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Abstract. We study the design of revenue maximizing mechanisms for sell-
ing nonexcludable public goods. In particular, we study revenue maximizing
mechanisms in Bayesian settings for facility location problems on graphs where
no agent can be excluded from using a facility that has been constructed. We
show that the optimization problem involved in implementing the revenue opti-
mal mechanism is hard to approximate within a factor of Ω(n2−ε) (assuming
P 6= NP ) even in star graphs, and that even in expectation over the valua-
tion profiles, the problem is APX-hard. However, in a relevant special case we
construct polynomial time truthful mechanisms that approximate the optimal ex-
pected revenue within a constant factor. We also study the effect of partially mit-
igating nonexcludability by collecting tolls for using the facilities. We show that
such “posted-price” mechanisms obtain significantly higher revenue, and often
approach the optimal revenue obtainable with full excludability.

Keywords: Revenue maximization, nonexcludable goods, hardness of approxi-
mation, incentive compatibility

1 Introduction

How should a seller maximize his revenue while selling nonexcludable services? As
a representative example, consider the following facility location problem: firms in an
industrial town want to connect their respective warehouses to their outlets with good
road links. But the seller (in this case the construction company that lays the roads)
cannot enforce exclusivity on the roads it lays: once a firm buys a connection between
its warehouse and outlet, the seller cannot exclude others from using those road links.
We study the following two questions in this work. Which potential sites should the
seller choose for laying roads to maximize his own revenue in such nonexcludable
settings? If the seller could enforce partial excludability by collecting tolls for roads,
where only those firms that pay the toll for a road can use it, how much more revenue
can he earn?1

? Part of the work was done while the second and fourth coauthors were visiting Google Re-
search.

1 Note that collecting tolls only enforces partial excludability because every firm that pays the
toll is allowed to use the road, and cannot be excluded.



The Mechanism Design Problem. We model the problem with a graph where every
unordered pair of vertices denotes an agent and every edge denotes the possibility of a
road to be laid between two vertices. We assume that each agent/firm has a nonnegative
private value for getting her pair of vertices connected, drawn independently from a
known distribution. We aim for the design of the optimal mechanism which, given the
value reports of all the agents, selects a set of edges to build roads on and computes
payments to be made by agents so that the expected revenue is maximized (expecta-
tion over the distribution of private values) in equilibrium. We invoke Myerson’s [14]
characterization which states that the expected revenue of any mechanism in a Bayesian
Nash Equilibrium (BNE) is equal to the expected virtual surplus of the agents served,
i.e., the sum of virtual values2 of those agents whose warehouse and outlet are con-
nected in the solution3. This reduces the problem of computing the expected revenue
maximizing mechanism to a pointwise optimization problem: given a profile of values
of all agents, compute the set of edges to build roads on so that the sum of the virtual
values of the agents served is maximized.

The pointwise optimization problem to maximize virtual values is an interesting
graph theoretic problem, which to our knowledge has not been studied before. Given
a graph with a weight on every pair of vertices (the weights represent virtual values,
and thus, could be negative), design an algorithm that selects a subset of edges that
maximizes the sum of the weights of every vertex pair whose endpoints are connected
by the edges selected. If the weights were all positive, clearly the optimal choice for the
seller would be to pick all the edges in the graph. However, weights could be negative.
In particular, while aiming to connect some subset of agents (i.e., vertex pairs), another
subset of agents with negative weights automatically get connected, and these negative
weighted pairs cannot be excluded due to nonexcludability. Deciding on the the set of
edges to select for maximizing the sum of weights of the vertex pairs whose endpoints
are connected is the nontrivial underlying graph theoretic problem.

The Rooted and Unrestricted Versions. We study two versions of the graph theoretic
problem described above. In the unrestricted version, every (unordered) pair of vertices
in the graph is an agent. In the rooted version (which is a special case of the unrestricted
version), a single vertex is designated as root, and only those unordered pairs having
root as one of their vertices are agents. This corresponds to the root being a central
location where all warehouses are located, and other nodes being outlet locations.

Results for Unrestricted Version (Section 3). The natural place to start is to solve the
pointwise optimization problem in graphs presented above. Clearly, any α-approximate
monotone4 solution to the pointwise optimization problem implies an α-approximate

2 The virtual value of an agent is a function of her value and the distribution from which her value
is drawn; it can be negative. When the virtual value function is not monotone, Myerson [14]
applies a fix by considering the ironed virtual value function (see section 2 for more details),
and all our results go through with virtual values replaced by ironed virtual values.

