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ABSTRACT
Consider a buyer participating in a repeated auction, such as those

prevalent in display advertising. How would she test whether the

auction is incentive compatible? To bid effectively, she is interested

in whether the auction is single-shot incentive compatible—a pure

second-price auction, with fixed reserve price—and also dynam-
ically incentive compatible—her bids are not used to set future

reserve prices. In this work we develop tests based on simple bid

perturbations that a buyer can use to answer these questions, with

a focus on dynamic incentive compatibility.

There are many potential A/B testing setups that one could use,

but we find that many natural experimental designs are, in fact,

flawed. For instance, we show that additive perturbations can lead

to paradoxical results, where higher bids lead to lower optimal re-

serve prices. We precisely characterize this phenomenon and show

that reserve prices are only guaranteed to be monotone for distri-

butions satisfying the Monotone Hazard Rate (MHR) property. The

experimenter must also decide how to split traffic to apply system-

atic perturbations. It is tempting to have this split be randomized,

but we demonstrate empirically that unless the perturbations are

aligned with the partitions used by the seller to compute reserve

prices, the results are guaranteed to be inconclusive.

We validate our results with experiments on real display auction

data and show that a buyer can quantify both single-shot and dy-

namic incentive compatibility even under realistic conditions where

only the cost of the impression is observed (as opposed to the exact

reserve price). We analyze the cost of running such experiments,

exposing trade-offs between test accuracy, cost, and underlying

market dynamics.
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1 INTRODUCTION
The display advertising industry could be on the verge of a major

shift in its trading practices as many large exchanges, including

AppNexus and Index Exchange, are currently considering a switch

from second- to first-price auctions [21]. The push towards first-

pricing has been driven in large part by ad buyers who no longer

trust that exchanges are properly honoring second-pricing rules.

There is concern that exchanges could be using other mechanisms

to extract higher margins, such as setting reserve prices after bids

are collected rather than before. As a result, a major motivation

behind second-pricing, namely incentive compatibility, is lost [4].

In principle, market participants could audit an exchange’s prac-

tices by comparing data between the ad buyers and publishers. In

practice, this is only possible in one-off cases, and is much too time-

consuming to represent a systematic, scalable solution. Instead, ad

buyers need to gain insights into the underlying auction dynamics

based on their own trading data, in a way that can inform their

bidding strategies.

Motivated by these concerns, this paper develops statistical tests

that a buyer can use to estimate the degree to which a repeated

auction is incentive compatible. We first address the question of

single-shot incentive compatibility: detecting whether an auction

is purely second-price, or whether the payment depends to any

extent on the winning bid.We propose a simple experimental design

where the advertiser randomly shades her value for the impression

by some discrete fraction (10%, 20%, etc.), and then verifies that

the slice of traffic that saw no shading yields the highest surplus.

The core of our paper is devoted to the more subtle question of

testing dynamic incentive compatibility, specifically the question

of dynamic reserve pricing: detecting whether and to what extent

a buyer’s historical bids are used to set her future reserve prices.

Our main contributions in this paper are two-fold:

(1) To detect and assess the extent of dynamic reserve pricing,

we introduce an experimental design where the advertiser

partitions query traffic according to information provided

in the bid callout, and systematically perturbs bids in a ran-

domly chosen direction (up or down) within each partition.
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In the next time period, the advertiser observes the correla-

tion between the noise applied and the change in the reserve

price. Positive correlation indicates that reserves depend on

past bids. More formally, we provide a statistic that allows

one to test the null hypothesis that the auction does not use

past bids to set reserves. Note that dynamic reserve pricing

is a relevant notion in both first- and second-price auctions.

(2) In the process of analyzing various experimental designs, we

give a new and intuitive characterization of the monotone

hazard rate (MHR) family of distributions that is widely used

in the economics and algorithmic game theory literature.

We investigate two key aspects of an experiment that impact

its effectiveness. First, the nature of the perturbations: additive

or multiplicative. We observe that a positive additive shift in the

bid distribution does not necessarily lead to a higher optimal (i.e.,

revenue-maximizing) reserve price, and prove that this simple prop-

erty holds if and only if the bid distribution has a monotone hazard

rate (MHR). This is a new and intuitive characterization of MHR

distributions that is of independent interest. Since many relevant

distributions used in empirical modeling (e.g., the lognormal) are

non-MHR distributions, additive perturbations in these cases will

cause the buyer to observe confusing results—lower reserve prices

in the presence of higher bids. We therefore use multiplicative per-

turbations, and explain how this leads to a test that can detect any

scale-invariant dynamic reserve pricing scheme based on past bids,

which includes optimal reserves.

The next key aspect is traffic partitioning. We show that unless

the traffic split is aligned with the partitions used by the exchange

to compute reserves, the results are guaranteed to be inconclusive.

This highlights a practical trade-off between using fewer coarse par-

titions to align with the seller, and more fine partitions to increase

statistical power.

We validate our approach by running counterfactual simulations

of Google’s DoubleClick AdExchange on two days of data, perturb-

ing the bids of a major advertiser on the first day according to our

test. We implement a reserve-pricing scheme that partitions the

inventory and computes Myerson-optimal reserve prices for each

partition based on bids of this advertiser, and we simulate how this

reserve-pricing logic may be detected by the advertiser. We also

find that, using our test, the advertiser can detect dynamic reserve

pricing even if it uses a much coarser traffic partition than the one

used in the reserve pricing scheme. Furthermore, although at a

significant cost for the buyer, detection is still possible assuming

the advertiser can only observe the final cost of an impression,

rather than the exact reserve price (which may be censored by the

second-highest bid).

