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Abstract

Automatic causal discovery without experiments offers to accelerate scientific investigation
and knowledge acquisition, for example, by searching databases of electronic health records
to discover the unknown effects of drugs. However, effective causal discovery requires
methods that control for confounders and that scale to large data sets which have the power
to support or refute causal hypotheses. Accordingly, this dissertation first introduces a
method for efficiently learning formal structural causal models of medical histories via
parameter learning in log-linear temporal Markov networks. Such models work well when
all of the effects of interest are already defined and measured, but it might not be the case
that all possible effects are suspected beforehand, especially when considering the adverse
effects of drugs. Therefore, this dissertation next develops machine learning methods
for causal discovery, including differential classification and temporal inverse probability
weighting, that hypothesize likely causal effects while analyzing controlled observational
studies. Applying all of these methods to causal modeling and finding adverse drug effects
in synthetic and real-world electronic health records demonstrates their ability to accurately
discover causal effects despite the irregularity, noise, and sparsity of such data. This
dissertation thus establishes (1) that scalable, causal methods discover causal effects more
accurately than methods that ignore causality, do not scale to large databases, or are not
robust to the messiness of medical data, and (2) that methods that hypothesize effects
improve genuine causal discovery by avoiding the limitations of human bias. In summary,
the methods herein distinguish themselves by bridging machine learning and epidemiology:
they bring causal inference and observational studies to machine learning, and they apply
learning techniques and formal causal models to tasks in epidemiology. By integrating
multiple approaches to causality, these methods achieve a wider perspective that overcomes
the limitations of the individual perspectives, and leads to newmethods for automatic causal
discovery from observational data.

Overview

Adverse drug events (ADEs) have a high impact on society, costing lives and an estimated
$30 billion per year in the USA alone (Sultana et al., 2013). While ADEs are a serious
and widespread health problem, their rarity makes them hard to detect. Big data sets
are needed to detect such rare occurrences, but typically the only ones available that are
large enough are databases of electronic health records (EHR). But EHR databases are
noisy, contain only an incomplete, approximate view of a patient, and are observational,
meaning any conclusions drawn from the data may be confounded. Consequently, robust yet
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ii Abstract

sensitive causal discovery methods are needed, ones that can control for confounding and
are scalable enough to search large databases for evidence of unknown causal relationships.
The following chapters describe several methods for causal discovery that aim to meet these
criteria.

Chapter 1 introduces the problem, and Chapter 2 provides some background on causal
inference, ADE discovery, and the ADE identification task set by the Observational Medical
Outcomes Partnership (OMOP).

Chapter 3 introduces temporal Markov networks (TMNs), which are undirected, log-
linear probabilistic graphical models. Through their use of flexible feature functions, TMNs
are especially suited to modeling irregular, sparse, and noisy sequences of events such as
patient histories in EHRs. By fitting the parameters of an undirected TMN to a data set
of event sequences, one can learn the structure of a directed causal model, in this case a
dynamic Bayesian network (DBN). One can then query the TMN or the derived structural
causal model to estimate the likelihood of various potential ADEs. TMNs are scalable to
large data sets because only one pass over the data is required to compute the necessary
sufficient statistics. Fitting aTMN is reasonably quick and results in a globally optimalmodel
because it formulates the structure learning problem as a smooth, convex optimization. This
is in contrast to the combinatorial complexity and susceptibility to local optima of typical
Bayesian network structure learning algorithms. However, like all observational studies and
most machine learning methods, possible ADEs must already be suspected, defined, and
measured.

Chapter 4 describes a method for identifying and hypothesizing ADEs by learning rules
via inductive logic programming. The rules are learned directly from the relations (tables)
in a database, without needing to transform the data into a single table as is required for
most machine learning methods. In the context of a self-controlled study design based on a
drug, the learned rules describe commonalities in patients that could be adverse effects. A
causally-motivated scoring function then evaluates the ADE likelihood of each rule, thereby
identifying known ADEs and hypothesizing new ones.

Chapter 5 explores a wider range of causally-motivated scores based on temporal depen-
dence, comparing them to computational epidemiology methods on the task of identifying
ADEs. The effects of confounding are reduced by adjusting the scores with a Markov
network fit to the data.

Chapter 6 presents temporal inverse probability weighting (IPW), a method for causal
discovery that extends regular IPW to the analysis of controlled before–after studies with
off-the-shelf machine learning classifiers. The before–after studies compare two treatments
to controls and reduce confounding through self-control and the matching inherent in similar
treatments. This makes the method especially suited to discovering ADEs that are specific
to the generic version of a drug. Because ADEs in generics are likely to be unanticipated,
the method is able to hypothesize new effects as it learns to differentiate between brand and
generic versions of a drug.
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Chapter 1

Introduction

For millenia, humans have wondered why things happen. Led by curiosity, they have ob-
served and manipulated their environments in an effort to understand the causal mechanisms
underlying reality. Yet, it is only over the last one and one-half centuries—well after the
Renaissance, the Scientific Revolution, and the Age of Enlightenment—that the study of
causality has gone beyond natural laws (Newton, 1687) and philosophy (Hume, 1740), and
has begun to be formalized in fields such as statistics (Good, 1961; Suppes, 1970), epi-
demiology (Hill, 1965), and artificial intelligence (Pearl, 1988). Within AI, researchers
have argued that incorporating causality into learning and reasoning algorithms is crucial
for reliable progress to occur (Pearl, 2009; Peters et al., 2017; Bengio et al., 2019). Despite
many foundational advances (e.g., Pearl, 1988; Spirtes et al., 2000; Pearl, 2009), accurate
causal learning remains a challenging task, in part owing to the combinatorial nature of re-
lationships between many variables, the difficulties of probabilistic reasoning and statistical
inference, and the intrinsic limitations of observation as a source of information. These
challenges define the core problems of computational causal discovery from observational
data.

One application of computational causal discovery is discovering adverse drug events
(ADEs) in electronic health records (EHR) data. The pharmaceutical industry, consumer
protection groups, takers of medications, and government oversight agencies are all strongly
interested in identifying adverse reactions to drugs. Adverse reactions may account for
10–30% of hospital admissions, with estimated costs of $30 billion or more annually in the
U.S. alone (Lazarou et al., 1998; Sultana et al., 2013). Soberingly, half of the 180k annual
life-threatening or fatal ADEs could have been prevented (Gurwitz et al., 2003). Although
the U.S. Food and Drug Administration (FDA) and its counterparts elsewhere have rigorous
approval processes for drugs that involve clinical trials, such processes cannot uncover
everything about a drug. A clinical trial might enroll one thousand patients, but millions
of patients may take a drug once it is released on the market. As a result, in many cases
ADEs are observed in this larger, more diverse population that were not identified during
the clinical trials. The scale of this problem and the unreliability of patient reporting create
a need for continuous, automatic postmarketing surveillance of drugs to identify previously
unanticipated ADEs.

However, the only reasonable data sets for such surveillance are observational, not
experimental (see Chapter 2). It would be unethical to conduct a randomized controlled
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2 Chapter 1. Introduction

trial to find ADEs if a drug were suspected of being substantially harmful. Moreover, the
rarity of ADEsmakes large sample sizes necessary for detection, but trials of the appropriate
scale would be prohibitively expensive. Thus, EHR or health insurance claims databases are
typically the only data sets available that are ethical and large enough. But the observational
nature of the data means that any inferences drawn from the data may be confounded. So,
for an algorithm to successfully detect ADEs, it must be able to adjust for confounding.

Observational data is normal for machine learning, but in EHR databases the data is
also temporal and relational. Since most standard machine learning algorithms expect a
single table of data, either the data needs to be transformed into a single table by joining
or aggregating, which ruins the frequencies or details of the information, or specialized
algorithms are required that are able to learn from the data in its native format. Furthermore,
the data in EHR databases was collected for medical care and billing, not research, so the
data presents a limited, sporadic view of patients, one that is often inaccurate. In order to
successfully detect ADEs in such large, noisy data, an algorithmmust be scalable and robust
yet sensitive.

Most approaches to causal inference, including observational studies and structural
causal models, assume that the possible effects are already defined, but in many cases the
possible ADEs are not known nor even suspected. In such cases of genuine causal discovery,
the possible effects must be hypothesized as well as estimated. But even algorithms that
can hypothesize effects must be careful because any events that are associated with both
the exposure and the outcome are likely to be hypothesized as part of an effect, but they
might actually be confounders. For example, a machine learning algorithm might see more
myocardial infarctions (MIs) in patients taking beta blockers compared to patients not taking
beta blockers, and hence hypothesize that beta blockers are a cause of MI when in fact they
help prevent MI-related deaths.

In total, to overcome these difficulties of ADE discovery, a method must be causally-
aware and able to handle confounders, scalable and able to handle themessiness of EHRdata,
and have good statistical properties: sensitivity, specificity, and robustness. Additionally,
when the goal is genuine discovery rather than detection of suspected ADEs, a method must
be able to hypothesize effects.

Unsurprisingly given these requirements, previous work has only addressed parts of
the task. Standard machine learning algorithms were never designed to infer causal rela-
tionships. While designed for causal inference and theoretically justified, structural causal
models are not known for being scalable, in terms of data size or the number of variables.
Observational studies are also theoretically justified and they scale well, but, like the rest,
it is left to the investigator to hypothesize effects. Relational rule learning can hypothesize
effects but it tends to be statistically unsophisticated and not very scalable. Clearly, all of
these approaches have shortcomings. But they also have strengths that, when combined,
may lead to new approaches with the potential to overcome many of the existing challenges
of causal discovery.

1.1 Thesis

Motivated by the innateness of causal reasoning, the relevancy of discovering ADEs, and the
natural occurrence and ubiquitousness of observational data, this work introduces methods
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for causal discovery that support the following, broad argument:

Methods that are causal, scalable, and that can learn from irregular, sparse, and
noisy sequences of events will discover effects more accurately than methods
that ignore one or more of those aspects. Furthermore, methods that can
hypothesize effects will improve genuine causal discovery by overcoming the
limitations of human imagination and bias.

In particular, causal relationships can be learned scalably from event sequences by
learning temporal Markov networks (Chapter 3), but, like all structural causal models, they
expect all effects to already be defined. To overcome this restriction, ADEs can be invented
with relational rule learning (Chapter 4). Coupled with causally-aware and efficient-to-
evaluate scores (Chapter 5), relational rule learning does well at recovering known ADEs
and drug–drug interactions. Unfortunately, the learned rules often contain indications for the
drug and other potential confounders. Analyzing before–after studies with temporal inverse
probability weighting (Chapter 6) offers better control of confounding while still being able
to invent effects and efficiently process messy EHR data. Overall, these methods bring
together ideas from observational studies, formal causal modeling, and machine learning to
improve on the tools available for accurate causal discovery from observational data.





Chapter 2

Background

Research into causal discovery from observational data has a rich history, of which Holland
(1986) gives a good overview. Over time, two main schools of thought have developed:
potential outcomes (Imbens and Rubin, 2015; Hernán and Robins, 2020) and structural
causal models (Pearl, 2009; Peters et al., 2017). The framework of potential outcomes
provides the formal grounds in statistics for drawing causal inferences from the results of
experiments or nonexperimental (observational) studies. Structural causal models extend
this framework to formal, statistical models of general causal systems, but were developed
in other fields such as genetics, economics, and artificial intelligence.