3 Note that Myerson’s mechanism remains revenue optimal in all single-parameter settings re-
gardless of whether or not the good is excludable.

4 In single-parameter settings, a mechanism’s allocation is monotone if fixing the values of
other agents and agent i alone reporting a higher value results in agent i getting served with no
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truthful mechanism to the problem of expected revenue maximization. However, we
show that except for very special cases, pointwise optimization is not possible unless
P = NP . In particular, we show that the pointwise problem is NP-hard to approximate
to within a factor Ω(n2−ε) even on star graphs. For the special case where the under-
lying graph is a path, we give a dynamic program to solve the pointwise optimization.
Thus, for paths, we get the expected optimal revenue with nonexcludability for any
product distribution over agents’ values.

Results for Rooted Version (Section 4). Our results for the rooted version are three-
fold.

1. First, we give a simple polynomial time algorithm for pointwise optimization in
trees—this contrasts with our result that for the unrestricted version the pointwise
problem is hard to approximate beyond a factor of Ω(n2−ε) even for star graphs.

2. Second, as our main result, we give a polynomial time algorithm for optimization in
expectation (over the distribution of values, and hence virtual values) for arbitrary
graphs, when the agents’ valuations are drawn i.i.d.

3. Third, we establish APX-hardness of optimization in expectation for arbitrary graphs,
when the valuations of all agents are independent but not necessarily identical.

Our main result, which is the second point above, is that we design an algorithm that
guarantees a constant factor approximation to the optimal virtual surplus in expectation.
To this end, we extensively use the key (yet simple) property that even though virtual
values can be negative, the expected virtual value of an agent is nonnegative. This sug-
gests the following high-level approach to the problem. Partition agents into a constant
number of sets. Pick a target set at random, and run an algorithm that is a constant factor
approximation for the agents of that set (ignoring other agents). The nonnegativity of
the expected virtual value implies that the contribution from nontargeted sets is nonneg-
ative. Since each set is targeted with constant probability, this implies a constant factor
approximation. We use this approach to solve the abstract edge-weighted version of the
problem (in which edges are agents who derive value from being connected to the root),
and then reducing the original problem to the edge-weighted version. In particular, we
present an algorithm that partitions the edges of any graph into two sets that, loosely
speaking, correspond to edges in well-connected parts of the graph and edges in sparse
cuts of the graph. We show that once we contract the edges in a set (that corresponds to
ignoring their value in the above high level approach), the remaining graph has a nice
structure that allows for constant approximations.

Partial Excludability via Pricing (Section 5). If the seller were allowed to set prices
on edges (i.e., collect tolls), can he get close to the optimal revenue when excludability
is allowed? Typically the optimal revenue with full excludability is much higher than the
optimal revenue with nonexcludability, and it is worthwhile for a profit maximizing firm
to explore this option. In this problem the seller first has to decide which edges to pick to
lay roads on, and decide how to price roads to maximize revenue. We construct a pricing

smaller probability. Monotone allocation is necessary and sufficient for truthfulness, i.e., they
alone lend themselves to truthful payments.
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scheme so that when the value distributions are i.i.d., the seller obtains (for the rooted
version) the optimal revenue possible when full excludability is allowed. Further, if the
distributions are independent but not identical, and satisfy a technical MHR condition5,
we show how to price edges to obtain a 1

logn fraction of the optimal revenue possible
when full excludability is allowed (again for the rooted version). An implication of
these results is that mitigating externalities via tolls is much more remunerative than
aiming for the optimal solution with nonexcludability.

Related Work. Approximating the expected version of a problem that is hard-to-
approximate in the worst case, via exploiting the fact that the expected virtual value
for any distribution is nonnegative is a relatively new idea. To our knowledge, it has
been used only in Haghpanah et al. [10]. Auctions with externality (a notion related
to nonexcludability where an agent’s utility doesn’t just depend on the services he re-
ceived but also on the outcomes for the other agents) have been studied in multiple
flavors before. Settings with positive externality include increased value for having a
telephone or a music player or a new technology if more of your neighbors have them
[15, 11]. A prime and well-studied example for a setting with negative externality is the
sale of contiguous ad slots to two competing businesses [1, 4, 8, 9, 12, 13]. Equilibria
which are surprising at first sight, like no allocation equilibria can result in large rev-
enue for the auctioneer in settings with negative externality [7]. Posted pricings have
often been a mechanism of choice for settings with externalities [3, 2, 5, 11]. The main
difference between these and the posted prices studied in our work (apart from the pres-
ence of nonexcludability in our settings) is that these works allow agent-specific prices,
whereas our setting is more constrained: we place prices on edges that are common for
all agents.