The paper is organized as follows. In Section 2 we describe the

kinds of reserve pricing schemes that our statistical test is suited

for: reserves set according to a buyer’s history of bids on fixed

partitions of query traffic, such that the reserves scale with the

bids. We also provide formal definitions for the notions of single-

shot and dynamic incentive compatibility. Section 3 provides our

experimental design based on bid perturbations, and proves that

additive perturbations can be problematic unless stringent condi-

tions on bid distributions are met. In Section 4 we validate our test

on real auction data from Google’s DoubleClick AdExchange, and

demonstrate the relationship between the quality of the reserve

price observations (e.g., exact or censored) and the ability to de-

tect the underlying reserve pricing scheme. We also measure the

cost-effectiveness of running the test for various bid perturbation

magnitudes. Section 5 concludes.

1.1 Related Work
Single-shot reserve pricing. The idea that reserve prices signifi-

cantly increase the revenue of the seller is central in auction the-

ory. In fact Myerson’s seminal result [17] says that the single shot

revenue-optimal auction with n bidders and values independently

drawn from a (regular) distribution F just runs the welfare opti-

mal second price auction with a reserve price for each bidder. The

power of reserve prices is well understood and a lot of research

has gone into (approximately) optimizing them under various con-

straints. Hartline and Roughgarden [11] construct second price and

VCG auctions with reserve prices in a variety of settings and show

that they approximate the optimal revenue. Chawla et al. [5, 6]

and Yan [22] take this further by showing that just reserve prices

(namely, posted price mechanisms) without the presence of any

auction competition is enough to approximate the optimal revenue

in many single-parameter and some multi-parameter settings as

well.

Sample complexity. Dhangwatnotai, Roughgarden and Yan [9]

highlight the necessity to compute these reserve prices with min-

imal knowledge of the buyer’s value distribution and show how

to accomplish this and still get a constant fraction of the optimal

mechanism’s revenue. This work on sample robust reserve pricing

was pushed further by Cole and Roughgarden [7], Huang, Mansour

and Roughgarden [12], and Morgenstern and Roughgarden [16]

who give bounds on the number of samples one needs to get (1−ϵ)-
close to the optimal revenue.When it comes to posting personalized

reserve prices (i.e., non-anonymous reserve prices), whether the

auctioneer runs a lazy or eager auction makes a significant differ-

ence. Paes Leme, Pal, and Vassilvitskii [18] study this difference

in detail, and show that while optimal lazy auctions may be com-

putationally easy, as opposed to the NP-hard problem of optimal

eager auctions, empirically even suboptimal eager reserve prices

yield better revenue than optimal lazy reserve prices. The problem

of approximating personalized eager reserve prices was studied

in more detail by Roughgarden and Wang [20] who show how to

get a 1/2-approximation to the optimal revenue, and also how to

translate their offline algorithm into an online learning algorithm.

Dynamic mechanisms. Another line of work that is related to

ours is the literature on sequential, dynamic, and repeated mech-

anisms. When a buyer repeatedly interacts with the same seller,

the seller can gain significantly higher per round revenue than in

a single-shot auction by linking the incentive constraints across

the different rounds, i.e., making the future allocation and pricing

decisions be strongly dependent on a buyer’s past bids. A string of

recent work (see for ex. [2, 3, 14]) with dynamic incentive compati-

bility as the central theme, has studied the additional revenue the

seller can get under a variety of constraints.

Strategic buyers. Finally, our work is related to research in re-

peated auctions where the buyer knows the full mechanism used



by the seller, and the goal is to understand her optimal strategy

in the presence of bid-dependent reserve prices. Kanoria and Naz-

erzadeh [13] propose a dynamic mechanism that is almost incentive

compatible. That is, even though a strategic buyer could achieve

higher surplus from playing an optimal bidding strategy, the in-

cremental gain is negligible compared to the cost of playing the

optimal strategy. Similarly Amin, Rostamizadeh and Syed [1], Mohri

and Muñoz Medina [15] and Drusta [10] study a repeated posted

price auction set up where the buyer attempts to maximize her

discounted surplus. The main result of this line work is that the

buyer’s strategy can only deviate from truthfulness for a small num-

ber of rounds if the discounting factor is less than 1. However, [1]

show that without any form of discounting, a buyer can force the

seller to reduce the reserve price to a constant fraction of her true

valuation. Devanur, Peres, and Sivan [8] study a different setting

where the buyer’s values are not drawn freshly from a distribution

every round. Instead they are initially drawn from a publicly known

distribution and continue to remain the same afterwards. The seller

can simply post a take-it-or-leave-it reserve price in every round,

based on the previous round prices and buyer decisions. In the

Perfect Bayesian Equilibrium (PBE) of this game where the seller

is unable to make any commitments about how he will increase

or decrease reserve prices in the future, the authors show that the

seller gains non-trivial revenue only in the last few rounds of the

game.

The results of these papers rely critically on the unrealistic as-

sumption that the buyer has access to the full mechanism. In prac-

tice, the buyer may only know the type of auction run by the seller,

but not all of the details of the pricing function; and even in the

case of full information, verifying that the seller is following the

mechanism is far from trivial.