2.1 Experiments and Observational Studies

The “gold standard” for causal evidence is an experiment where the conditions are care-
fully controlled to ensure comparability between experimental groups when the outcome is
measured. Control can be accomplished by intervention, making the experimental condi-
tions fixed and uniform, or by randomization, which ensures that assignment to treatment is
not influenced by outside factors and which helps to avoid systematic differences between
experimental units. Under both intervention and randomization, the goal is to make sure
that the only differences between study groups are solely due to the treatments and not
any other factors. Any such factor that can affect both the treatment and the outcome is a
confounder. Confounders are a problem because they distort the measurement of the effect
that the treatment has on the outcome if they are not properly accounted for. It is because
experiments cannot be confounded that they are the best causal evidence.

However, there are situations where intervention and randomization are unethical or
impossible. For example, it is unethical to assign (randomly or otherwise) a person to a
study group where the treatment is known to be harmful, like smoking. Similarly, it is
impossible to study the weather by intervening to control the global atmospheric conditions.
In such situations, an investigator must use an observational study.

Observational studies, also known as nonexperimental studies or quasi-experimental
designs, compare two or more study groups based on data collected by observation only.
Because they are nonexperimental, observational studies must control for confounding after
the fact. To adjust for potential confounders, they try to make the study groups as similar
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6 Chapter 2. Background

as possible and avoid any systematic differences between groups. This can be done by
matching, stratification, or propensity score methods.

However, without sufficient knowledge of the true underlying causal system, the inves-
tigator’s analysis risks going astray. This can happen by adjusting for variables that are
not actually confounders, which introduces bias into the measurement of the effect, or this
can happen by not observing variables that are confounders, which means they cannot be
adjusted for. Without omniscience, the possibility of unobserved confounders always exists,
meaning that the investigator can never be sure that estimates are unbiased and true, although
sensitivity analyses can bound the potential effects of confounders. This unescapable doubt
about the true causality is what makes observational studies lesser causal evidence.

2.2 Causal Inference
The complexities of causal inference described above can best be illustrated in the context
of a concrete example. Imagine an investigator wants to measure the effect of a treatment
X , administering antipsychotics to a patient, on an outcome Y , whether that patient has a
heart attack within a week. Both X and Y are binary random variables taking values in
{0,1}, where X = 1 means antipsychotics were administered, Y = 1 means the patient had
a heart attack, and zero means the opposite in each case.

2.2.1 Potential Outcomes

In this scenario, the investigator wants to know whether X causes Y , or, equivalently,
whether Y depends on X , expressed as Y ∶= f(X) or sometimes as Y (X). Applying
experience from the real world, the investigator might try to determine f , the relationship
betweenX and Y , by comparing the outcomes Y under different settings ofX , perhaps by
(unethically) convincing a patient to take the drugs. The patient takes the antipsychotics and
has a heart attack, but would not have had a heart attack had they not taken antipsychotics.
For this patient Y (X = 1) = 1 and Y (X = 0) = 0. Now imagine a second patient who takes
antipsychotics and has a heart attack, but that would have had a heart attack regardless of
the antipsychotics. For the second patient Y (X = 1) = 1 but Y (X = 0) = 1. Based on
this knowledge, the individual causal treatment effect, Y (1) − Y (0), for the first patient is
1, but the individual effect for the second patient is 0. Were the investigator to have this
knowledge, they could answer their question aboutX and Y , at least for these two patients.

However, a patient can have only one of the treatments at a time, and can only experience
one of the outcomes given that treatment.1 Thus, the investigator cannot measure the
individual treatment effect because it depends on the result of something that, in fact, did
not happen, a counterfactual. Nevertheless, by assuming that different patients will respond
in the same way to the same treatment,2 the investigator can allow the outcomes of other
patients to stand in for the unobservable outcomes, and thereby determine the causal effect
of X on Y with respect to the average in that group. Because of the uncertain nature of
the outcomes, this framework for causal inference is known as “potential outcomes,” or
sometimes “counterfactual outcomes.”

1 The same patient at different times is considered to be separate experimental units.
2 This is known as the stable-unit-treatment-value assumption or SUTVA (Rubin, 1980; Hernán and Robins,

2020), and is typically unrealistic.
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Figure 2.1: Causal models illustrating the variables and relationships in observational
studies, randomized controlled trials, and experiments.

2.2.2 Structural Causal Models

While potential outcomes provide the framework for causal inference in statistics, it does
not immediately have much to say about the context ofX and Y , and that is where structural
causal models come in. Returning to the antipsychotics and heart attack scenario, imagine
the true underlying causal system has effects according to the arrows in Figure 2.1(a).
Variables besidesX and Y are also in the environment: B is a set of background variables
that cannot be manipulated (like genetics), C is a set of observed confounders, U is a
set of unobserved confounders, and E is a set of shared, downstream effects (but that
the investigator suspects might affect X and/or Y ). This causal system has an equivalent
functional representation known as a structural equation model, even though the “equations”
are actually formulas that represent one-way causal relationships, not algebraic identities.
The formulas for Figure 2.1(a) follow, where the εs are noise variables that incorporate
unobserved influences and intrinsic random variation.

B ∶= fB(εB) (2.1) C ∶= fC(B, εC) (2.2)
X ∶= fX(B,C, εX) (2.3) Y ∶= fY (C,X, εY ) (2.4)
E ∶= fE(X,Y, εE) (2.5)

In a randomized controlled trial, units are randomly assigned to the various treatments,
and X is fixed at those treatment values (“levels”). This manipulation of X is indicated by
the doubled circle in Figure 2.1(b). Randomization removes the possibility of any outside
influences on the value of X , which, once the value x of X has been fixed, is expressed
by replacing Equation 2.3 with X ∶= x. Naturally, manipulating X does not stop it from
influencing other variables, and those effects are what one wants to measure.

In an experiment with a controlled environment, steps are taken to fix all the suspected
influences on Y and thereby isolate it from the environment as shown in Figure 2.1(c). After
substituting fixed values, the updated formulas for the causal system are:

B ∶= fB(εB) (2.6) C ∶= c (2.7)
X ∶= x (2.8) Y ∶= fY (c, x, εY ) (2.9)
E ∶= e (2.10)
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Y is now a function of specific values, which allows the investigator to focus on estimating
the form of fY . Furthermore, the only sources of noise are now εY and whatever variation
is intrinsic to fY . While Y can still be influenced by unknown outside factors (through εY )
in a study with interventions, those factors cannot confound the relationship betweenX and
Y because they cannot affect X .

On the other hand, no such interventions can be done in an observational study, leaving an
investigator or algorithm to handle the complications of all the relationships in Figure 2.1(a).
While the effects of B and C can be controlled for, since X cannot be fixed, it is always
possible that someU may affect bothX and Y , leaving their true relationship in doubt. Note
thatE can safely be ignored because it is downstream from bothX and Y . Indeed, adjusting
for E introduces bias because conditioning X and Y on a particular value of E introduces
dependence betweenX and Y . This consequence can be seen by letting the functional form
of each formula be a conditional probability distribution and then comparing P (Y ∣ X) to
P (Y ∣X,E = e).

Letting each function be a conditional probability distribution results in a Bayesian
network (BN). For example, the BN for the graph in Figure 2.1(a) has a distribution for
each variable that is conditioned on its parents in the graph, and the joint distribution is the
product of the individual conditional distributions:

P (B,C,X,Y,E) = P (B)P (C ∣ B)P (X ∣ B,C)P (Y ∣ C,X)P (E ∣X,Y ) (2.11)

Because the structure of this BN is the same as that of the causal system it represents, it
becomes a structural causal model rather than merely a probabilistic graphical model. Thus,
with causal BNs, probabilistic inference can be used to answer causal queries, including
queries about the effects of interventions. However, queries about interventions must be
asked of a BN that represents the intervention, that is, a BNwhere the conditional probability
distribution of each manipulated variable has been replaced with its fixed value as was done
previously for the formulas. Under this perspective, Figure 2.1 shows the graphs for causal
BNs that correspond to studies with the given manipulations.

Probabilistic inference also answers the question of how to properly adjust for observed
confounders: just answer the query P (Y ∣ X,Z) with a causal BN and the appropriate
conditioning set Z. The structure of the BN shows what variables need to be included in
Z and which of them need to be observed to make an unbiased calculation of P (Y ∣ X):
those that separate, and thereby make independent,X and Y from all unobserved variables.
Of course, this is only accurate if the structure of the BN accurately reflects the structure of
the causal system.

Unobserved confounders still pose a problem that is hidden by the algebraic notation
(but not the graphs). The crucial assumption of BNs is that the conditional distributions
are independent from one another (that the factorization of the joint distribution is correct).
The analogous assumption in structural equation models is that all the noise variables are
independent. Unobserved confounders introduce dependence among the noise variables
or conditional distributions, thus ruining the intended independence of the mechanisms
represented by the formulas or conditional distributions.
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2.2.3 Machine Learning

One might think that machine learning (ML) is immune to the considerations of causal
inference, but the data for most ML tasks is observational. Consequently, researchers
implicitly conduct observational studies when running ML algorithms, so their conclusions
are subject to bias and confounding in the same ways as any other observational study.
Thus, incorporating knowledge and techniques from causal inference into ML can only help
to improve ML practice. For example, selecting features based on the underlying causal
system yields sets of features that are more accurate and parsimonious (Guyon et al., 2007;
Aliferis et al., 2010).

2.3 Inductive Logic Programming (ILP)

Inductive logic programming is an approach to inducing rules in the form of logical clauses.
The rules are learned from multiple tables (relations) as are typically found in relational
databases. Each relation contains tuples (rows) which are the facts from which rules are
assembled. To form a rule, the tuples are connected through variables that represent shared
identifiers or values. At least one of the variables represents the objects being classified and
connects back to a set of identifiers that define the positive and negative examples for the
classification task. Introductions to logical rule learning can be found in Russell and Norvig
(2003), Mitchell (1997), Getoor and Taskar (2007), and De Raedt (2008).

2.4 The OMOP ADE Identification Task

2.4.1 Drug Safety Surveillance

When developing a drug, the last stage before submission for approval by the U.S. Food
and Drug Administration (FDA) is a clinical trial that demonstrates the drug’s efficacy and
safety. Such a trial is usually conducted on a study population of about 1000 people. While
1000 people provides good statistical power for detecting common or large effects, many
more people, possibly millions, will take the drug once it is on the market. Inevitably,
certain people will respond to the drug in ways not discovered during the trial, possibly
in adverse ways. A well-known example of such an adverse drug event (ADE) is the pain
management drug rofecoxib (Vioxx) causing increased risk of myocardial infarction (heart
attack).

The FDA has a voluntary reporting system, the Adverse Event Reporting System
(AERS), for these types of ADEs. The AERS collects “spontaneous” reports: anyone
who believes they have experienced or witnessed an ADE makes a descriptive report of the
events and submits it to the FDA. The FDA monitors these reports for systematic trends and
may decide to conduct a safety investigation given accumulating evidence of harm. This
reporting system has many flaws centering around the subjective and sporadic nature of its
reports. A better system would be more automatic, accurate, timely, and reliable.

The need for such a better system and its value in improving drug safety has been recog-
nized for some time. In 2005, the U.S. Department of Health and Human Services asked the
FDA to expand and improve its ability to monitor the performance of medical products. In
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Table 2.1: OMOP task ground truth drug–condition pairs. DoI: drug of interest, HoI: health
outcome of interest, GI: gastrointestinal, MI: myocardial infarction, A: ADE, n: non-ADE,
B: benefit.
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ACE inhibitors A n n n B
amphotericin B n A n n n n
antibiotics n A n n n n
antiepileptics n n A n n
benzodiazepines n n n n A n n
bisphosphonates n n n A n
tricyclic antidepressants n n n A n
typical antipsychotics n n A
warfarin n n n n A n
beta blockers n n n n n n B

2007, Congress passed legislation3 mandating that the FDA plan and implement an active
surveillance system, which is an automatic reporting system that constantly monitors in-
coming data for signs of ADEs. As a result, in 2008 the FDA created the Sentinel Initiative
(U.S. Food and Drug Administration, 2008) to manage this project.