2 Model and Notation

Unrestricted Version. We consider a universe of n potential sites, located on the ver-
tices of a graph, G = (V,E), with m undirected edges. An undirected edge (i, j) ∈ E
means that a link/road connecting sites i and j is allowed (but need not necessarily be
constructed). An agent is an unordered pair of sites (i, j), interested in having some path
constructed between i and j. Thus, there could be up to

(
n
2

)
agents in a mechanism. An

instance I = (G,A, F ) of the problem consists of an undirected graph G, a set A of
agents (represented by a set of pairs of vertices), and a distribution Fi associated with
agent i (distributions are explained below). Sometimes we use i to denote a single site
and sometimes to denote an agent, who is actually a pair of vertices. The context will
make it clear whether i is a single site or a pair of sites.

Rooted version. The rooted version is a special case of the setting described above. A
special vertex r is designated as the root. Only vertex pairs of the form (i, r) are agents,
i.e., the root r is one of the end points of the path desired for every agent.

5 Roughly speaking, this means that the tail of the distribution is no heavier than the exponen-
tial distribution. Many natural classes of distributions like the uniform, exponential, Gaussian
(Normal) distributions satisfy the MHR condition. See Section 2 for a formal definition.
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An outcome o ∈ Ω = {0, 1}m is the set of edges constructed. Agent i has a valua-
tion function vi : Ω → R+ ∪ {0}, which maps outcomes to nonnegative real numbers.
We study mechanisms in the single-parameter setting where the function vi(·) takes
only two values: vi and zero. An agent i has a nonzero value vi if and only if the set of
edges selected contains a path between the two sites she represents, and in this case we
say that agent i was served. Let S denote the set of all feasible sets of agents, i.e., the
set of all sets of agents that can be simultaneously served. Note that this set system S,
is not downward closed: S ∈ S does not necessarily mean that S′ ∈ S for all S′ ⊂ S.
Clearly, the non-downward closedness stems from the inability to exclude agents from
using the roads.

We study mechanisms for this problem in a Bayesian setting, i.e., for every i, the
single parameter vi is assumed to be drawn independently from a publicly known dis-
tribution function Fi. Thus F = F1 × F2 × . . . Fn denotes the product distribution
from which the vector of types v is drawn. The mechanisms in this paper assume the
availability of any expectation defined with respect to F .

A direct revelation mechanism or an auction solicits sealed bids (b1, b2, . . . , bn)
from all the agents, and determines the outcome x = (x1, x2, . . . , xn) and payments
p = (p1, p2, . . . , pn). Each agent i is risk-neutral and has a linear utility ui(b) =
vi · xi(b)− pi(b).

Let (x(·),p(·)) denote a mechanism. When agent i is bidding in the auction, she
knows only her own value vi. A mechanism (x(·),p(·)) is incentive compatible (IC)
if vixi(vi, v−i) − pi(vi, v−i) ≥ vixi(z, v−i) − pi(z, v−i) for all i, z. A necessary and
sufficient condition on x(·) for IC payments to exist is monotonicity: for all i, vi, vi′ ≥
vi, v−i, we have xi(vi, v−i) ≤ xi(vi

′, v−i). Since we focus on the class of IC mecha-
nisms, we have b = v.

Optimal auctions. To solve for optimal auctions, Myerson [14] defined virtual val-
uations for agents as φi(vi) = vi − 1−Fi(vi)

fi(vi)
and proved that the expected payment

of an agent, Evi [pi(vi)], in any truthful mechanism, is equal to her expected virtual
value Evi [φi(vi)xi(vi)] 6. The distribution Fi is said to be regular if the virtual valu-
ation function is monotone. For regular distributions, maximizing virtual values point-
wise results in an incentive-compatible allocation rule and therefore the corresponding
revenue-optimal auction serves that feasible set of agents who maximize virtual value.
For irregular distributions, where maximizing virtual values may result in non-IC allo-
cation rules, Myerson applies a fix by describing a general ironing technique. The iron-
ing procedure converts any virtual valuation function φi(·) to an ironed virtual value
function φ̄i(·) such that maximizing φ̄i(·) pointwise results in an IC allocation rule.