Verifiably correct auctions. A tangentially related problem to

what we study is being able to verify that the auctioneer is indeed

running the promised auction, i.e., are the auctions verifiably cor-

rect? (see [19]). In contrast to our work, [19] focuses on detecting

whether the auctioneer is acting maliciously by deviating from the

promised protocol. Our work focuses on detecting whether the

auctions that are run provide incentives for not reporting one’s

true value as bid.

2 PRELIMINARIES
Consider a buyer participating in a repeated auction with a single

seller (such as an ad exchange). A query is an opportunity for the

seller to show an ad to a user visiting a webpage. The seller runs an

auction for each query by soliciting bids from different buyers, and

potentially specifying different reserve prices for each of them. We

consider a setup where the seller partitions the space of queries into

buckets to compute reserve prices, where each bucket is defined

by a specific combination of the query’s and buyer’s features. The

buyer’s goal is to figure out whether the exchange is running a

truthful (i.e., second-price) auction, and furthermore, whether her

current bids are being used to influence future reserve prices.

In each bucket, the buyer’s value is drawn independently in every

round from an absolutely continuous distribution F with density

f . The value distributions in different buckets could be different.

Because we study this problem from the perspective of a single

buyer, from an analysis standpoint, the number of buyers in each

auction is not relevant, since their collective behavior is captured

by the competing bid distribution.

History based reserve pricing. The seller divides the auction rounds
into several roughly equal time periods called stages. A stage,

for instance, could be based on the day, the week, or the month

to which these auction rounds belong. Given a history of bids

hs = (b1, . . . ,bℓ) in stage s in any given bucket, the seller computes

the reserve price rs+1 in stage s + 1 for that bucket as rs+1(hs , ·)
where the “·” stands for inputs independent of the buyer’s bids,

such as the bucket to which the query belongs, other bidders’ bids,

or other market factors that the seller may use in setting the reserve

price.

Scale invariant reserve pricing. We define h′s = (1 + ϵ)hs if b
′
i =

(1 + ϵ)bi for all 1 ≤ i ≤ ℓ. We call h′s a (1 + ϵ)-scaled version of hs .
We assume in this paper that the seller’s reserve pricing scheme is

scale-invariant, i.e., fixing the other inputs we have,

rs+1((1 + ϵ)hs , ·) = (1 + ϵ)rs+1(hs , ·).

Note that scale invariance is equivalent to saying that prices should

be independent of the whether the bids are specified in dollars or

cents. In particular, the natural scheme of computing the Myerson-

optimal reserve price out of the distribution induced by the history

(i.e., samples) (b1, . . . ,bℓ) is scale-invariant.

Sample robust reserve pricing. In practice the seller sets reserve

prices based on historical bids (namely, samples) in a stage, rather

than on the true distribution F . Nevertheless, in the ad exchange

context it is reasonable to assume that there are enough samples in

each bucket that the difference between the sampled distribution

and true distribution is negligible. In particular, while one can con-

struct corner-case reserve price functions that can be significantly

off in the reserves they output even with small noise in the samples,

we assume that the seller follows a sample robust reserve pricing

algorithm where the noise in reserve prices become negligible with

a large enough number of samples. Once again, natural schemes

like computing the Myerson-optimal reserve price out of the distri-

bution induced by the samples is sample robust. In the rest of the

paper, we therefore ignore this sampling error.

Four worlds: history-{independent vs dependent}-seller, static vs
dynamic market. A seller is history-independent if rs+1(hs , ·) =
rs+1(h

′
s , ·) for all histories hs ,h

′
s . Since the reserve price could po-

tentially be a function of market factors, other bidders’ bids etc.

we make a distinction between static and dynamic markets. We

say that a market is static if rs+1(hs ,y) is the same for all val-

ues of y. The fluctuations in “y” that create a dynamic market is

modeled as noise in the computed reserve price, namely, if we fix

the history hs , the changes in other factors “y” will manifest as

rs+1(hs ,y) = (1 + η)rs+1(hs ,y
′) where η is a zero mean random

variable drawn from some distribution D. One could model noise to

be additive as well, and the nature of our results would not change

with these modifications.

Buyer utility and incentive compatibility. We assume that the

buyers are standard quasi-linear utility maximizers, i.e., their goal

is to maximize the sum over all rounds (spanning several periods) of



vx −p wherev is their value in any given round, x denotes whether

or not they were allocated the good and p is the price they were

charged.

When it comes to analyzing the pricing schemes practiced by

exchanges, there are two main categories: whether the buyer stands

to gain in any single auction by misreporting her true value (single-

shot incentive compatibility) and whether she stands to gain in

overall utility by misreporting in the current round (dynamic in-

centive compatibility).

Single-shot incentive compatibility. Any single auction is incen-

tive compatible if reporting the true value is in the buyer’s best

interest. Let

Ut (vt ,v
′
t ,hs(t )−1, ·) = vtxt (v

′
t ,hs(t )−1, ·) − pt (v

′
t ,hs(t )−1, ·)

denote the utility attained by the buyer in round t by reporting v ′
t

when her true value is vt . The “·” in the allocation and payment

functions captures, other buyers’ reported valuations and other

potential features. Single-shot IC requires that

Ut (vt ,vt ,hs(t )−1, ·) ≥ Ut (vt ,v
′
t ,hs(t )−1, ·) ∀ vt , v

′
t ∈ R. (1)

Dynamic incentive compatibility. Let there be T auctions in total,

spanning several stages. Dynamic incentive-compatibility requires

that:

T∑
t=τ

Ut

(
vt ,vt ,hs(τ )−1 + (vτ , . . . ,vt−1), ·

)
≥

T∑
t=τ

Ut

(
vt ,v

′
t ,hs(τ )−1 + (v

′
τ , . . . ,v

′
t−1), ·

)
∀ τ ∈ [1,T ],∀t ∈ [τ ,T ],∀ vt , v

′
t ∈ R.