One of the organizations involved in the Sentinel Initiative was the Observational Med-
ical Outcomes Partnership (OMOP) (Stang et al., 2010). OMOP was a public–private
partnership tasked with developing the framework and methods necessary for an active
surveillance system for ADEs. OMOP developed a common data model for integrating
various sources of medical data, collected data from several organizations, and worked on
methods for analyzing the data to search for ADEs. OMOP made their data available to
research partners to use in developing ADE identification methods. OMOP also made their
research methods available to other organizations who wished to search their own data for
ADEs. These activities now continue under the Observational Health Data Sciences and
Informatics (OHDSI) program (Hripcsak et al., 2015).

2.4.2 The OMOP Task

OMOP was interested in characterizing associations between drugs and conditions to de-
termine if they were possible ADEs. They defined ten drugs of interest (DOIs) and ten
health outcomes of interest (HOIs), which are listed in Table 2.1. The Cartesian product of
these drugs and conditions forms a set of pairs whose associations are of interest. Based
on known ADEs and the medical literature, OMOP defined 9 of these pairs as true ADEs,

3The Food and Drug Administration Amendments Act of 2007 (FDAAA).
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42 as non-ADEs, and 2 as known benefits. The remaining pairs were considered unlabeled.
There is evidence that some of the unlabeled pairs may actually be ADEs as well, such as a
possible association between ACE inhibitors and renal failure, so treating them as additional
negative examples would introduce noise into the labels. Estimating the causal relationship
of each drug–condition pair was the OMOP task, which was often simplified to classifying
each drug–condition pair as an ADE (after ignoring the two known beneficial effects).

While the primary OMOP task was assessing the ADE likelihood of the specified drug–
condition pairs, the intention was to apply successful methods to the actual problem of
active ADE surveillance. Methods were applied to all pairs of drugs and conditions in a
database to see what associations they could find. The most confident of these associations
were then evaluated by clinicians and possibly selected for further investigation.

2.4.3 The Common Data Model

OMOP’s ADE surveillance methods were designed to operate on data in the form of the
common data model (CDM). The CDM consists of the types of data typically included
in databases of electronic medical records (EMRs) or electronic health records (EHRs),
as illustrated in Figure 2.2. All the relations (tables) except patient demographics have
associated timestamps or time intervals. OMOP curated several databases in this format
drawn from various sources such as administrative claims, insurance, and computerized
medical records systems.
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Patient Demographics
Patient Name DOB DOD Sex Eth

012298 John Snow 1813-03-15 1858-06-16 M W
229049 Rachel Carson 1907-05-27 1964-04-14 F W
628136 Alan Turing 1912-06-23 1954-06-07 M W

Vital Signs
Patient Time Ht Wt ○C BP HR Resp

304525 2004-05-24 19:57:50 1.42 61.2 36.7 104/64 63 13
829533 2006-02-09 05:01:56 1.64 89.6 36.8 111/74 84 16
035194 2011-09-30 20:20:52 1.96 77.9 39.3 108/66 75 12

Genetics
Patient 1 2 3 . . .

185169 aa aa aa .
292825 aa bb ab .
496246 ab aa bb .

Enrollment
Patient Start End Ins

438802 2002-08-21 2007-12-18 GH
621929 2008-04-20 2011-07-17 UW
896880 2010-06-26 - KP

Conditions
Patient Condition Date

281715 liver failure 2001-02-11
148098 GI ulcer 2004-08-26
181791 hip fracture 2007-03-02
367732 MI 2010-12-14

Procedures
Patient Procedure Date

750811 ecg 2004-04-18
234100 urine 2006-07-02
774789 cbc 2009-04-16
601764 lipids 2011-05-15

Drugs
Patient Drug Start End

238336 beta blockers 2005-03-06 2005-09-02
181791 benzodiazepines 2006-06-20 2007-03-17
323172 beta blockers 2008-11-18 2009-05-17
281715 warfarin 2009-12-20 2010-12-19

Laboratory Results
Patient Lab Date Value Range Code

990513 tsh 2001-12-28 - - lo
684403 rbc 2003-09-17 5.7 4.2–6.1 ok
133352 wbc 2004-07-25 12.0 4.5–10.0 hi

Figure 2.2: Example of data in an electronic medical records (EMR) database.



Chapter 3

Causal Structure Learning via
Temporal Markov Networks

Having introduced the typical approaches to causal discovery and the ADE identification
problem, this chapter introduces causal structure learning based on dynamic Bayesian
networks. Using observational data, this method learns structures scalably, by making only
a single pass over the data and by formulating the structure learning problem as a convex
optimization problem, which can then be solved efficiently with common optimization
algorithms. The method is implemented with a flexible, log-linear modeling approach that
works well with the vagaries of electronic health records data.

3.1 Introduction
To understand how events unfold, scientists often analyze time series data with dynamic
Bayesian networks (DBNs) (Dean and Kanazawa, 1989). Even when conditions are ideal—
the data are available with the right time intervals and the right Markov order is selected for
the DBN—learning the structure of the relationships between variables is a combinatorial
problem. The enormous search space (Robinson, 1973, 1977) prevents a complete search,
and the non-convexity of the likelihood prevents guarantees about the quality of the solution.
Thus, a heuristic or greedy search is frequently employed.

The setting above is the classic search-and-score Bayesian network (BN) structure
learning setting as introduced by Cooper and Herskovits (1992). Some algorithms, such
as sparse candidate (Friedman et al., 1999), choose to manage the complexity of structure
learning1 by limiting the number of candidate parents to k for each of the n nodes. The
result is a subset selection problem that has combinatorial complexity, ∑ki=1 (

n
i
), which

is polynomial complexity of order k but tends to exponential complexity (2n) as k → n.
Searching for subsets of size at most k is certainly better than searching over all of the 2n
subsets of the nodes, but it can still be extremely limiting in domains with networks of high
degree, such as in biology. Other algorithms, such as K2 (Cooper and Herskovits, 1992) and
that of Shojaie and Michailidis (2010), choose to presuppose an ordering of the variables.
This requires strong assumptions or background knowledge, or it just exchanges the search

1 Throughout this chapter, “complexity” refers to the complexity of structure learning only, excluding
probabilistic inference.

13
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over directed acyclic graphs (DAGs) for a search over permutations of variables (Teyssier
and Koller, 2005).

Constraint-based methods also suffer from combinatorial complexity. Markov blanket
induction (Aliferis et al., 2010), the PC algorithm (Spirtes et al., 2000), and the polynomial
min-max skeleton algorithm (Brown et al., 2005) all search for possible separating sets.
This is the subset selection problem rederived. In these cases, greedy search over subset
members can be used to address the complexity but at the loss of accuracy. Constraint-based
methods have additional problems with testing multiple statistical hypotheses and with the
possible cascade of errors inherent in their greedy or sequential decision-making processes.

Greedy equivalence search (GES) (Chickering, 2002) may appear to avoid all of these
difficulties by guaranteeing to find the optimal equivalence class after only a forward and
backward pass (assuming faithfulness and infinite data), but it is still combinatorial. The
number of neighboring search states encountered at each step can be exponential because
adding or deleting edges involved in V-structures again faces a subset selection problem.

I propose to avoid the combinatorial nature of these search algorithms by reformulating
the structure learning problemas a smooth, convex, non-combinatorial optimization problem
in a log-linear model: first use a temporal Markov network (TMN) to learn the undirected
skeleton and then direct the edges with time. TMNs provide a way to handle sequences of
irregular events (which is important for analyzingmedical data), and the optimization jointly
estimates all the edges, avoiding issues of multiple testing and sequential decisions. Further,
the quality of the model can be assessed by measuring the difference between the current
model and the unique global optimum. Lee et al. (2006) harness the same optimization
benefits, but they only learn an undirected skeleton, one that may be biased by using a
L1-regularizer. The proposed method learns the correct structure and is unbiased in the
limit of the data (Theorem 3.5, p. 20).

3.1.1 ADE Discovery

Identifying adverse drug events (ADEs) is the causal task that motivates this work. In
the USA, ADEs are estimated to be the fourth leading cause of mortality, affecting more
than 2 million people each year and incurring $136 billion in additional medical care
(U.S. Food and Drug Administration, 2009). To combat this problem and improve patient
safety, the Observational Medical Outcomes Partnership (OMOP) led research into drug
safety surveillance methods by developing an ADE identification task (Figure 3.1, p. 15)
and making electronic medical records (EMR) data sets (Figure 3.3, p. 25) available to
researchers in a laboratory.2

One of the challenges of identifying ADEs is that it is an inherently causal task, and so
requires appropriate methods. Causal methods fall into two broad categories: observational
studies (e.g., cohort and case–control studies) and structural causal models (SCMs) (Pearl,
2009; Spirtes et al., 2000), such as causal BNs (Figure 3.1(a)). With SCMs, causal discovery
becomes a structure learning problem. While most of the work on the OMOP ADE task
has focused on observational studies (e.g., Ryan et al., 2012), a contribution of this work
is the application of machine learning to the task: learning the structure of causal DBNs
(Figure 3.1(b)).

2 This work now continues under the Innovation in Medical Evidence Development and Surveillance
(IMEDS) and Observational Health Data Sciences and Informatics (OHDSI) programs.
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Table 3.1: Events (random variables) that make up the causal pairs of the OMOP ADE task.
Additional negatives are non-ADE drug–condition pairs among the same events.

Drug Condition Label

A ACE inhibitors E angioedema +
T amphotericin B R acute renal failure +
I antibiotics L acute liver failure +
P antiepileptics S aplastic anemia +
Z benzodiazepines F hip fracture +
Φ bisphosphonates U upper GI ulcer +
D tricyclic antidepressants M acute MI +
Y typical antipsychotics M acute MI +
W warfarin B bleeding +
β beta blockers X mortality after MI −

N NSAIDs H hypertension

H

A

W

E

B

N

(a) Causal BN
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H3

N3

W3
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(b) Equivalent DBN

Figure 3.1: A real-world causal network and its equivalent unrolled DBN. The variables are
those of the OMOP ADE task (Table 3.1).

The challenges of causal discovery are amplified in the EMR realm where the data is a
messy collection of events. Patients interact with the medical system sporadically, on their
own initiative, and usually only when they are ill, not when they are well. While EMR
data contains thousands of variables describing the state of a patient’s health, only a few
are recorded at any visit. Thus, observations of a patient are irregular, subject to large time
gaps, and very sparse. Furthermore, they are noisy and biased by patient health, by hospital
procedure, or by convenience. Of course, EMR data is observational and so also susceptible
to confounding.

3.1.2 Contributions

Learning the structure of causal DBNs is difficult due to the combinatorics of deciding
which edges to include. This difficulty is worse when learning from EMR data, which is
irregular, noisy, and sparse, and thus lacks the regular, full observations needed for DBN
learning. Causal structure learning via TMNs addresses these problems by (1) learning the
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directed structure using an undirected model, wherein the parameters indicate the edges and
learning the parameters is a convex optimization problem, and (2) using features to model
the irregularity, sparsity, and temporality of EMR data. As far as we are aware, combining
structure learning via parameter learning and coarse temporal modeling is novel, and the
results show that it is effective for causal structure learning.

