(v, S) = ∞.

We first give a method to find d(xi, S) ∀xi ∈ X . A similar procedure can be used
to find d(yj , S) ∀yj ∈ Y .

1. For every vertex xi, we define two vertices xa
i , xb

i ∈ X ∩ S such that xa
i <

xi < xb
i . Also

– d(xi, x
a
i ) ≤ d(xi, x

′) ∀x′ ∈ X ∩ S and x′ < xi

– d(xi, x
b
i) ≤ d(xi, x

′) ∀x′ ∈ X ∩ S and x′ > xi

2. For every vertex xi, we define two vertices xc
i , xd

i ∈ Y ∩ S such that xc
i <

L(xi) ≤ R(xi) < xd
i . Also

– d(xi, x
c
i ) ≤ d(xi, y

′) ∀y′ ∈ Y ∩ S and y′ < L(xi)
– d(xi, x

d
i ) ≤ d(xi, y

′) ∀y′ ∈ Y ∩ S and y′ > R(xi)

Clearly, if d(xi, S) �= 0 or 1, then d(xi, S) = Min {d(xi, x
a
i ), d(xi, x

b
i ), d(xi, x

c
i ),

d(xi, x
d
i )}. If we find xa

i , xb
i , xc

i and xd
i , we can evaluate the above Min function

and find d(xi, S). We now state two lemmas from [4] as the following Remark.

Remark 3

1. Suppose i < j < k. Then d(xi, xj) ≤ d(xi, xk).
2. Suppose xi is not adjacent to yj or yk, xi < L(yj), and j < k. Then

d(xi, yj) ≤ d(xi, yk).

The above Remark characterizes xa
i to be the maximum indexed vertex in X∩S,

that lie above xi. Similarly, xb
i is the minimum indexed vertex in X ∩ S, that lie

below xi. Also, xc
i is the maximum indexed vertex in Y ∩S, that lie above L(xi)

and xd
i is the minimum indexed vertex in Y ∩ S, that lie below R(xi). We use

the above property to find d(xi, x
a
i ) efficiently for all the vertices. We can find

xa
i , ∀xi ∈ X , using the following code.

1. sup = NIL.
2. For i = 1 to |X | If xi ∈ S then sup = xi. Else xa

i = sup.

From [4] we know that, for a bipartite permutation graph, after O(n2) prepro-
cessing, the value of the shortest distance between any given pair of vertices can
be computed in O(1) time. Hence we can compute d(xi, x

a
i ) ∀xi ∈ X , in O(|X |)

time. Since xc
i = (L(xi))a, we note that d(xi, x

c
i ) = 1 + d(L(xi), (L(xi))a). Sim-

ilarly we calculate all the required values and d(v, S) ∀v ∈ V in O(|V | + |E|)
time.
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Finding the cost of any ordered path: We first set w(v) = 0, ∀v ∈ S because
for any path P , cost due to these vertices is zero and setting w(v) = 0 simplifies
some calculations that follow. We now show that for a path P , the conditional
cost dc(P ) can be calculated using Lemma 3 with a modification to the defini-
tion of USUM and BSUM to comply with the definition of conditional cost of
a path. For all edges, (xi, yj) ∈ E(G) we define,

USUM(xi, yj) =
∑

v∈U(xi,yj)
min(d(v, xi), d(v, yj), d(v, S))w(v)

In order to calculate the value of this newly defined USUM(xi, yj) efficiently,
we define the following terms

τ(xi, yj) = {v : v ∈ U(xi, yj) , d(v, (xi, yj)) < d(v, S)}
TOADD(xi, yj) =

∑

v∈τ(xi,yj)
w(v)

Lemma 5. The following equation can be used to compute USUM(xi, yj) iter-
atively:

USUM(x1, y1) = 0. Let x′ = L(yj) and y′ = L(xi).
USUM(xi, yj) = USUM(x′, y′) + TOADD(x′, y′) + WUAdj(xi, yj).

Proof in Appendix

In order to calculate TOADD(xi, yj) we need some more definitions which we
present below.