Buyer’s goal. The buyer’s goal is to design tests to evaluate single-
shot and dynamic incentive compatibility. We take a statistical

approach and seek tests to reject the null hypothesis of incentive
compatibility. For dynamic incentive compatibility, we specifically

focus on tests to uncover dynamic reserve pricing. Note that dy-

namic incentive compatibility is a general property that depends on

more aspects of the auction mechanism than just dynamic reserves,

so this is just one way to reject the null. Dynamic reserve pricing

is a chief means of linking incentives across rounds so we focus on

this important special case in this paper.

3 EXPERIMENTAL DESIGNS
In this section we describe tests for detecting violations of single-

shot and dynamic incentive compatibility (IC).

3.1 Single-shot Incentive Compatibility
While it is tempting to test for single-shot IC using simple statistics

such as bid to cost ratio, it is easy to see that such methods fail

to distinguish between incentive and non-incentive compatible

auctions. Indeed, a second price auction with reserve can have a

bid to cost ratio close to 1 if the reserve price happens to be close to

the buyer’s bid. Instead, we propose a simple test motivated by (1).

Let k > 0 and 0 < α1 < . . . < αk = 1 be a sequence of multipliers.

Abusing the notation we let Ut (vt ,α j ) = Ut (vt ,α jvt ,hs(t )−1, ·). It

follows from the definition of incentive compatibility that

αk ∈ argmax

α ∈{α1, ...,αk }
Ut (vt ,α j ). (2)

Our test is thus defined as follows: we randomly partition the traffic

into k buckets B1, . . . ,Bk . The buyer then scales bids in bucket Bj
by α j and calculates the total surplus Sj for each bucket. From (2),

a single-shot incentive compatible mechanism should verify that

Sk maximizes the surplus across all partitions.

Why not use same test for dynamic incentive compatibility? The

case of dynamic incentive compatibility however, is significantly

more difficult. It is easy to see that one cannot use the same test as

in the single shot setting—randomly splitting queries is not well

defined, since bucket association needs to persist across days. Other

bucketing schemes fail as well—we will show in Section 3.3 that

the seller needs to partition her traffic along the same dimensions

as the buyer is using to compute reserve prices.

In this paper, we consider a specific way in which dynamic in-

centive compatibility can be violated, namely by yesterday’s bids

influencing today’s reserve prices. We call such a seller a history

dependent seller. The test we design is based on simple bid pertur-

bations and the intuitive notion that higher bids should yield higher

reserves. More precisely, the family of tests we consider measures

the correlation between the bid perturbations and the observed

reserve prices. Our test will satisfy the following two conditions:

• Calibration. If seller reserve prices are not history depen-

dent, the correlation between perturbations and reserves

should be zero.

• Conclusiveness. If seller reserve prices are history depen-

dent, the correlation between perturbations and reserves

should be strictly positive.

While these two conditions are natural, we show that a naïve imple-

mentation of a correlation test is not necessarily conclusive. Such

implementations include the use of of additive perturbations as well

as using a random bucketing scheme. Note however that the nature

of the auction (first price, second price, or otherwise) is immaterial

for this test, which purely examines the reserves.

3.2 Additive Perturbations
The setup for the additive version of our test is simple: fix a bucket,

and increase the bids in stage s + 1 in that bucket by an additive ϵ ,
compared to the bids in stage s . One would expect that the reserve

price in a bucket with such an additive perturbation would be no

smaller than the reserve for an unmodified bucket. However, even

this very basic requirement is true only for MHR distributions,

i.e., for non-MHR distributions the buyer could observe a smaller

reserve price after raising her bids!

Let F be the cdf of the absolutely continuous distribution of

values in the bucket we are interested in, and let f be its density

function. We denote by G := 1 − F the associated survival function

for F and by x : [0, 1] → R the quantile function given by x(q) =
G−1(q). Consider a buyer who perturbs her bids by adding ϵ ∈ R to

the value. That is the seller observes a bid following the distribution

Fϵ (x) = F (x − ϵ). It is not hard to show that the quantile function



xϵ associated with Fϵ is given by

xϵ (q) = x(q) + ϵ . (3)

We are interested in the set of distributions for which the func-

tion ϵ 7→ argmaxr rGϵ (r ) is strictly monotone. The importance of

this family of distributions is clear: this is the family for which a

buyer can measure the extent to which bid perturbation affects

future reserve prices when a seller learns from her bids. While it

seems intuitive that the optimal reserve should be monotone in the

size of the perturbation ϵ , the next example shows that this is not

true in general.

Example 1. Let G(x) = e−x
1/2

be a Weibull distribution with
shape parameter 1/2. Let us calculate rϵ = argmax rGϵ (r ). From the
definition ofGϵ and taking derivatives of the revenue function we see
that:

(rGϵ (r ))
′ = (re−(r−ϵ )

1/2

)′ =
e−(r−ϵ )

1/2 (
2

√
r − ϵ − r )

2

√
r − ϵ

.

Equating the above expression to 0 and solving for r shows that rϵ =
2 + 2

√
1 − ϵ . Notice that this is a decreasing function of ϵ . Therefore

a buyer that perturbs her bids by increasing them by ϵ will in fact
observe a lower reserve price!