3.2 Background

3.2.1 Related Work

While many methods could be used to identify ADEs in longitudinal data—ranging from
graphical Granger methods (Arnold et al., 2007) to computational epidemiology (Simpson
et al., 2013)—BN structure learning will be the focus here because of its potential to yield a
SCM. Algorithms such as PC and fast causal inference (Spirtes et al., 2000) measure condi-
tional independence to detect provably causal structures, but noise can affect independence
tests and lead to a cascade of errors. Score-based BN structure learners (e.g., Heckerman
et al., 1995) avoid these problems but are not guaranteed to learn a causal structure (although
they may do so under certain conditions (Meek, 1997)). Local learners determine the neigh-
borhood or the Markov blanket of each node before stitching them together (Margaritis and
Thrun, 1999; Tsamardinos et al., 2003; Niinimäki and Parviainen, 2012). Aliferis et al.
(2010) show that these “grow-shrink” algorithms can be sound and complete and therefore
causal. A related algorithm learns an undirected skeleton with a local search method and
then directs the edges in a greedy hill-climbing search (Brown et al., 2005).

Other, non-causal BN structure learning methods directly address the combinatorial
optimization by using dynamic programming (Koivisto and Sood, 2004) or any-time,
branch-and-bound search (de Campos et al., 2009). Similar linear programming approaches
(Jaakkola et al., 2010; Cussens, 2011) operate in a continuous optimization space, but
finding an integral solution to the relaxation may require combinatorial search.

Learning undirected structures over temporal variables, as is possible in the DBN setting
where the temporal order of variables is given, opens the door to non-combinatorial structure
learning algorithms. The classic example of such an algorithm is selection of Gaussian
graphical models, where the zeros in the inverse covariance matrix indicate the absence
of edges (Lauritzen, 1996). The same ideas have been developed for discrete variables,
including methods for nodewise structure learning using L1-regularized regression (Loh
and Wainwright, 2013). In contrast, this method directly uses the zero parameters to
indicate conditional independence, as in Liu and Page (2013) and Lee et al. (2006), but it is
unbiased and also addresses the recovery of directed models.

3.2.2 Probabilistic Graphical Models

A probabilistic graphical model (PGM) is a model of a probability distribution over a set of
random variables X = {X1, . . . ,Xn} that uses a fixed graph G to represent the conditional
independence relationships of the distribution. In a PGM, each variable corresponds to a
vertex in G.

The structure of a distribution refers to its factorization and conditional independence
properties, which are related as follows (Lauritzen, 1996; Koller and Friedman, 2009; Loh
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and Wainwright, 2013). These statements lay the foundation for Theorem 3.5 (p. 20), one
of the main contributions of this research.

Definition 3.1 (Factorization property). A distribution P (X) factorizes according to an
undirected graph G if its density can be expressed as a product of non-negative potential
functions on the cliques C of G.

P (X)∝∏
c∈C

ψc(Xc) (3.1)

Definition 3.2 (Global Markov property). XA áXB ∣XS if and only if S separatesA from
B in G.

Theorem 3.3 (Proposition 3.8 (Lauritzen, 1996)). For any undirected graph G and any
probability distribution P on X , it holds that the factorization property implies the global
Markov property.

3.3 Temporal Markov Networks
This chapter introduces temporal Markov networks (TMNs), a type of log-linear PGM
with feature functions for modeling timelines. TMNs are motivated by the need for a
probabilistic causal model of EMR data, which does not have (1) synchronized timing of
a consistently-observed set of events, as assumed by DBNs and other time series methods
(e.g., Granger, 1969; Arnold et al., 2007), nor (2) detailed patient state and reliable timing
of events, as needed by continuous time Bayesian networks (Nodelman et al., 2002) and
piecewise-constant conditional intensity models (Gunawardana et al., 2011).

3.3.1 Timelines

A timeline (sequence) S is a set of random variables X = {X1, . . . ,Xn} that occur over a
set of times T : S = {Xi,t ∶ (Xi, t) ∈ X × T }, as in Figure 3.2(a) (p. 18). Each Xi,t is a
point event, so a timeline is equivalently a sequence of event tuples (t,Xi, x), where t is
the time of occurrence,Xi is the event type, and x is its observed value. This is the form of
typical EMR data, with such a sequence for each patient. This work considers only discrete
times T ⊆ Z0+ and binary variables3 (event occurrences) as in Figure 3.2(b). A condensed
timeline (Figure 3.2(c)) includes only observed events as a sequence of timesteps. It is
constructed by ignoring empty timesteps, discarding durations between events, and treating
the remaining timesteps in sequence.

3.3.2 Log-Linear Model

Definition 3.4 (Temporal Markov network (TMN)). A TMN is a tuple (X,F, θ), whereX
is a set of event types (random variables), F is a set of binary feature functions fi(Xi ⊆X) ∶
Xi ↦ {0,1}, and θ ∈ R∣F ∣ is set of weights corresponding to the features. A TMN defines
a probability distribution over timelines S through the log-linear model in Equations 3.2

3 While this may seem limiting, any discrete variable can always be encoded with binary indicator variables
(Loh and Wainwright, 2013).
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1 2 3 4 5

(c) Condensed

Figure 3.2: Various forms of a sequence of events (timeline) as might be observed from a
process like Figure 3.1(a) (p. 15).

and 3.3 (e.g., Koller and Friedman, 2009), where fi ∈ F and θi ∈ θ. The features must
be (1) hierarchical: the variables in each feature define a clique and the cliques induce a
graph G; in order to be hierarchical, F must contain a feature for each (sub-)clique in G
(Lauritzen, 1996); and (2) temporal: F must include at least some features for temporal
order or succession (see §3.3.3).

P (S = s) = 1
Z

exp(∑
i

θifi(s)) (3.2)

Z =∑
s∈S

exp(∑
i

θifi(s)) (3.3)

While being a log-linear model ensures that a TMN always represents a well-defined prob-
ability distribution, the additional semantics of a TMN depend on its features, as explained
below.

3.3.3 Feature Functions

The following temporal indicator features model the most salient aspects of timelines as
logical predicates. They are designed to capture the main effects of the events and their
interactions, both temporal and atemporal. In the notation, S is a timeline, T is a timestep,
X , Y , Z are events, uppercase indicates variables, and lowercase indicates instantiated
values. When used in a TMN, the features are instantiated (fS(⋅) ↦ fi(S)) for each non-
redundant combination of events and times. For example, co-occurrence ignores order, so
fS(w, b) and fS(b,w) are redundant, but fS(w → b) and fS(b → w) are ordered, so they
are not redundant. Note that both fS(w → b) and fS(b → w) can be true of the same
sequence as shown in Figure 3.2.

• event, fS(x): true if event x occurs in S (atemporal)
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• event@, fS(xt): true if event x occurs at t in S (atemporal)
• co-occur, fS(x, y): true if events x and y occur in S (atemporal)
• co-occur@, fS(xt1 , yt2): true if x occurs at t1 and y occurs at t2 in S (temporal)
• before, fS(x→ y): true if x and y occur in S and x occurs before y (temporal)
• before-δ, fS(xT → yT+δ): true if x and y occur in S and x occurs δ timesteps before y
(temporal)

• before3, fS({x, y} → z): true if x, y, and z occur in S and both x and y occur before z
(temporal)

The “@” features are anchored to specific timesteps, but the other features float. Floating,
being less specific than anchoring, ties parameters across timesteps andmakes an assumption
of stationarity. All the floating features except before-δ span any number of timesteps,
allowing them to capture short- and long-range effects. The before3 feature exists to model
temporal V-structures.

Depending on the choice of features and the parameter tying they induce, TMNs can
represent undirected analogs of BNs, DBNs, and event networks (Arroyo-Figueroa and
Sucar, 1999; Galán and Díez, 2002), and the semantics of a TMN follow those of the
analogous model. Examples of TMNs that imitate BNs and DBNs are in §3.4 (p. 21).

3.3.4 Parameter Learning

The parameters are learned using standard maximum likelihood estimation. Finding the
maximum of the log-likelihood is a continuous, convex optimization problem, which can
be solved by gradient ascent. Because the maximum of the log-likelihood is global, it is
reached when the gradient (Equation 3.4) is zero (e.g., Koller and Friedman, 2009).

∂

∂θi

1
∣D∣

logL(θ;D) = ED(fi(s)) −Eθ(fi(s)) (3.4)

To compute the gradient, the expected statistics of the data (ED) must first be computed,
but this needs to be done only once. Then, the expected statistics given the TMN (Eθ) must
be computed, and this must be done every time the parameters change. Doing so requires
inference, but inference is difficult because the graph structure defined by the features is a
single clique, and hence not amenable to inference algorithms for factor graphs. This limits
the inference options to sampling or, for small problems, exact inference. Exact inference
was chosen for the sake of precision, and implemented the TMNs in Julia using L-BFGS
optimization.

3.3.5 Causal Structure Learning via Parameter Learning

TMNs are used to learn the directed structure of a distribution of timelines by (1) detecting
conditional independence between variables, (2) including only those edges that correspond
to direct dependences, and (3) directing edges with time. Detecting conditional indepen-
dence is done by constructing a TMN, learning the weights of its features, and comparing
those weights to zero. Aweight that is zero indicates the absence of the relationshipmodeled
by that feature, and if all the weights of all the features involving a pair of variables are zero,
then those variables are conditionally independent. This property allows weight learning in
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TMNs to recover the conditional independence structure of the generating DBN as shown
in the following theorem.

Theorem 3.5 (TMNStructure Learning). Given aDBNM that generates a true distribution
P (S) over timelines, the forward edges of the DAGG ofM can be deduced from the weights
of a TMN fit to P (S) using maximum likelihood. Specifically, if the weights of fi(X → Y )
and all the other features containing X and Y are zero, then X → Y is not an edge in G:

(∀(i ∶ fi ⊇ {X,Y }) θi = 0) Ô⇒ X → Y ∉ G (3.5)

Proof. If all of the weights of features involving X and Y are zero, then those weights
contribute nothing to the sum in Equation 3.2 and hence contribute nothing to the product
in Equation 3.1. Since the factorization of P does not include X and Y , they must
be independent by Theorem 3.3, and there cannot be an edge between X and Y in any
graphical model consistent with P .

A TMN can only capture the undirected version of the generating DBN, but if it is a first-
order, non-isochronal DBN (it has no edges within a timestep that represent instantaneous
relationships) (Plis et al., 2015), then moralizing it adds no edges between timesteps, and
the forward edges indicated by the TMN weights are exactly the edges of the DBN.

In summary, Theorem 3.5 shows how weight learning in a TMN can recover the DBN
structure given the true distribution of timelines: include only those edges x → y that
correspond to features fi(x → y) (or fi({x, z} → y), etc.) with nonzero weights θi. The
edges are already directed with time.

Is such a structure a causal model? If one assumes the causal Markov and causal
faithfulness conditions (Spirtes et al., 2000), as is commonly done, then a DBN that has
the correct independence structure is a causal DBN. Theorem 3.5 shows that, given the
true distribution of a first-order, non-isochronal DBN, the weights of the learned TMN will
indicate the correct independences and therefore describe a causal structure.