Theorem 1. [14] The revenue optimal auction in single-parameter Bayesian settings
serves the set S of agents where S = argmaxS∈S

∑
i∈S φ̄i(vi). Further, for all values

vi for which φ̄i(vi) remains the same, agent i’s allocation remains the same.

As a corollary, when S contains all possible 2n sets, the revenue optimal auction
puts a price of φ̄−1i (0) for agent i and makes a take-it-or-leave-it offer to each of them.

6 In fact the equality holds even for a specific v−i, i.e., Evi [pi(v)] = Evi [φi(vi)xi(v)].
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Monotone Hazard Rate. A class of distributions that always satisfy the regularity con-
dition described above are the ones which satisfy the monotone hazard rate condition.
A distribution with cdf F satisfies the MHR condition if f(x)

1−F (x) is nondecreasing in
x. The MHR condition holds for many natural classes of distributions like the uniform,
exponential and normal distributions.

Nonnegative Virtual Valuations. An important property of virtual valuations (and
ironed too) is that when the support of the distribution is nonnegative (which is true
in our case since values are nonnegative), the virtual valuation in expectation over an
agent’s distribution is always nonnegative. This property crucially helps us in providing
approximations in expectation, for problems which are very hard to approximate for
every single realization of values.

3 The Unrestricted Version

In this section, we obtain the following results for the unrestricted version of our prob-
lem.

1. A simple polynomial time dynamic program that solves the pointwise problem op-
timally in paths. (see Appendix A.)

2. A hardness result showing that the pointwise problem is hard to approximate within
a factor ofΩ(n2−ε) for any ε > 0 (assuming P 6= NP ) even in stars, i.e., we cannot
generalize the result on paths even to stars (proof in full version).

3. Given that pointwise approximation is ruled out for arbitrary graphs, the only pos-
sible approximation we can hope for is in expectation over values. We show the
APX-hardness of this problem in arbitrary graphs. The reduction resembles the one
given by Haghpanah et al. [10]. In fact, our hardness result holds even for the rooted
version, and hence the proof is presented in Section 4.3 along with other results for
the rooted version.

4 The Rooted Version for i.i.d. Agents

Given the hardness results in Section 3 even for undirected graphs, we consider an
important special case of our problem in this section: there is a designated root node in
an undirected graph, and each nonroot vertex is an agent. Agents values are i.i.d., and
an agent derives value only if there is a path constructed from his node to the root node.
As before, construction of an edge e can happen only if e ∈ G.

4.1 Pointwise Optimization in Trees

In contrast to the unrestricted version where we showed that the pointwise problem in
hard to approximate within a factor of Ω(n2−ε) (assuming P 6= NP ) even in stars,
we show that for the rooted version, we can solve the pointwise problem in polynomial
time in trees. The proof is presented in the full version.
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4.2 Main Result: Optimization in Expectation in Arbitrary Graphs

Next we present a constant-factor approximation algorithm for optimizing the expected
revenue for the rooted, node-weighted version of the problem in arbitrary graphs (the
virtual value of an agent is the weight of the nonroot node of that agent). In Section 4.2
we explain how the problem can be solved on edge-weighted graphs, i.e., agents are
edges, and they get a value when they are connected to the root. This is later used in
Section 4.2 as a subroutine to tackle the vertex-weighted problem.

Edge-Connectivity for the Rooted Version. Given a connected undirected graph, we
show how to partition its edges into two parts such that contracting the former edge
set yields a 3-edge connected subgraph whereas contracting the latter edge set results
in a roulette subgraph—a special series-parallel graph to be defined below. We then
demonstrate that it is possible to solve the problem (approximately) on each of the two
subgraphs, and finally argue that this suffices to obtain a constant-factor approximation
for the general rooted edge-weighted case.