As the previous example shows not even regular distributions

satisfy strict monotonicity in reserves obtained from perturbed

distributions. However, we will show that functions with the mono-

tone hazard rate property are precisely the ones for which this

condition holds.

Definition 1. A distribution is said to satisfy the monotone haz-
ard rate (MHR) condition if

HR(x) = f (x)/G(x)

is a weakly increasing function in x.

Proposition 1. If a distribution satisfies MHR then the following
inequality is satisfied for every q ∈ [0, 1]

qx′′(q)
x′(q)

+ 1 ≥ 0.

Proof. From the definition of MHR we see thatG(x)/f (x)must

be weakly decreasing therefore by first order conditions:

−f (x)2 − f ′(x)G(x)
f (x)2

≤ 0. (4)

This implies that

1 +
f ′(x)G(x)
f (x)2

≥ 0. (5)

Let us now calculate the second derivative of x, w.r.t. q. By the

inverse function theorem we have:

x′ = −
1

f (x)
x′′ =

f ′(x)
f (x)2

x′.

Therefore
qx′′(q)
x′(q) =

qf ′(x)
f (x2) . The change of variables q = G(x) in

inequality (5) yields the result. □

Theorem 1. A regular distribution F satisfies MHR if and only if
rϵ is an increasing function of ϵ .

Proof. Notation: In the proof, we will deal with derivatives

w.r.t. q and ϵ . We use the
′
-symbol for derivative w.r.t. q and

d
dϵ for

derivative w.r.t. ϵ .
Let ϵ > 0 and q∗ϵ denote the optimal revenue quantile for the dis-

tribution Fϵ , i.e., q
∗
ϵ = argmaxq∈[0,1] Rϵ (q) = argmaxq∈[0,1] qxϵ (q).

We first prove that the function ϵ 7→ q∗ϵ is strictly increasing.

By equation (3), it follows that the optimal reserve price r∗ϵ =
xϵ (q∗ϵ ) = x(q∗ϵ ) + ϵ . From equation (3) it also follows that Rϵ (q) =
qxϵ (q) = R(q) + ϵq; differentiating this equation w.r.t. q, we get

R′
ϵ (q) = R′(q) + ϵ , and in particular, since R′(q∗

0
) = 0 by definition,

we have R′
ϵ (q

∗
0
) = ϵ > 0. Since F is a MHR distribution, it follows

that R(q) is concave function (standard result), and thus it follows

that Rϵ (q) is concave as well. We just showed that R′
ϵ (q

∗
0
) = ϵ > 0,

i.e., the concave function Rϵ (·) is increasing at q
∗
0
. This means that it

is maximized at a point strictly larger than q∗
0
, i.e., q∗ϵ > q∗

0
. We can

similarly show that for ϵ < 0,q∗ϵ < q∗
0
. Thus, the function ϵ 7→ q∗ϵ

is strictly increasing.

Let us now analyze the derivative of r∗ϵ w.r.t. ϵ . In the previous

paragraph we showed that r∗ϵ = x(q∗ϵ ) + ϵ . Therefore,
d

dϵ
r∗ϵ = x′(q∗ϵ ) ·

d

dϵ
q∗ϵ + 1. (6)

We are interested in those distributions for which
d
dϵ r

∗
ϵ ≥ 0, i.e., as

the additive perturbation ϵ increases, the optimal reserve r∗ϵ weakly

increases.

Since

q∗ϵ = argmax

q∈[0,1]
Rϵ (q) = argmax

q∈[0,1]
qxϵ (q) = argmax

q∈[0,1]
qx(q) + ϵq,

the optimality condition ofq∗ϵ (i.e., first order derivative ofqx(q)+ϵq
w.r.t. q) gives us that:

R′
ϵ (q

∗
ϵ ) = q

∗
ϵx

′(q∗ϵ ) + x(q
∗
ϵ ) + ϵ = 0.

Taking derivatives on both sides of the equation w.r.t. ϵ yields:(
q∗ϵx

′′(q∗ϵ ) + x
′(q∗ϵ )

) d
dϵ

q∗ϵ + x
′(q∗ϵ )

d

dϵ
q∗ϵ + 1 = 0

Therefore,

x′(q∗ϵ )
d

dϵ
q∗ϵ + 1 = −

(
q∗ϵx

′′(q∗ϵ ) + x
′(q∗ϵ )

) d
dϵ

q∗ϵ

= −x′(q∗ϵ )
d

dϵ
q∗ϵ

(q∗ϵx′′(q∗ϵ )
x′(q∗ϵ )

+ 1
)
.

The LHS is just
d
dϵ r

∗
ϵ by equation (6), and since we want r∗ϵ to

be weakly increasing in ϵ at all ϵ , we want the LHS to be non-

negative for all ϵ ≥ 0. In the RHS, note that because we proved

that the mapping ϵ 7→ q∗ϵ is strictly increasing, we have
d
dϵ q

∗
ϵ > 0.

Furthermore, since x = G−1
and G is decreasing by definition, it

follows that x is also decreasing, making x′ < 0. Thus the only way

the RHS is non-negative is when
q∗
ϵ x′′(q∗

ϵ )

x′(q∗
ϵ )
+ 1 ≥ 0 for all ϵ . From

Proposition 1 this expression is non-negative for all ϵ if and only if

F satisfies the MHR condition. □

3.3 Unaligned buckets for perturbations
One of the most natural A/B tests to detect dynamic reserve pricing

is to (i) pick an arbitrary feature to split the space of queries into two;

(ii) perturb to increase the bids in one of the halves, and decrease

bids in the other half, and (iii) verify the change of the reserve prices



in these two halves the next day. However, if the feature picked by

the buyer is not one of the features picked by the seller to partition

the space of queries into buckets, the results are guaranteed to be

inconclusive.