Of course, in practice the distribution is not the population one but an empirical one.
The noise in such a sample alters the learned weights and obscures the independences.
Thus, it becomes necessary to employ regularization or a threshold to determine the zeros.
Regularization introduces bias, so thresholding the weight magnitudes was chosen. This
approach provides an unbiased estimator that has a straightforward interpretation: as soon
as the magnitude of the noise gets larger than the magnitude of the signal, the thresholding
will start to get edges wrong. This can be mitigated by choosing features that are expressive
enough to accurately model the distribution, that can diffuse or absorb the noise, and that
isolate relationships of interest. For example, one could use only f(x → y) and f(y → x)
to model a temporal relationship, but also including f(x, y) isolates their atemporal co-
occurrence from their temporal precedence and splits the noise accordingly. Choosing
features that are expressive enough to accurately model the distribution means choosing
features that match the level of interactions (cliques) in the underlying process. At one
extreme, the saturated model (e.g., Wasserman, 2004, §19.4) makes no assumptions about
independence or the level of interactions, but is intractable due to the number of features
involved. (The number of features in the saturated model is 2n − 1 for n binary variables,
and there are ∣X ∣∣T ∣ binary variables.) At the other extreme, one can assume only pairwise
interactions, but this will almost certainly lead to inaccurate weights and an incorrect ranking
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of edges. Note that using only pairwise features is similar to making an assumption that the
conditional probability distributions of the underlying process are noisy-ors.

3.4 Experiments
To evaluate TMNs, experiments were conducted to compare them to other methods on DBN
structure learning tasks using synthetic and real-world data. The experiments were designed
to measure how accurately the designated methods could recover the structure of dynamic
causal networks in a variety of scenarios. With the synthetic data, the methods sought to
recover known, complete causal networks having observed all the relevant variables. With
the real-world EMR data, they sought to recover the causal structure among the variables
in Figure 3.1 (p. 15), having observed only those same variables. This is the OMOP ADE
task, which involves only a small, known subset of the causal structure in EMR data.

For comparison methods, the PC algorithm and BNFinder were chosen to represent the
two major BN structure learning paradigms. The causal, constraint-based paradigm was
represented by the PC algorithm (Spirtes et al., 2000). Even though it only works for static
data, it was also applied to timelines by using separate variables for each timestep, unrolling
the model as in Figure 3.1(b), and by reversing edges that went backwards in time. The
comparison TMN, TMN-PC, equivalently used anchored features (f(xt), f(xt1 , yt2)). The
score-based paradigm was represented by BNFinder (Wilczyński and Dojer, 2009; Dojer,
2006), which finds the optimal-scoring BN structure in polynomial time given a partial order
of the variables and a maximum number of parents. Being optimal, BNFinder subsumes
GES (Meek, 1997; Chickering, 2002) and other score-based structure learners on the task
of learning DBNs. The comparison TMN, TMN-DBN, used features to represent the initial
and transition distributions of a first-order DBN (f(xt=0), f(xt=0, yt=0), f(x), f(xT , yT ),
f(xT → yT+1)). A third TMN, TMN-Bf3, extended the TMN-DBN approach with long-
range temporal features and three-way interactions (f(xt=0), f(xt=0, yt=0), f(x), f(x, y),
f(x→ y), f({x, z}→ y)). While higher-order interactions would be necessary to represent
distributions in general, tuning indicated three-way features were sufficiently rich.

Both the synthetic and real-world experiments shared the same setup and analysis. The
data was timelines of events (§3.3.1, p. 17). Based on the timelines, the utilized methods
scored each possible forward edge in a first-order DBN to produce a weighted, bipartite
graph. The edge score was the weight magnitude of the corresponding temporal feature for
TMNs, aggregate posterior edge probability for BNF-DBN, and edge existence {0,1} for
PC. The weighted graphs were evaluated as (soft) binary classification tasks: which of the
edges belong to the true DBN graph. To do this, the edges were ranked by their score, and
then classification accuracy was assessed with precision-recall (PR) analysis because class
skew (edge density of the true graph) varied widely. The methods were developed and tuned
using a separate set of hand-crafted and randomly-generated test cases prior to running any
experiments. The specific parameters are in §3.5.1 (p. 26).

3.4.1 Synthetic DBN Experiments

In the synthetic data experiments, the goal was to recover the structure of random DBNs
given datasets of timelines sampled from those DBNs. Each dataset received four data
treatments (“regimes”) designed to test the methods in the face of noise, missing timesteps,
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and confounding. The plain treatment left the data unaltered. The noisy treatment selected
Xi,t iid if Bernoulli(ε) and replaced selected values with xi,t ∼ Bernoulli(1/2). Each
dataset had its own noise level ε ∼ Uniform(0.1,0.9). The missing treatment selected
timesteps iid if Bernoulli(η) and hid their values. This was meant to imitate how patients
are unobserved in real EMR data and to measure the influence of assuming unobserved
values to be false. Each dataset had its own missingness level η ∼ Uniform(0.1,0.9). The
confounding treatment randomly selected a subset of confounders (variables with at least two
children) and removed them from the data and the ground truth graph. Specifically, the DBN
graph was compressed (rolled up) (Plis et al., 2015), confounders were randomly selected
so that no more than 2/5 of the variables would be hidden and so that the class proportion
remained in [0.1,0.9], the confounding variables were removed from the graph by summing
them out, and the graph was uncompressed to become the new ground truth graph. For
each of the four data treatments the data was represented in two ways: fully-observed and
condensed, as illustrated in Figures 3.2(b) and 3.2(c) (p. 18). The condensed data imitates
real EMR data where negatives are typically not recorded and absolute times are not reliable,
but it also simplifies the problem of modeling events that occur over widely-varying time
scales.

Each DBN was generated by (1) drawing a number of variables n ∈ 2 ∶10 from a
distribution that favors numbers in proportion to their size, (2) drawing an edge probabil-
ity pe ∼ Uniform(0,1) and drawing each of the n2 possible forward DBN edges iid as
Bernoulli(pe) to create a bipartite graph representing two timesteps, (3) creating condi-
tional probability tables by sampling a probability p ∼ Uniform(0,1) for each setting of
a node’s parents, and (4) rejecting any DBN with edge density (∣E∣/n2) not in [0.1,0.9]
(which kept the class skew less than 9 ∶ 1).

The synthetic data consisted of datasets sampled from 1k random DBNs. Each dataset
had 10k timelines and each timeline had 10 timesteps. Experiments were performed on the
first 100, 1k, and 10k timelines of each dataset to assess statistical efficiency. The number
of DBNs was determined by a power calculation for a 0.9 probability of detecting a PR
area difference of 0.01 at α = 0.01 with a two-tailed paired t-test. In total, there were 120k
experiments: 1k random DBNs, 4 data treatments, 2 data representations, 3 data sizes, and
5 methods (PC, TMN-PC, BNF-DBN, TMN-DBN, TMN-Bf3).

3.4.2 Synthetic DBN Results

To assess howwell themethods recoveredDBNs from the synthetic data, the PR areas of their
structure recovery were compared. Figure 3.3 (p. 23) shows the average PR area achieved by
each method on each data regime. Overall, BNF-DBN scored the best on average, followed
by TMN-PC, PC, TMN-Bf3, and TMN-DBN. The researcher believes that BNF-DBN did
so well because its assumptions exactly match the data generating model.

Behind the averages in Figure 3.3, the performance of the methods varied substantially
by data regime and other characteristics of the DBN structure learning problems. To assess
the influence of these characteristics on the achieved PR areas, a linear regression was
performed using PR area as the dependent variable and method, data regime, data size,
etc. as the independent variables. The results are in Table 3.2 (p. 24). Each coefficient is
interpreted as the change in PR area attributable to a unit change inX , everything else held
constant. The covariates are able to explain a reasonable amount of variance (R2 = 0.699),
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Figure 3.3: Summary of results. Average PR areas of the methods in each of the synthetic
data regimes andOMOP, using the largest data size (synthetic: 10k, OMOP: 100k timelines).
MisTs: missing timesteps, Cnfdr: confounders.

and most of the coefficients have intuitive interpretations. Those of the method indicators
show that each method achieves significant, positive contributions to PR area compared to
random. BNF-DBN improves over random by the largest amount (0.400), probably because
it is the only method whose assumptions exactly match the data. However, the coeffecients
also show that BNF-DBN suffered the most in the face of confounding, noise, and missing
timesteps. TMN-DBN was the most robust to noise while TMN-Bf3 was the most robust to
confounding and missing timesteps. Complex networks are harder to recover as indicated
by the negative coefficients on maximum in-degree, number of nodes, and number of V-
structures. Data size was important but condensing the data had almost no effect. Of the
data treatments, missingness was the least detrimental of the three in terms of its interactions
with the methods. These results suggest that treating missing data as false and condensing
it is reasonable to do with EMR data (where the majority of data is not observed).

Perhaps counterintuitively, increasing the network density or increasing the number of
confounders helps performance. In the case of confounders, hiding variables removes them
from the problem, leaving a smaller, easier problem. In the case of density, having more of
the possible edges be true reduces the chance that misranking a single edge will affect the
PR area.

3.4.3 OMOP Experiments

In the OMOP experiments, the goal was to discover ADEs in real-world EMR and claims
databases. This was formulated as a DBN structure learning task rather than a causal effect
size estimation task as is the case with many other methods for causal discovery. The DBN
structure learning task was based on the OMOP ADE task, which defines 9 true ADEs and
44 non-ADEs among the same events (Figure 3.1, p. 15). OMOP selected these positives
and negatives based on drug labeling and evidence in the literature. For the experiments,
the positives defined the edges of the ground truth graph (Figure 3.5(a), p. 27). The methods
learned DBNs over all of the drugs and conditions, but only edges corresponding to pairs in
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Table 3.2: Linear regression of PR areas on attributes of synthetic DBN experiments,
including interactions between method and data regime, ranked by β̂ magnitude. R2 =
0.699. The method indicators contrast with random guessing.

Rank X β̂ se(β̂) TStat P-Value

1 BNF-DBN? * cnfdr -0.713 0.0139 -51.2 0
2 density, e/n2 0.663 0.0117 56.9 0
3 TMN-PC? * cnfdr -0.553 0.0139 -39.7 0
4 PC? * cnfdr -0.499 0.0139 -35.9 1.69e-280
5 TMN-DBN? * cnfdr -0.475 0.0139 -34.1 7.15e-254
6 TMN-Bf3? * cnfdr -0.454 0.0139 -32.6 3.16e-232
7 BNF-DBN? * noise -0.414 0.00547 -75.7 0
8 BNF-DBN? 0.400 0.00188 213 0
9 TMN-PC? 0.309 0.00188 165 0

10 BNF-DBN? * mists -0.305 0.00537 -56.8 0
11 PC? * noise -0.287 0.00547 -52.5 0
12 TMN-PC? * noise -0.281 0.00547 -51.4 0
13 TMN-Bf3? * noise -0.251 0.00547 -45.8 0
14 PC? * mists -0.248 0.00537 -46.1 0
15 PC? 0.245 0.00188 131 0
16 TMN-DBN? * noise -0.225 0.00547 -41.1 0
17 TMN-DBN? 0.217 0.00188 115 0
18 TMN-PC? * mists -0.216 0.00537 -40.2 0
19 TMN-Bf3? 0.209 0.00188 111 0
20 TMN-DBN? * mists -0.169 0.00537 -31.5 2.11e-216
21 TMN-Bf3? * mists -0.157 0.00537 -29.2 1.26e-186
22 # cnfdr /n 0.130 0.00996 13.1 3.99e-39
23 log # data 0.0747 0.000430 174 0
24 missingness -0.0227 0.00380 -5.99 2.16e-09
25 noise level -0.0213 0.00387 -5.50 3.79e-08
26 intercept -0.0121 0.00698 -1.73 0.0833
27 avg in-deg -0.0109 0.00820 -1.33 0.184
28 max in-deg -0.00795 0.000607 -13.1 3.39e-39
29 # edges, e 0.00533 0.000421 12.7 1.07e-36
30 # nodes, 2n -0.00167 0.00117 -1.42 0.156
31 # V-structures -0.00138 6.06e-05 -22.7 1.06e-113
32 condensed? 0.000733 0.000702 1.04 0.296
33 max edges, n2 -0.000375 0.000184 -2.04 0.0417
34 max out-deg -0.000243 0.000638 -0.381 0.703
35 # CPT θs 3.11e-05 1.86e-06 16.7 1.75e-62
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the OMOP task were used in the evaluation.
The five methods learned DBNs from data sets of timelines extracted from the five

OMOP databases (Figure 3.3, p. 25). The OMOP databases contained dated event tuples
(§3.3.1, p. 17), which can be viewed as timelines discretized by day (Figure 3.2(a), p. 18).
To create a data set from each database, a timeline for each patient was extracted and then
condensed as in Figure 3.2(c) (p. 18). Variables not observed were assumed to be false.
Twenty samples of 100k timelines were drawn without replacement from each data set.
These replicates were drawn because PC and BNF-DBN could not scale to the full data size.
(TMNs, needing only sufficient statistics, have no direct data size limitations.) The number
of replicates was determined by a power calculation for a 0.9 probability of detecting a PR
area difference of 0.05 at α = 0.01 with a two-tailed paired t-test.