Let us define some notations first. For a set S of edges in a graph G, subgraph G/S
is obtained fromG after contracting all edges S one at a time, where contracting an edge
simply refers to removing the edge and identifying its endpoint vertices. We recursively
define the class of roulette graphs as follows. A simple cycle is a roulette, and so is a
cycle each of whose vertices is replaced by a roulette (with one or two vertices of the
inner roulette taking the place of an original vertex of the cycle). Finally, any graph
whose 2-edge connected components are roulettes is itself a roulette.

Now we can present the main structural lemma that reduces our general problem
into two tractable subproblems.

Lemma 1. There exists a polynomial-time algorithm that, given a graphG(V,E), par-
titions the edge set E into two sets S1 and S2 such that graphs G1 = G/S1 and
G2 = G/S2 are respectively 3-edge connected and roulette.

Proof. Let S1 be the set of all edges in G that belong to a cut of size at most 2. We
note that all cuts of size at most 2 can be found in polynomial time, e.g., using a naı̈ve
brute-force search. Since G1 is obtained by a series of edge contractions, every cut in
G1 represents a cut in G as well. Therefore, since all edges of S1 are contracted in G1,
no cut of size at most 2 is present in G1, hence G1 is 3-edge connected.

On the other hand, every edge in G2 belongs to a cut of size at most 2 in G, hence
in G2. The bridges in G2 do not hurt the roulette structure if the 2-edge connected sub-
graphs of G2 are roulettes. Thus we assume that the graph G2 is 2-edge connected. We
claim that if each of {e1, e2} and {e1, e3} is a cut in G2, then so is {e2, e3}. Therefore,
the edges of G2 form an equivalence class. To see this equivalence relation, it suffices
to focus on the following alternative definition of edge cuts of size 2. In a 2-edge con-
nected graph, two edges e and e′ form a cut of size 2 if and only if the set of cycles
in the graph that contain e is the same as the set of cycles in the graph that contain e′.
Based on this new definition, the two sets of cycles containing e2 and e3 respectively
are both equal to the set of cycles containing e1, and therefore they are equal to each
other as well which means that e2 and e3 form a cut of size 2.
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Therefore, the graph looks like a cycle of this equivalence class (the equivalence
class of e1) where some vertices are replaced by another structure; the same argument
applies to each of these smaller structures, giving rise to the inductive definition of
roulette graphs. We should note that two edges from two of these smaller structures
do not belong to the same equivalence class (they cannot form a cut of size 2), and
therefore each of the other equivalence classes belong to one smaller structure and is not
split between different structures. Thus we can inductively claim each smaller structure
is a roulette graph. ut

The following decomposition lemma serves as the starting point for our 3-approximation
algorithm of the 3-edge connected graph G1.

Lemma 2. There exists a polynomial-time algorithm that finds 3 spanning trees T1, T2,
and T3 in a 3-edge connected graph G such that every edge of G is missing in at least
one of these spanning trees.

Proof. We replace each edge of G by two parallel edges to get the 6-edge connected
graph G2 with the same vertex set. Catlin et al. [6] show, among other things, that
any 2k-edge connected graph has k edge-disjoint spanning trees, while Roskind and
Tarjan [16] show how to find k edge-disjoint spanning trees in a graph (if they exist)
in quadratic time. Therefore, we can find 3 edge-disjoint spanning trees T1, T2, and T3
in G2. Edge-disjointness guarantees that each edge of G can belong to at most two of
these spanning trees. ut

On the other hand, the problem can be solved optimally for roulette graphs. The
intuition behind the algorithm is that roulettes can be shown to have treewidth of at most
two, hence, as are many similar problems on bounded-treewidth graphs, our problem
can be solved via the dynamic-programming method.

Lemma 3. There exists a polynomial-time algorithm that finds the optimal solution for
roulette graphs.

Proof. Let us say we have a cycle decomposition of our roulette graph, which describes
the recursive structure of its 2-edge connected components. Each cycle representing one
equivalence class is called an essential cycle of the graph. Instead of solving the rooted
problem, we consider a slightly more general problem where up to two vertices s, t on
an essential cycle are specified, and these vertices should both appear in the connected
subgraph of the output. At the beginning we are going to have only one vertex s = t
which is the root vertex.