Theorem 2. The results of a buyer A/B test based on a feature
unused by the seller are guaranteed to be inconclusive, regardless of
whether the perturbations are additive or multiplicative.

Proof. Let the buyer divide the space of queries into two buckets

B1 and B2 based on a feature not used by the seller. Consider any

seller-defined bucket B. Let the cdf of the unperturbed distribution

in B be F , supported in [0, 1]. Let q1 be the fraction of queries in

B that are from B1 and q2 = 1 − q1 be the fraction of queries from

B2. Let F̃A and F̃M be the distribution in the same bucket B after

additive and multiplicative distributions respectively. An additive

perturbation increases the bids additively by ϵ in B1 and decreases

them by ϵ in B2. A multiplicative perturbation multiplies the bids

by 1+ϵ in B1 and by 1−ϵ in B2. Let F1 be the cdf of the distribution
in the bucket B ∩B1, and F2 in the bucket B ∩B2. It is easy to verify
that:

F̃A(x) =


q2F2(x + ϵ), 0 ≤ x ≤ ϵ
q1F1(x − ϵ) + q2F2(x + ϵ), ϵ ≤ x ≤ 1 − ϵ
q1F1(x − ϵ) + q2, 1 − ϵ ≤ x ≤ 1 + ϵ


and similarly,

F̃M (x) =

{
q1F1(

x
1+ϵ ) + q2F2(

x
1−ϵ ), 0 ≤ x ≤ 1 − ϵ

q1F1(
x

1+ϵ ) + q2, 1 − ϵ ≤ x ≤ 1 + ϵ

}
Consider the simple case where F (x) = F1(x) = F2(x) = x (i.e.,

theU [0, 1] distribution) and q1 = q2 =
1

2
. The Myerson optimal re-

serve price for F , without any perturbations is maxx x(1−F (x)) =
1

2
.

For x ∈ [ϵ, 1 − ϵ], we have F̃A(x) = x , and thus for small ϵ the opti-

mal reserve price after perturbation (namely, maxx x(1 − F̃A(x)))
will be exactly

1

2
, i.e., unchanged by perturbation, both in bucket

B1 and in B2. This is because the seller sets a single reserve for the
whole bucket B. A buyer observing this would be led to conclude

that the seller does not engage in dynamic reserve pricing. Likewise,

for x ∈ [0, 1−ϵ], we have F̃M (x) = x
1−ϵ 2 , and thus for small ϵ the op-

timal reserve price after perturbation (namely, maxx x(1 − F̃M (x)))

will be
1−ϵ 2
2

, i.e., decreased after perturbation, both in bucket B1
and in B2. This would yield a non-positive correlation between

perturbations and reserve and therefore will be inconclusive.

This is not a property of any particular distribution. For any F ,
F1 and F2, the seller’s new reserve price is a single number for all

of bucket B (by definition of B being a seller’s bucket). If the new

reserve price happens to be identical to the old reserve price, the

buyer incorrectly concludes that there is no dynamic reserve pricing

even if it is happening. If the new reserve price has increased the

buyer feels puzzled about increased reserve price even for queries

in B ∩ B2 where she decreased bids. If the new reserve price has

decreased, the buyer again feels puzzled about decreased reserve

price even for queries in B ∩ B1 where she increased bids. □

Theorem 2 above underscores the subtlety in constructing anA/B

test to detect dynamic reserve pricing. Note that the feature picked

by the buyer may indeed be quite a useful feature, i.e., it could

indeed be that the distribution in B1 is significantly different from

the distribution in B2 (or, the distribution F1 in B ∩ B1 is different
from the distribution F2 in B ∩ B2). The failure of the above test is
irrespective of whether the feature picked by the buyer is relevant

or irrelevant. Whether the seller also considered it to be relevant is

the question, and this is what makes the A/B test design complicated

for the buyer.

3.4 Multiplicative Perturbations
We now introduce our main test based on multiplicative perturba-

tions. Notice that any scale invariant choice of reserve prices will

satisfy, by definition, that perturbations resulting in larger bids will

lead to higher reserve prices. Let {B1, . . . ,Bn } denote a partition
of traffic into n buckets. Let α ∈ [0, 1] denote the bid perturbation

magnitude. For every bucket Bi denote by βi a uniform random

variable in {1−α , 1+α }. Our proposed experiment proceeds as fol-

lows: in round s , for every query qj falling in bucket Bi for which
buyer has value vi j , the buyer submits a bid of βivi j . At round

s + 1 the buyer observes reserve price r
(i)
s+1. Our statistical test is

motivated by the intuition that if a seller uses past bids to influence

reserve prices then the change in magnitude of reserve price from

day s to s + 1 should be highly correlated with the bid perturbation

magnitude βi − 1. More precisely, we define the quotient

Qi := r
(i)
s+1/r

(i)
s

and we denote the average correlation of Qi with the noise magni-

tude βi − 1 by

Cα = E
[
Qi (βi − 1)

]
.

Using the conditions described in Section 2 we now establish the

properties of Cα for the scenarios considered in this paper.