Table 3.3: Summary statistics of the five OMOP datasets: GE Centricity, MarketScan Com-
mercial Claims and Encounters, MarketScan Medicaid, MarketScan Medicare, MarketScan
Lab Results. EoI: events of interest, PoI: people with EoI.

Name Type People PoI EoI Years

GE EMR 11.2M 4.1M 7.1M 1995–2009
CCAE claims 46.5M 25.6M 47.7M 2003–2009
MDCD claims 10.8M 7.3M 14.0M 2002–2007
MDCR claims 4.6M 3.9M 12.7M 2003–2009
MSLR claims 1.2M 1.1M 2.1M 2003–2008

3.4.4 OMOP Results

Figure 3.4 (p. 26) shows the results of the experiments on the OMOP data sets in terms of
PR area distributions of replicates.4 The TMNs do especially well on the GE EMR data,
but the performance on the claims data is mixed. Looking at the medians, TMN-PC beats
PC on 3 data sets, TMN-DBN beats BNF-DBN on 2 data sets, and TMN-Bf3 is the best on
all 5 data sets. The significance results in Table 3.4 (p. 28) lead to a similar ranking of the
methods by wins in a pairwise tournament: TMN-Bf3, TMN-PC, BNF-DBN, TMN-DBN,
PC. I hypothesize that the success of TMN-Bf3 on the OMOP task is due to its ability
to effectively model higher-order interactions and detect independence in the presence of
noise.

The (min, avg, max) run times, in hours, on the OMOP task were BNF-DBN (0.6, 0.8,
0.9), TMNs (0.5, 1.3, 2.8), and PC (0.1, 2.9, 9.9). While this makes BNF-DBN look fast,
the experiments had to be limited to 100k timelines to make BNF-DBN and PC tractable5
(whereas the TMNs were able to run on the millions of timelines in the full-size OMOP
data sets (Table 3.3)). Furthermore, TMN weight learning could run faster by stopping as
soon as the ranking of weights is settled (because PR area only depends on the ranking of
edges), but this was not implemented. Perhaps this explains why TMNs were successful

4 A linear regression was not appropriate because only the one BN structure of the OMOP ADE task was
involved, and so there was no variation in most of the experimental attributes in Table 3.2 (p. 24).

5 BNF-DBN has ∣E∣log ∣D∣ in its complexity polynomial. The complexity of PC is O(nq ∣D∣) in the worst
case, where q bounds the degree of the graph.
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Figure 3.4: Distributions of PR areas from the 20 replicates drawn from each OMOP data
set by method. The whiskers are 1.5 interquartile range.

even though in many cases they did not converge within their allotted 1000 iterations. On
the other hand, the lack of convergence is likely a large factor in the variation of the TMN
results.

The success of BNF-DBN on both the synthetic and OMOP tasks demonstrates that
DBNs may be applicable to modeling EMR data more than previously thought (Hyttinen
et al., 2016) despite its sparseness and irregularity, and suggests that condensed data may
alsowork for other discrete-timemodels that assume fully-observed, regularly-sampled data.

In a qualitative view of performance, additive ensembles of the networks learned by PC
and TMN-Bf3 on MSLR are shown in Figure 3.5 (p. 27) along with ground truth. Both
methods have six correct edges among the top 20, but TMN-Bf3’s six are higher in its rank-
ing. (The other methods have four or fewer correct edges in the top 20.) PC and TMN-Bf3
agree on four correct edges. PC concentrates many relationships on renal and liver failure,
while TMN-Bf3 spreads out its edges more evenly. Both methods concentrate on bleeding,
apparently one of the more confounded relationships. These results demonstrate that causal
structure learning methods are applicable and relevant to problems in epidemiology despite
not estimating effect sizes.

3.5 Supplementary Experimental Details

3.5.1 Method Parameters

Here are the specific parameters of the methods and their rationales. We used the Center for
Causal Discovery’s Java implementation of the PC algorithm which is based on the Tetrad
implementation from Carnegie Mellon University.

• PC

– α: 0.01. Decided to ensure approximately one Type 1 error per 10-node graph.
– depth: 10. Decided to correspond with the maximum number of nodes in the
synthetic data and the maximum number of parents (drugs) in the OMOP data.



3.6. Discussion 27

A

T

I

P

Z

Φ

D

Y

W

β

E

R

L

S

F

U

M

B

X

(a) Ground truth

A

T

I

P

Z

Φ

D

Y

W

β

E

R

L

S

F

U

M

B

X

(b) PC, MSLR

A

T

I

P

Z

Φ

D

Y

W

β

E

R

L

S

F

U

M

B

X
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Figure 3.5: Ground truth and selected learned networks for the OMOP task showing the
top 20 edges from an ensemble of that method’s MSLR runs. Figure 3.1 (p. 15) lists the
variables.

• BNFinder

– score: BDe. Tuned, but the Bayesian Dirichlet equivalence score performs no
differently than the minimum description length score.

– maximum parents: 10. Decided to correspond with the maximum number of
nodes in the synthetic data and the maximum number of parents (drugs) in the
OMOP data.

• Temporal Markov networks using Optim.jl

– maximum optimization iterations: 1000. Software default.

– gradient infinity-norm bound: 1e-8. Software default.

– L-BFGS approximation vectors: 10. Software default.

3.5.2 Pairwise Comparisons

Table 3.4 (p. 28) contains the detailed results of the pairwise comparisons and their statistical
significance.

3.6 Discussion
There are many advantages to treating structure learning as a smooth, convex optimization
problem rather than a combinatorial one. Convexity guarantees that there is a global
optimum and that there are no impediments to getting there, like plateaus or local optima.
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Table 3.4: Pairwise comparisons between methods within the five data regimes using two-
tailed paired t-tests, ranked by p-value. The row with the lines indicates the significance
cutoff of a paper-wise false discovery rate controlled at 0.01 with the Benjamini-Hochberg
procedure.

Rank Better Worse DiffMeans TStatistic P-Value

1 BNF-DBN-Plain Random-Plain 0.480 92.2 0
2 TMN-PC-Plain Random-Plain 0.447 89.5 0
3 TMN-Bf3-Plain Random-Plain 0.362 83.4 0
4 TMN-DBN-Plain Random-Plain 0.304 81.0 0
5 PC-Plain Random-Plain 0.398 77.4 0
6 BNF-DBN-MisTs Random-MisTs 0.367 68.5 0
7 TMN-PC-MisTs Random-MisTs 0.313 65.5 0
8 BNF-DBN-Noisy Random-Noisy 0.319 60.2 0
9 BNF-DBN-Cnfdr Random-Cnfdr 0.260 59.2 0
10 TMN-PC-Noisy Random-Noisy 0.308 59.1 0
11 TMN-PC-Cnfdr Random-Cnfdr 0.246 56.8 0
12 TMN-DBN-MisTs Random-MisTs 0.191 53.1 0
13 TMN-Bf3-MisTs Random-MisTs 0.228 52.9 0
14 BNF-DBN-Plain TMN-DBN-Plain 0.176 50.0 0
15 TMN-Bf3-Cnfdr Random-Cnfdr 0.167 49.9 0
16 BNF-DBN-Noisy PC-Noisy 0.107 49.8 0
17 TMN-DBN-Noisy Random-Noisy 0.172 48.6 0
18 TMN-PC-Noisy PC-Noisy 0.0963 47.1 0
19 BNF-DBN-MisTs PC-MisTs 0.151 47.0 0
20 PC-Cnfdr Random-Cnfdr 0.194 46.6 7.41e-322
21 PC-MisTs Random-MisTs 0.216 46.6 7.91e-322
22 BNF-DBN-Plain PC-Plain 0.0821 45.2 8.61e-308
23 PC-Noisy Random-Noisy 0.212 44.1 1.15e-297
24 TMN-PC-Plain TMN-DBN-Plain 0.143 43.6 5.15e-292
25 TMN-DBN-Cnfdr Random-Cnfdr 0.140 41.9 2.36e-276
26 BNF-DBN-MisTs TMN-DBN-MisTs 0.176 41.6 5.19e-273
27 TMN-Bf3-Noisy Random-Noisy 0.162 40.9 6.11e-266
28 TMN-PC-MisTs PC-MisTs 0.0973 40.0 1.39e-257
29 BNF-DBN-Noisy TMN-DBN-Noisy 0.147 37.5 9.95e-234
30 BNF-DBN-Noisy TMN-Bf3-Noisy 0.157 36.5 1.20e-223
31 TMN-PC-Noisy TMN-DBN-Noisy 0.136 35.2 2.64e-211
32 BNF-DBN-Cnfdr PC-Cnfdr 0.0657 34.3 5.39e-203
33 BNF-DBN-Cnfdr TMN-DBN-Cnfdr 0.120 33.5 1.93e-195
34 TMN-PC-Noisy TMN-Bf3-Noisy 0.146 33.2 6.38e-193
35 TMN-PC-Plain PC-Plain 0.0495 33.2 1.45e-192
36 TMN-PC-MisTs TMN-DBN-MisTs 0.122 32.3 2.95e-184
37 BNF-DBN-MisTs TMN-Bf3-MisTs 0.139 31.8 9.87e-180
38 TMN-PC-Cnfdr TMN-DBN-Cnfdr 0.106 30.9 3.77e-172
39 BNF-DBN-Plain TMN-Bf3-Plain 0.118 30.4 1.65e-167
40 TMN-PC-Cnfdr PC-Cnfdr 0.0515 29.5 3.56e-159
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Table 3.5: Pairwise comparisons, part 2 of Table 3.4 (p. 28).