Let us ignore the bridges at this point and assume the graph is 2-edge connected.
Focus on the essential cycle, and imagine that all the recursive structures are contracted
for now. In the resulting graph, the optimal solution looks like a path or it is the entire
cycle. There are polynomially many cases to consider, and we will output the best so-
lution among them. In each case we have a subproblem for each contracted piece if we
decide that the optimal solution passes through or ends at the contracted vertex. Since
the base cases of the induction (i.e., vertices or cycles) are easily solvable, we can ar-
gue inductively that our sligthly more general problem can be solved using a dynamic
program.
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For each bridge connected to the essential cycle, we compute the best solution for
the rooted problem on the other side of the bridge (whose root is the endpoint of the
bridge) and add that to the main solution if its weight plus the weight of the bridge turns
out positive. ut

We conclude this section by putting together the above ideas to obtain a 4-approximation
algorithm for the rooted edge-weighted problem.

Lemma 4. There exists a polynomial-time monotone algorithm that achieves an ap-
proximation factor of 4 for any graph G.

Proof. If the graph is not connected, we can focus on the connected component that
contains the root and disregard the rest of the connected components. Using Lemma 1,
we partition the edges ofG into two parts S1 and S2. We also use Lemma 2 to find three
spanning trees T1, T2, and T3 in graph G1.

We consider four candidate solutions. One solution is the union of S1 and the edges
in tree T1. Since T1 is a spanning tree in G1 = G/S1, the union of T1 and S1 is a
connected spanning subgraph of G. Serving this connected spanning subgraph allows
us to choose any subset of the remaining edges to serve. Among the remaining edges
(edges not in S1 ∪ T1), we serve those with positive realized virtual values. In a similar
fashion we construct two other candidate solutions based on T2 and T3. The fourth and
last candidate solution is to contract set S2 of edges, and solve the problem optimally in
the roulette graphG2 using Lemma 3. The optimal solution we find inG2 is a connected
subgraph of G2, however, it might not be a connected subgraph of G that includes the
root. Nonetheless, it is always possible to serve a subset of edges S′2 ⊆ S2 to make the
whole solution not only a connected subgraph of G but also one that includes the root
vertex as well. Our fourth candidate solution consists of the edges in S′2 and the optimal
soluion for G2.

We now show that for every instance (i.e., a graph with a designated root and a
distribution) one of these candidate solutions that guarantees a 4-approximate solution.
Thus picking one at random will guarantee a 4-approximation. For 1 ≤ i ≤ 3, if we
stick to solution i all the time, our gain from edges in S1 and Ti is nonnegative (i.e.,
the sum of their expected virtual values), and in addition we get all edges with positive
virtual value outside S1 ∪ Ti. Since each edge of S2 is missing in at least one S1 ∪ Ti,
the total value we get from the first three solutions is at least the projection of optimal
solution on set S2 of edges. On the other hand in the fourth solution, our expected rev-
enue from edges added from S2 is nonnegative (once again since the expectation of the
virtual values are positive), and our expected revenue from S1 is at least the amount that
the optimal solution gains from them. Therefore, these four solutions together achieve
no less than the optimal revenue. Thus, one candidate solution has expected revenue at
least a quarter of the optimum.

The algorithm is monotone because firstly it decides which of the four candidate
solutions to use independent of the realized values. Further each candidate solution is
monotone. The first three solutions are monotone because the edge selection criteria
(for the edges they consider) is just non-negative virtual value. The fourth solution is
monotone because it is an optimal algorithm for the edges it focuses on. ut
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Vertex-Connectivity for the Rooted Version. In this section we provide a constant-
factor monotone approximation algorithm for the vertex-connectivity problem using the
algorithm for the edge-connectivity version of the problem described above. Let V2 be
the set of degree-2 vertices in graph G. Similar to the edge-connectivity approach, we
describe two algorithms (one using a reduction to the edge-connectivity problem) that
achieve constant-factor approximations to the problems where the values of V \V2 and
V2 are replaced by zero, respectively. Again, since the expected value of each vertex is
nonnegative, this implies a constant approximation for the vertex-connectivity problem.

First consider the instance in which the values of vertices in V \ V2 are replaced
by zero. Notice that this results in an instance in which any vertex with nonzero value
has degree 2. Construct another instance in which each vertex of degree 2 is replaced
by an edge with the same value. We can solve this instance using our edge-connectivity
algorithm.