• History independent seller.By definition, the reserve prices
of a history independent seller are independent of the bids.

Therefore the ratioQi is independent of βi andCα = 0. This

equality holds in both a static and dynamic market since the

dynamic noise η is independent of βi .
• History dependent seller. Under the assumption of robust

and scale invariant pricing we must haveQi = βi . Therefore,
E[Qiβi ] = E[βi (βi −1)] = α2. The same equality holds under

dynamic market conditions since the noise η is independent

of βi .

We can now define a test to discriminate between a history depen-

dent and a history independent seller. Let Ĉα =
1

n
∑n
i=1Qi (βi − 1)

denote the empirical estimate ofCα . Then for any δ > 0, by Cheby-

chev’s inequality we have with probability at least 1 − δ

|Cα − Ĉα | ≤

√√ n∑
i=1

Var(Qi (βi − 1))

δn2
. (7)

Note that one could use any other concentration or bootstrapping

technique to obtain a confidence interval for Cα . Equation (7) im-

plies that we can reject the null hypothesis of a history independent

seller with probability of error less than δ if the confidence interval

for Cα does not include 0. Similarly we can reject the null hypoth-

esis that the seller is history dependent and using scale invariant

reserve prices if this interval does not contain α2.



(a) γ = 0.95 (b) γ = 0.75 (c) Second price auction

Figure 1: Surplus lift (over worst performing bidding strategy) vs bid shading factor δ .

4 EXPERIMENTAL RESULTS
For our experimental evaluation we select a large advertiser on

DoubleClick AdExchange and consider a random sample of auctions

that the advertiser participated in over two consecutive days in

October, 2017.We then artificially introduce reserve prices, or adjust

individual buyer’s bids, and use an auction simulator that is able

to replay the exchange auction logic from logged data to simulate

auction outcomes. We then compute surplus for each of the buyers

and revenue for the seller. For measuring single-shot incentive

compatibility and dynamic incentive compatibility we implement

the following reserve price selection method: we partition traffic

by observable features (in the bid callout), and compute Myerson-

optimal reserve prices within partitions using bids from the first

day; note that Myerson-optimal reserves are scale invariant, so our

theory applies to this scheme.

4.1 Single-Shot Incentive Compatibility
To demonstrate the simplicity and power of our single-shot in-

centive compatibility test we carry it out under three different

mechanisms. We define a γ -price auction as one that sets a reserve

to a γ fraction of the highest bid. Note that γ = 1 corresponds to

first price auctions. Moreover, a γ -price auction is incentive com-

patible only if γ = 0; since otherwise the payment of a buyer may

depend on her bid.

The parameters of our test are k = 10 and αi =
i
10
. We modified

the exchange auction to simulate a γ -price auction for γ = 0.95

and γ = 0.75. We also ran a second price auction using the reserve

pricing scheme described above and we show the results in Figure

1. Notice that for both γ -price auctions, the optimal multiplier is

bounded away from 1 whereas, for the second price auction, the

optimal strategy is given by the multiplier αk , even in the presence

of reserve prices.

4.2 Dynamic Incentive Compatibility
We now turn to our statistical test of dynamic incentive compatibil-

ity. We explore the effectiveness of our tests along two dimensions:

the information available to the buyer about the reserve set by the

exchange, and the granularity of the buckets over which bids are

perturbed in the test. We then demonstrate the trade-off between

the efficacy of the tests and their cost.

For the informational dimension, we distinguish between three

scenarios that differ on whether the buyer observes the exact re-

serve price set by the exchange, or some censored version of it. In

the full information scenario, the buyer observes the exact reserve;

in our implementation, this is the Myerson-optimal reserve price

calculated using the bucketing method previously described. This

setting is ideal for the buyer, but often unrealistic in practice as the

exchange’s reserve can often be overridden by other parameters.

For instance, publishers may set their own reserve prices for por-

tions of their inventory that they consider especially valuable. In

the partial information scenario, the buyer only observes the final

reserve price that represents the maximum of these parameters. For

our implementation we simulate reserve prices as the maximum

between Myerson reserves and those submitted by the publishers.

Finally, we consider a limited information scenario where an adver-

tiser only observes her cost per auction (i.e., the maximum of the

reserve price and second-highest bid). This scenario is arguably the

most realistic in practice since the cost is always available to the

buyer, but the exact reserve price may or may not be shared by the

exchange.

The other dimension we explore is the granularity of the buckets

over which bids are perturbed and their alignment with partitions

used to set reserve prices. We consider a handful of features as-

sociated with each auction, for instance whether the segment of

inventory is mobile or desktop, the publisher identity, and so on.

In our simulations, the seller uses these features to compute an op-

timal reserve price for each unique setting, for instance computing

a different reserve price for mobile-NYTimes, desktop-NYTimes,

mobile-WSJ, desktop-WSJ, and so on (we discard feature combina-

tions that occur fewer than 100 times in the dataset).

For the buyer experiment, we define coarse, fine, and random
settings. The coarse partition is defined only according to the pub-

lisher identity. The fine partition is a refinement, and represents

the same partitioning scheme used by our reserve price selection

algorithm. Finally, in the random setting, buckets are defined by

the IP address of the machine making the ad request. Note that the

coarse partitioning is quite realistic for a buyer to implement, as it

is based on information commonly available in callouts.

In each setting, we follow the perturbation model described in

Section 3.4. For each bucket we select a perturbation magnitude

uniformly in {1 − α , 1 + α }. Perturbations vary between buckets

but are fixed for all bids within a bucket.