Rank Better Worse DiffMeans TStatistic P-Value

41 PC-Plain TMN-DBN-Plain 0.0934 26.5 1.30e-132
42 BNF-DBN-Cnfdr TMN-Bf3-Cnfdr 0.0933 24.4 2.49e-115
43 TMN-PC-Plain TMN-Bf3-Plain 0.0851 22.8 2.17e-102
44 BNF-DBN-Plain TMN-PC-Plain 0.0327 21.3 8.01e-91
45 TMN-PC-Cnfdr TMN-Bf3-Cnfdr 0.0790 21.1 1.05e-89
46 TMN-Bf3-Plain TMN-DBN-Plain 0.0578 20.2 4.54e-83
47 TMN-PC-MisTs TMN-Bf3-MisTs 0.0855 20.1 5.41e-82
48 BNF-DBN-MisTs TMN-PC-MisTs 0.0538 17.8 4.57e-66
49 PC-Cnfdr TMN-DBN-Cnfdr 0.0546 15.8 3.29e-53
50 PC-Noisy TMN-Bf3-Noisy 0.0493 12.6 7.45e-35
51 BNF-DBN-OMOP Random-OMOP 0.0580 18.1 3.05e-33
52 TMN-Bf3-MisTs TMN-DBN-MisTs 0.0368 10.9 5.90e-27
53 PC-Noisy TMN-DBN-Noisy 0.0396 10.8 2.61e-26
54 TMN-Bf3-Cnfdr TMN-DBN-Cnfdr 0.0270 10.4 1.19e-24
55 TMN-Bf3-OMOP Random-OMOP 0.114 12.2 1.70e-21
56 BNF-DBN-Noisy TMN-PC-Noisy 0.0110 9.11 2.01e-19
57 PC-Plain TMN-Bf3-Plain 0.0356 8.79 3.29e-18
58 PC-OMOP Random-OMOP 0.0353 10.4 1.68e-17
59 TMN-PC-OMOP Random-OMOP 0.0655 10.3 2.73e-17
60 BNF-DBN-Cnfdr TMN-PC-Cnfdr 0.0142 7.91 4.18e-15
61 TMN-DBN-OMOP Random-OMOP 0.0524 8.77 5.14e-14
62 PC-Cnfdr TMN-Bf3-Cnfdr 0.0275 7.45 1.37e-13
63 TMN-Bf3-OMOP PC-OMOP 0.0783 8.11 1.40e-12
64 BNF-DBN-OMOP PC-OMOP 0.0227 7.86 4.70e-12
65 PC-MisTs TMN-DBN-MisTs 0.0249 6.80 1.39e-11
66 TMN-Bf3-OMOP BNF-DBN-OMOP 0.0556 5.93 4.47e-08
67 TMN-Bf3-OMOP TMN-DBN-OMOP 0.0612 5.45 3.76e-07
68 TMN-Bf3-OMOP TMN-PC-OMOP 0.0481 4.40 2.78e-05
69 TMN-DBN-Noisy TMN-Bf3-Noisy 0.00977 4.06 5.00e-05
70 TMN-PC-OMOP PC-OMOP 0.0303 4.21 5.59e-05

— — — — — BH 0.01
71 TMN-Bf3-MisTs PC-MisTs 0.0119 2.81 0.00494
72 TMN-DBN-OMOP PC-OMOP 0.0171 2.52 0.0132
73 TMN-PC-OMOP TMN-DBN-OMOP 0.0131 1.97 0.0513
74 TMN-PC-OMOP BNF-DBN-OMOP 0.00755 1.04 0.300
75 BNF-DBN-OMOP TMN-DBN-OMOP 0.00559 0.822 0.413



30 Chapter 3. Causal Structure Learning via Temporal Markov Networks

This guarantees progress with every iteration, and the optimization can be stopped at any
time to yield an approximate solution with the gradient giving a sense of how close the
current model is to the optimum. Furthermore, the optimization focuses first on the most
important features, which are those with the largest gradients. Framing the problem as an
optimization means that all the edges are estimated jointly, avoiding sequential decisions
and multiple testing. This framing also removes the need for greedy or heuristic search
as the optimization space is tractable and amenable to well-understood approximation (e.g.
stochastic gradient descent). All these advantages combine to make this approach faster,
more robust, and better able to handle noise than approaches based on combinatorial search.

The formulation as a log-linear model also comes with advantages and disadvantages. In
terms of advantages, it allows arbitrary features, which can be used to handle irregular events
and model short- and long-range dependencies. The data can be completely summarized
by the sufficient statistics of the features, which separates the data processing from the
optimization and enables the straightforward application of large-scale data processing
techniques such as partitioning and parallelism. By comparison, updating a BN structure
score requires a pass over the data even if it only involves a few of the variables. The
sufficient statistics, being aggregates, are also robust to noise. In terms of disadvantages,
there is now a modeling problem as one must choose the right features. Part of this relates
to choosing the level of interactions that the features can express. Depending on how many
features are chosen, their complexity, and how many combinations of events for which
they are instantiated, there can be a very large number of features and a correspondingly
large optimization space, which may be challenging for optimization algorithms. The
optimization challenges are amplified by the inference difficulties of an extremely large,
unfactorable PGM.

One limitation of this approach is that it relies on time for direction. But this is true for
all DBN learners and for other algorithms (e.g., Shojaie and Michailidis, 2010) that operate
on temporal data and assume edges go forward in time. However, because our approach
estimates both x→ y and y → x, it can still pick the more important between the two. This
can be useful if one desires to roll the DBN up into a BN (roll Figure 3.1(b) up into 3.1(a)
(p. 15)): the edge with smaller magnitude can be discarded to break cycles.

Unfortunately, due to the inability of undirected PGMs to express the independence in a
V-structure, exact recovery of DBN edges by TMNs is limited to first-order, non-isochronal
DBNs. However, assuming a first-order DBN is relatively innocuous because any higher-
order DBN can be converted to an equivalent first-order DBN. Assuming a non-isochronal
DBN is reasonable in cases where the timescale of the DBN is smaller than that of the
system (Plis et al., 2015). This is the case for EMR data where data is available on the same
scale as disease progression in both inpatient and outpatient settings. Anything that happens
more immediately is comparatively easy to notice and is probably already well-understood,
making it unlikely to be the subject of a causal modeling task.

This work represents an alternative approach to the OMOP task, one that uses structure
learning instead of causal effect estimation (as would be done in epidemiology). Structure
learning and effect estimation are not directly comparable because they handle direct and
indirect effects differently. Effect estimation does not care about the path, only its overall
effect, whereas structure learning cares only about the direct effects that make up the path,
not its overall effect. Unfortunately, this mismatch means that the OMOP task is not
necessarily a suitable evaluation for structure learning methods; it depends on how many of



3.7. Conclusion 31

the OMOP pairs are direct effects in terms of the observable variables in the data. Perhaps
this explains why the results achieved by the DBN learners in this paper are lower than
published results from epidemiological methods on the OMOP task (e.g., Ryan et al., 2012).
Naturally, the answer is to use the learned structure to estimate a causal DBN and then query
it to determine effect sizes. Investigating this and determining how to better apply structure
learning to epidemiological tasks is future research.

3.7 Conclusion
In learning the relationships among events, TMNs avoid the combinatorial nature of classical
BN structure learning algorithms by reformulating structure learning as a smooth, convex
optimization problem in a log-linear model. As shown in Theorem 3.5 (p. 20), TMNs
learn the correct structure given enough data and sufficiently expressive features, and the
learned structure corresponds to a causal DBN. This enables TMNs to do causal discovery,
and their flexible, expressive features enable them to handle the irregularity, sparsity, and
noise of EMR data. Therefore, TMNs have the characteristics necessary to address the
challenges of the OMOP ADE task. In practice, they demonstrate their effectiveness by
performing as well or better than representative methods for DBN structure learning. Thus,
with characteristics and performance that complement existing methods, TMNs establish
an alternative to DBNs for causal discovery from observational time series data.

Attribution
This chapter was previously published as Barnard and Page (2018).





Chapter 4

Identifying ADEs using Relational
Learning

Learning the structure of a causal model is a technique for causal discovery that is theoret-
ically justified and works well when all the effects of interest are observed in the data and
included as random variables in the model. However, this limits discovery to associations
between events that have already been hypothesized, defined, and measured. It is often
the case that open-ended discovery is the real goal, in which case both learning structural
causal models and conducting observational studies fall short: they cannot hypothesize new
effects. The following chapters describe methods for causal discovery that can both hypoth-
esize and then score causal effects. These methods are not based on structural causal models
but rather are based on novel applications of machine learning to analyzing observational
studies. This chapter covers one such method which uses inductive logic programming
(ILP) to hypothesize ADEs and a causally-motivated score to rank them.

4.1 Introduction

The pharmaceutical industry, consumer protection groups, users of medications, and gov-
ernment oversight agencies are all strongly interested in identifying adverse reactions to
drugs. Adverse drug events (ADEs) are estimated to account for 10–30% of hospital ad-
missions, with costs in the United States alone between 30 and 150 billion dollars annually
(Lazarou et al., 1998), and with more than 180k life threatening or fatal ADEs annually, of
which 50% could have been prevented (Gurwitz et al., 2003). Although the U.S. Food and
Drug Administration (FDA) and its counterparts elsewhere have preapproval processes for
drugs that are rigorous and involve controlled clinical trials, such processes cannot possibly
uncover everything about a drug. While a clinical trial of a drug may use only a thousand
patients, once a drug is released on the market it may be taken by millions of patients. As
a result, in many cases adverse drug events (ADEs) are observed in the broader population
that were not identified during clinical trials. Therefore, there is a need for continued,
postmarketing surveillance of drugs to identify previously unanticipated ADEs.

This chapter proposes reverse machine learning as a postmarketing surveillance tool
in order to predict or detect adverse reactions to drugs from EHR data. This approach is
applied to actual EHR data sets, including data sets provided by the Observational Medical
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Outcomes Partnership (OMOP). This task poses several novel challenges to the machine
learning (ML) community:

1. One cannot assume advance knowledge as to an ADE that a particular drug might
cause. In some cases, one may suspect a specific ADE, such as increased risk of
myocardial infarction (MI, heart attack); in such a case, supervised learning can be
employed withMI as the class variable. But if one does not know the ADE in advance,
what class variable can one use? This work proposes using the drug itself as the class
variable and claims that, while one already knows who is taking the drug, examination
of a model that accurately predicts drug use can give insight into ADEs. Because this
work seeks to discover the ADE by building a model to “predict” drug use (who has
been on the drug), rather than to predict the actual entity of interest (the ADE), one
can refer to this approach as reverse machine learning.

2. The data are multi-relational. Several objects such as doctors, patients, drugs, dis-
eases, and labs are connected through relations such as visits, prescriptions, diagnoses,
etc. If traditional ML techniques are to be employed, they require flattening the data
into a single table. All known flattening techniques, such as computing a join or sum-
mary features, result in either (1) changes in frequencies on which machine learning
algorithms critically depend or (2) loss of information.

3. There are arbitrary numbers of patient visits, diagnoses and prescriptions for different
patients, i.e., there is no fixed pattern in the diagnoses and prescriptions of the patients.
It is incorrect to assume that there are fixed number of diagnoses or that only the last
diagnosis is relevant. To predict ADEs for a drug, it is important to consider the other
drugs prescribed for the patient, as well as past diagnoses, procedures, and laboratory
results.

4. Since all the preceding events and their interactions are temporal, it is important to
explicitly model time. For example, some drugs taken at the same time can lead to
side effects, while in other cases one drug taken after another can cause a side effect.
As is demonstrated in the experiments, it is important to capture such interactions to
be able to make useful predictions.

5. ML researchers need to learn lessons from epidemiology, especially pharmacoepi-
demiology, about how to construct cases and controls (positive and negative examples)
as well as how to address confounders. Otherwise ML methods will simply identify
disease conditions associated with the drug for other reasons, such as drug indications
or conditions correlated with use of the drug for other reasons.