Next consider the instance in which the values of vertices in V2 are replaced by zero.
We convert the instance to one without any degree-2 vertices via replacing all paths
consisting only of degree-2 vertices by an edge. The following lemma shows that this
graph has a spanning tree where at least 1

7 of its vertices are leaves. The algorithm uses
the internal nodes (i.e., nonleaves) of this tree to connect the leaves that are positive,
to the root. This gives a 7-approximation to the problem because the vertex values are
drawn i.i.d.

Putting these two algorithms together, we obtain a constant-factor approximation
algorithm for the vertex-connectivity rooted revenue maximization in expectation. In
particular, a balancing argument puts a bound of 11 on its approximation ratio.

Monotonicity of the resulting algorithm follows from the monotonicity of the algo-
rithms used for the two subcases. When we use the algorithm for the edge-connected
version, the monotonicity of the edge-connected version implies the same here. For the
other case, note that a leaf is picked whenever its virtual value is positive thus resulting
in a monotone allocation.

Lemma 5. Given a graph with no degree-2 vertices, a spanning tree can be constructed
in polynomial-time where at least 1

7 of the vertices are leaves.

Proof. Start from an arbitrary spanning tree T of G. Let T2 be the set of vertices of
degree 2 in T , and let T̂2 ⊆ T2 be those vertices in T2 both whose neighbors, too, are
in T2. Modify T as long as any of the following two rules apply.

1. If there exists a vertex v ∈ T̂2 that has an edge in G to an internal vertex u of T ,
update T by adding the edge (v, u) to T , and removing the edge incident to v in the
unique cycle formed after adding (v, u). Since both neighbors of v in T had degree
2, this process generates a new leaf without removing any of the old leaves.

2. If two vertices v, u ∈ T̂2 have edges in G to the same leaf l of T , add edges from v
and u to that leaf, and remove two edges from T as follows. The addition of edge
(u, l) to T produces a cycle that passes through exactly one of the two neighbors
of u; call it u′. Note that u′ has degree 2 in T by definition of T̂2; let u, u′′ be its
neighbors. Remove the edge (u′, u′′) from T , removing the cycle u and maintaining
the connectivity of T . We carry out a similar operation, mutatis mutandis, for v. The
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result will be a tree T on the same set of vertices with one more leaf (increasing the
degree of l but turning two other internal vertices into leaves).

The process terminates in a linear number of iterations since the number of leaves
increases in each step. We end up with a tree T for which neither of the rules applies.
Let T1 and T≥3, respectively, denote subsets of vertices of degrees one and at least three
in T . We argue below that |T1| is at least a constant fraction of |T2|+|T≥3|. As no vertex
of G has degree two, any vertex in T̂2 is bound to have degree at least three in G, hence
an edge not in T . This edge cannot be to an internal vertex of T because Rule (1) no
longer applies to T . Rule (2), on the other hand, implies that these leaves are distinct
for different vertices of T̂2. Therefore, we have

|T1| ≥ |T̂2|. (1)

As trees have average degree less than two, we know

|T1| > |T≥3|. (2)

To bound |T2| − |T̂2|, if this quantity is not zero, orient T from an arbitrary vertex
in T2 \ T̂2 towards the leaves. Assign each vertex v ∈ T2 \ T̂2 to its closest descendant
in the oriented tree that is in T1 ∪ T≥3. Such an assignment is always possible since no
vertex in the former group is a leaf of the (oriented) tree. Each vertex in the latter group
is assigned to at most twice, otherwise there should be a path of vertices of degree two
with more than two vertices in T2 \ T̂2—a contradiction. As a result, we get

|T2| − |T̂2| ≤ 2(|T1|+ |T≥3|) ≤ 4|T1|, (3)

where the last inequality is due to (2).
Summing up (1), (2) and (3) with |T1| ≥ |T1|, we obtain 7|T1| ≥ |T1|+ |T2|+ |T≥3|

as desired. ut

4.3 APX-Hardness of Optimization in Expectation in Arbitrary Graphs

In this section we prove the APX-hardness of the rooted version in arbitrary graphs
when the valuations of agents are independent but not necessarily identical.

Definition 1. The prize-collecting set cover problem (PCSCP) consists of a collection
of sets S1, S2, . . . , Sn over a universe U . For a collection C of sets, let QC = ∪i∈CSi.
The goal is to find a collection C∗ that maximizes α|QC∗ | + n − |C∗| for some given
α > 0.