Overall, we track two metrics. The first captures the experi-

menter’s ability to determine whether the seller is computing My-

erson optimal reserves based on the previous bids submitted by

the buyer. The second is the cost of these experiments, and their

impact on the utility obtained by the buyer.

Full Information. In order to measure how the magnitude of the

reserve price changes as a function of the noise we let α vary in the

set {0.1, 0.2, 0.3, 0.4, 0.5}. For every α we calculate the empirical

covariance Ĉα and we calculate a 95% confidence interval according

to (7). The results of this analysis can be seen in Figure 2.

Observe that when the buyer partitions her traffic randomly, the

test fails, even in the full information setting; thus it is important for

the buyer partitions to be aligned with those used by the seller. On

the other hand, the difference between fine and coarse partitions

is relatively small. The granularity only changes the confidence

interval, which is a bit tighter for the fine partition.

Partial and Limited Information. Recall that in the partial infor-

mation scenario the bidder does not see the actual reserve price

computed by the seller, rather she can only observe a censored

reserve price. In the limited information scenario the buyer can

only observe her cost per impression. As expected, the inability to

observe exact reserve prices computed makes the test less effective.

As in the full information setting, we let α vary in {0.1, 0.2,

0.3, 0.4, 0.5} and compute the correlation between α and the ob-

served reserve price, as a function of different partitions. Figure 3

shows the results of our statistical test for each traffic partition in

the partial information scenario, while Figure 4 shows the results of

the limited information scenario. The first thing to notice is that the

magnitude of the effect is muted, and the covariance is no longer

simply the square of the noise. In fact for the limited information

scenario, it is barely possible to detect correlation even for values

of α as high as 0.4. This drastic drop in correlation for the limited

information scenario can be explained by the fact that changes in

advertisers costs depend not only on the reserve price set by the

seller but also on the bids from other buyers which can change from

day to day independently of the bid perturbation. This highlights

the difficulty of testing for dynamic incentive compatibility—recall

that testing single-shot incentive compatibility is easy even in the

limited information setting (Figure 1).

Finally, notice that unlike the previous two scenarios, the coarse

partition detects correlation slightly better than the fine partition.

This is mainly due to the fact that each bucket in the fine partition

has a smaller number of samples. This makes the estimate of the

average cost per bucket noisier, and therefore less correlated with

the bid perturbation.

Experiment Cost. The statistical power of our test can always be

enhanced by increasing the magnitude of the perturbation. How-

ever, this comes at a direct cost to the buyer. As we observed above,

bidding one’s true value is a surplus maximizing strategy in second

price auctions with reserves. Therefore, we define the advertiser’s

experimental cost as the loss in surplus compared to her bidding

her value. For a given query k , we assume the bid bk as logged in

the data represents a buyer’s true value for the impression. Let pk
be the cost of the query as logged in the data, and let p̃k be the

query’s cost under the perturbed bid as calculated by the auction

replay. Let xk ∈ {0, 1} be a binary variable indicating whether

the advertiser won impression k under its original bid, and define

x̃k analogously for the perturbed bid. Note that the cost of the

query is necessarily zero if the advertiser loses the auction. It is

possible for the advertiser to win the auction under its original

bid and lose under its perturbed bid, and vice-versa. The adver-

tiser’s surplus under the original and perturbed bids is xk (bk − pk )
and x̃k (bk − p̃k ) respectively, and its regret for the perturbation is

xk (bk − pk ) − x̃k (bk − p̃k ). Regret must be non-negative if truthful

bidding is a dominant strategy, and we confirmed that this holds

for each query in our evaluation.

For each experimental condition we report the regret as a per-

centage of the optimal surplus over all queries, namely∑
k xk (bk − pk ) − x̃k (bk − p̃k )∑

k xk (bk − pk )
.

We plot the results in Figure 5. Note that regret only depends on

the partition granularity and noise magnitude, and does not depend

on whether we are in the full or partial information setting. We

computed confidence intervals by separately computing the regret

for each hour and using twice the standard error across the 24

resulting regret samples. We see that regret can be very precisely

estimated at all perturbation levels and for both the coarse and fine

partitions, which show very similar trends. At α = 10%, regret is

no greater than at 1%, and from α = 30% onwards regret starts to

exceed 5% for both partitions. To apply our test, advertisers will

want to gradually increase the noise magnitude to ensure that the

opportunity cost does not exceed the value of the insights into

incentive compatibility.

5 CONCLUSION
This paper proposed statistical tests to quantify the extent to which

a display ad auction is incentive compatible. We considered a test

for single-shot IC, to confirm that bid information is not used to

set the payment in any individual auction run. Our main focus

was on dynamic IC, specifically whether historical bids are used

to set future reserve prices in some scale-invariant fashion. We

gave theoretical and practical demonstrations that natural tests

such as additive perturbations and random traffic splitting can

fail to detect dynamic reserve pricing. Moreover, we ran extensive

experiments to estimate the tradeoffs between experiment cost,

traffic splitting, and the type of pricing information available to the

buyer. Our tests offer means for advertisers to gain insights into

the underlying auction mechanism that can inform their bidding

strategies, without the need for any coordination with publishers.

The paper can be expanded in multiple ways. For example, what

is the lowest cost test one can design to test single-shot IC? The

lowest cost test to detect history dependent reserve prices? What

is the optimal tradeoff between cost of the test and the statistical

significance of the results obtained?
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