Q(xi, yj) = {v ∈ U(xi, yj) : d(v, xi) = d(v, S) and d(v, yj) = d(v, S) + 1}
Also, W (Q(xi, yj)) =

∑

v∈Q(xi,yj)
w(v).

Algorithm 1. Algorithm to compute W (Q(xi, yj))
for all v ∈ V do

for i = 1 to |X| do
for j = 1 to |Y | do

if d(v, xi) = d(v, S) and d(v, yj) = d(v, S)+1 then
W (Q(xi, yj)) = W (Q(xi, yj)) + w(v)

else if d(v, yj) = d(v, S) and d(v, xi) = d(v, S)+1 then
W (Q(yj, xi)) = W (Q(yj, xi)) + w(v)

end if
end for

end for
end for

Lemma 6. Algorithm 1 computes W (Q(xi, yj)) in O(|V |.|E|) time.

Proof. From [4] we know that, for a bipartite permutation graph, after O(n2)
preprocessing, the value of the distance between any given pair of vertices can
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be computed in O(1) time. From this, it immediately follows that the time
complexity of Algorithm 1 is O(|V |.|E|)

Lemma 7. The following equation can be used to compute TOADD(xi, yj) it-
eratively.

TOADD(xi, yj) =

⎧
⎪⎨

⎪⎩

0 if i, j = 1

TOADD(xi−1, yj) + w(xi−1) − W (Q(yj , xi)) + W (Q(yj , xi−1)) if i �= 1, j=index(L(xi))

TOADD(xi, yj−1) + w(yj−1) − W (Q(xi, yj)) + W (Q(xi, yj−1)) otherwise

Proof in Appendix
Note that we compute TOADD(xi, yj) along-side while computing USUM . We
similarly calculate BSUM where

BSUM(xi, yj) =
∑

v∈B(xi,yj)
min(d(v, xi), d(v, yj), d(v, S))w(v).

Lemma 8. For any ordered path P , the conditional cost can be computed in
O(1) time after O(|V ||E|) preprocessing.

Proof. The conditional cost for a path P is given by d(P ) = USUM(xa, ya)
+ BSUM(xb, yb) + W - W (P ) - WB(xb, yb) - WU (xa, ya). Here USUM and
BSUM is as defined in this section. All other definitions is same as given in
Lemma 3 and the proof also follows in exactly same fashion.

Finding the Conditional Core Path: The conditional core path should be
vertex disjoint from S by definition. Let H be the graph induced by V (G) - S. We
ought to search for the conditional core path in H . However, while calculating
the conditional cost of the path, we must use the vertices in the entire graph G.
Note that, we can modify Remark 1 to use conditional cost as follows.

Remark 4. For every edge (x, y) ∈ E(H) let pathl
xy denote the path with (x, y)

as its last edge such that it is the minimum conditional cost ordered path of
length l with (x, y) as its last edge.

Now, we can use the dynamic programming equations given in Lemma 4 on the
graph H (instead of G) to find the conditional core path due to the validity of
Remark 4. But to calculate the conditional cost, we use the definitions stated in
this section and Lemma 8.

Theorem 2. The conditional core path of a bipartite permutation graph can be
computed in O(|V ||E|) time.

4 Conclusion

In this paper, we have presented an O(l|E|) time algorithm for finding the core
path of specific length l in vertex weighted bipartite permutation graphs, thresh-
old graphs and proper interval graphs. We have extended our study of core path
problem to the conditional core path problem on the same graph classes. For
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the conditional core path problem of specified length, we have presented O(l|E|)
time algorithms for threshold and proper interval graphs and O(|V ||E|) time
algorithm for bipartite permutation graphs. In all the three classes of graphs,
due to their inherent property of vertex ordering we were able to conceptualize
the notion of ordered paths. However, such a notion of ordered paths (i.e. for
every path there exists an ordered path of the same vertex set) is not valid on
interval or permutation graphs. Also, the complexity of the longest path problem
is still unresolved in interval graph [12] and thus even the existence of a path
of length l in interval graphs is still unresolved. Therefore, the techniques used
in this paper cannot be directly applied to interval or permutation graphs and
hence the problem of finding core path in them is an interesting open problem
in this direction.
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