We first show that there is an approximation preserving reduction from PCSCP to
our problem, and then invoke the result from [10] that establishes the APX-hardness of
PCSCP, and that its approximation ratio is at least 530

529 = 1.002.

Lemma 6. There is an approximation preserving reduction from PCSCP to our prob-
lem

See Appendix B for a proof.
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5 Posted-Pricing Results

As mentioned in the introduction, one goal of this work to compare two kinds of mech-
anisms: a) natural mechanisms for nonexcludable public goods, such as a direct reve-
lation mechanism, that have to deal with nonexcludabilities and b) posted price mech-
anisms which mitigate nonexcludability to a certain extent by ensuring that only those
who pay for an edge can use that edge. We show that for the rooted version with i.i.d.
agents, a posted price mechanism obtains the optimal revenue possible when full ex-
cludability is allowed — i.e., even partially mitigating nonexcludability via tolls gets us
the benefit of full excludability. When the agents values are independent but not nec-
essarily identical, we design a pricing scheme that obtains a O( 1

logn ) fraction of the
optimal revenue possible when full excludability is allowed. The details of the prices
set, and the proof, are presented in the full version of the paper.
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A The Unrestricted Version

A.1 Pointwise Optimization in Paths

In this section, we show that in paths, a polynomial-time dynamic program is all that
is necessary to implement the pointwise optimization involved in implementing Myer-
son’s mechanism.

Consider a path with vertices 1 to n. For 1 ≤ i ≤ j ≤ n, let S(i, j) be the sum of
virtual values of the set of all agents (i.e., vertex pairs) whose both endpoints are in the
interval [i, j]. We set S(i, i) = 0 for all i—assuming that there is no trivial agent whose
vertex pairs are the same. Define OPT (i) to be optimal solution when we are restricted
to choose only among edges connecting vertices 1 through i. The unrestricted optimal
solution OPT is therefore OPT (n). We set OPT (0) = 0. The following recursive
formula can be used in the dynamic program to solve for OPT .

∀i ≤ n,OPT (i) = max
0≤k<i

OPT (k) + S(k + 1, i).

In the above recursion, k+1 is the leftmost vertex that is connected to i. All vertices
k + 1, . . . , i are connected, and S(k + 1, i) is by definition their contribution to the
objective. Since the edge connecting k to k + 1 is not included, the set of edges chosen
among the first k vertices must be equal to OPT (k).

B The Rooted Version

B.1 Proof of Approximation Preserving Reduction from PCSCP

Proof of Lemma 6. Given an instance of the PCSCP, where the sets are denoted S1, S2, . . . Sn
and the elements are denoted e1, e2, . . . em, we construct an instance of our problem as
follows.

Vertices. We start with a root vertex r. For every element ei, we construct one vertex
with the same name ei. For every set Si, we construct one vertex denoted by Si as well.

Edges. For each i, set vertex Si is connected by an edge to root r and all ej ∈ Si.
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Agents. The agents (r, Si) are called set-agents, and (r, ei) are called element-agents.

Distribution The value distribution of element agents is deterministic α. For set agents,
the value is drawn from the distribution Bernoulli(L− 1, 1/L)—i.e., the value is equal
to L−1 with probability 1/L, and zero otherwise—where L� mnα. Thus, the virtual
value for these agents is −1 w.p. 1− 1/L and L− 1 w.p. 1/L.

The optimal revenue in our problem, as L→∞, can be analyzed in two cases.

1. If at least one set-agent has positive virtual valuation (which happens w.p. approx-
imately n/L → 0), the solution chooses all the edges incident on those set agents
(with positive virtual valuation) to obtain expected revenue n. The expected revenue
from the remaining agents (set-agents with negative virtual valuation, and element-
agents) is at most αmn/L� 1. Therefore, the optimal solution has contribution n
from this event as L→∞, and this solution is trivial to compute.

2. If no set has positive virtual valuation (which happens w.p. 1 − n/L → 1), the
value of the solution is precisely α|QC∗ | − |C∗|. This is because once a set-agent
is chosen, clearly all the edge-agents that is contained by this set must be chosen
since they all have deterministic positive virtual value α. We should also note that
you can obtain the α virtual value of an element agents only if you connect it to
root using one of the set agents it belongs to, and for each set you pick you have
−1 virtual value in this case.

Therefore the value of the optimal solution is α|QC∗ |+ n− C∗. ut
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