4.1.1 Contributions to Machine Learning

This chapter presents a machine learning approach to studying an important, real-world,
high-impact task—identifying ADEs—for which data sets are available through the Obser-
vational Medical Outcomes Partnership. The chapter shows how relational learning (Lavrač
and Džeroski, 1994; De Raedt, 2008) is especially well-suited to the task, because of the
multi-relational nature of EHR data. In addition, this chapter provides technical lessons for
ML that should be applicable to a number of other domains as well. These lessons are listed
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here, discussed as they arise in the presentation of the empirical analysis of this approach,
and then reviewed again at the end of this chapter.

1. In some ML applications, one may not have observations for the class variable. For
example, onemight hypothesize an unknown genetic factor in a disease or an unknown
subtype of a disease. In such situations, one typically resorts to unsupervised learning.
The task of identifying previously unanticipated ADEs is such a situation: without
a hypothesized ADE, how can one run a supervised learning algorithm to model it?
Without knowing in advance that MI is an ADE for COX-2 inhibitors, how can one
provide supervision such that the algorithm will predict that MI risk is raised by these
drugs? This work shows that the problem can be addressed by running supervised
learning “in reverse,” to learn a model to predict who is on a COX-2 inhibitor. If
an algorithm can identify some subgroup of COX-2 inhibitor patients based on the
events occurring after they start COX-2 inhibitors, this can provide evidence that the
subgroupmight be sharing some common effects of COX-2 inhibitors. The researcher
anticipates that this same approach can also be applied to other situations where the
class variable of interest is not observed. This lesson is referred to as reverse ML.

2. This work introduces to ML some useful ideas from epidemiology, including treating
each patient as their own control, by drawing as positive examples patients and their
data after they begin use of a drug and as negative examples the same patients but
before they begin use of the drug. Another idea one can employ from epidemiology
is to use a domain-specific scoring function that includes normalization based on
other drugs and other conditions. This work introduces to epidemiology the idea of
learning rules to characterize ADEs, rather than simply scoring drug–condition pairs
which require the ADE to correspond to an already-defined condition.

3. Finally, this work reinforces the need for iteration between human and computer
in order to obtain the models that provide the most insight for the task. In ADE
identification, rules that are predictive of drug use can be taken as candidate ADEs,
but these candidate ADEs must then be vetted by a human expert. If some of the rules
are found to still capture other factors besides drug effects such as indications, then
these rules should be discarded. This lesson is referred to as iterative interaction. Note
that the prediction is in reverse not only in terms of causality, but more importantly
in terms of the label of interest.

4.2 Reverse Machine Learning for ADE Surveillance
Learning adverse drug events can be defined as follows:

Given: Patient data (from claims databases and/or EHRs) and a drug D,

Do: Determine if evidence exists that associates D with some previously
unanticipated adverse event.

Note that no specific associated ADE has been hypothesized, and there is a need to identify
the event to be predicted.
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How might one hypothesize ADEs in this setting? One may not be able to define an
unanticipated ADE, but one knows what drugs each patient has taken. So, one might have
the model predict drugs instead of predicting conditions. If a model can predict which
patients are taking a drug D, then there must be some combination of clinical experiences
more common among patients on the drug. If the data is limited to those events occurring
after the drug started, then the model will focus not on common causes but on common
effects. The contents of the model can then be treated as the definition of an ADE and used
for subsequent association estimation, prediction, or inspection by an expert. This is the
idea of reverse learning.

4.2.1 Formalizing Learning in Reverse

Given a (large) EHR database and a drug, the task is to find a condition that is related
to the drug. To better understand the complexity of the problem, consider a model of a
patient where the patient’s attributes and medical history influence current disease status
and laboratory results. The states in the model are a set of partially observed variables
⟨A,C,L,D⟩ at various points in time. A is a vector of attributes of the patient, such as
gender, age, family history, and genetic information, C are conditions (diagnoses), L are lab
tests, and D are drugs. Each vector contains a large number of variables; for example, an
EHR typically includes over 10k reported conditions, and 4k to 5k different drugs. Given
the dimensionality of the task, latent variables were not included in this model (Saria et al.,
2010).

An ADE was defined as an unexpected dependency between an observed variable in C
and an observed variable in D, in the simplest case, or even some combination of variables
in D. To the best of this researcher’s knowledge, this work is the first to consider the more
complex case of combinations, but the simpler case of a single drug is considered first.

4.2.1.1 Related Work

A standard approach to this problem is to assume two timesteps: events that happened
before (step 0) and after taking a drug Dj (step 2). Techniques such as disproportionality
analysis (Wilson et al., 2003; Zorych et al., 2011) then search for a condition Ci such that
its probability increases after taking drug Dj , i.e.,

P (Ci,t0 ∣Dj,t1) < P (Ci,t2 ∣Dj,t1) s.t. t0 < t1 < t2, (4.1)

where Ci,t denotes the condition Ci at time t. To do so, one must obtain estimators
P̂ (Ci,t0 ∣ Dj,t1) and P̂ (Ci,t2 ∣ Dj,t1) and test against the null hypothesis. In practice,
estimates can be confounded by other parameters. Typically, one will consider A and
stratify at least over age and gender, and then weight the estimates. One can also go a
step further and count time of exposure, as in observational screening (Ryan et al., 2013),
where the condition Ci is considered the result of a non-homogeneous Poisson process with
two rates, during and after usage of drug Dj . A different method is to take into account
confounding between different drugs. For example, a Bayesian logistic regression method
(Caster et al., 2010) takes into account all drugs, plus gender and age information, to estimate
P̂ (Ci).
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Essentially, these different methods search conditions Ci,t such that their posterior
probabilities of occurrence are greater than some threshold δ

P (Ci,t ∣ A1∶t,C1∶t,L1∶t,D1∶t) > δ, (4.2)

i.e., they search through the entire EHR for some conditions occurring with a non-trivial
probability given the drug history. Given the size of the problem, they focus on different
combinations of ⟨A,C,L,D⟩. The previous approaches to the problem can be described
as an enumeration of

P (Ci,t ∣ A1∶t,C1∶t,L1∶t,D1∶t), (4.3)

given some fixed
⟨A1∶t,C1∶t,L1∶t,D1∶t⟩. (4.4)

4.2.1.2 Reverse Machine Learning

This chapter proposes reverse learning. Instead of a direct search for Ci, it proposes to
enumerate over Equation 4.4 and compute

P (Dj,k ∣ A1∶t,C1∶t,L1∶t,D1∶t) (4.5)

for some time k, as one knows that, if Ci is an ADE for Dj , then Ci,l will be in a learned
model for Dj,k where k ≤ l. If one were to go forward in time and predict effects based on
causes, one would have to explore an increasing number of effects. By going backward in
time, one traces effects back to their causes. Since the interest is only in a limited number
of causes in reverse learning, the set of all possible causes is much smaller than the set of all
possible effects. Thus, the problem of learning models for every condition Ci is reduced to
the problem of finding out whether Ci is in a model for Dj . As a result, standard learning
technology can perform the search.

Note that this approach is akin to Bayesian inference, where one computes P (C ∣ E)
by estimating P (E ∣ C). Indeed it reduces to this in the case where one just searches
over fixed subsets. On the other hand, the advantage is not in the Bayesian approach itself,
as Equation 4.5 is not necessarily always easier to estimate than Equation 4.3: both are
estimated from counts. The advantage is in transforming the learning process and making
the problem supervised.

The strong relation between this work and Bayesian learning suggests a connection
between reverse learning and abduction (Sato and Kameya, 2002; Kakas and Flach, 2009).
Notice that in this setting the goal is not as much to learn a set of abducibles for an existing
procedure, as to learn a new concept. The problem is thus closer to the problem of predicate
invention (Muggleton, 1994; Richards and Mooney, 1995; Davis et al., 2007; Muggleton
et al., 2009). Such insights may help guide further progress in reverse learning.

4.2.2 Study Design

Reverse learning can be seen as a case–control study, where cases (positive examples) are
the patients on drug Dj , and controls (negative examples) have not taken Dj . Choosing
controls is fundamental to obtaining good study quality, which relies on making the case
and control groups as similar as possible (Rosenbaum, 2004; Rothman et al., 2008). One
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way to do that is treat each case patient as its own control, accomplished by splitting the
patient timeline into one or more control and case periods based on when they received
treatment. This is exactly what is done in this ADE identification approach (Figure 4.1) and
is known as a before–after design (Cochran, 1983; Shadish et al., 2002). Alternatively, one
could search for age- and gender-matched controls and use them as negative examples. In
this case, for each positive example, a control is a patient of the same age and gender who
is not on drug Dj . (Controls could be selected to be similar to the cases in other ways, for
example, by sharing smoking status; age and gender are just the most common such features
in clinical studies.)

−← → +

C1 C2 D1 C1 D2 C3 C2 C1 D1

t

Figure 4.1: An example patient timeline with time windows for before and after a drug
occurrence

Specifically, reverse learning works by comparing two intervals, one before the cause
and one after, as illustrated by the darker and lighter boxes in Figure 4.1. The interval
after the cause contains the events of interest, the possible effects, while the interval before
the cause serves as a comparison baseline. For example, learning would exclude C1 from
consideration as a possible effect because it also occurs in the before interval; this leaves C3
as the effect, possibly interacting with D2.

4.2.3 Implementing Reverse Learning with Inductive Logic Programming

To apply this reverse learning algorithm, it needs to be considered in greater detail along
with the following three factors:

1. EHR data are multi-relational and temporal, necessitating relational learning for this
task (De Raedt, 2008).

2. The output of the learning process should be easy to interpret by the domain expert
(Page and Srinivasan, 2003).

3. Generally, only a few patients on a drug D will experience novel ADEs (ADEs not
already found during clinical trials). The learned model need not, and indeed most
often should not, correctly identify everyone on the drug, but rather merely a subgroup
of those on the drug while not generating many false positives (individuals not on
the drug). This argues that this reverse learning problem actually can be viewed as
“subgroup discovery” (Wrobel, 1997; Klösgen, 2002; Železný and Lavrač, 2006), in
this case finding a subgroup of patients on drugDwho share some subsequent clinical
events.

This suggests using a relational rule-based classifier, since relational rules naturally induce
subgroups on the data, are discriminant, and are often easy to understand. The experiments
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utilize the ILP system, Aleph (Srinivasan, 2007). In the remainder of this section, for
concreteness, the discussion is presented in terms of Aleph.

Another advantage of the multi-relational approach is that the body (precondition) of
the rule does not have to be a single condition, but it can be a combination of conditions and
lab results, possibly in a temporal order. Hence, ADEs that do not neatly correspond to an
exact pre-existing diagnosis code can be discovered. Furthermore, the body of the rule can
involve other drugs. So, ADEs caused by drug interactions can be captured. For example, it
has recently been observed that patients on clopidogrel (Plavix) may have an increased risk
of stroke (ordinarily prevented by clopidogrel) if they are also on omeprazole (Prilosec).
This can be represented by the following rule:

clopidogrel(X)← omeprazole(X) ∧ stroke(X). (4.6)

Just because the rule is representable does not mean it will be learned. This depends on its
support in the data, and the support of other rules that could score better, specifically as the
support impacts the scoring function employed.

Aleph learns rules that predict a certain classification, in this case whether patients are
on a particular drug or not. The data indicates who has taken a drug and who has not. These
patients become the positive (on drug) and negative (non-using) examples for the supervised
learning task. To learn a rule that distinguishes between positive and negative examples,
Aleph picks a positive example, collects all the literals (facts in the data and background
knowledge) pertaining to that example into a “bottom clause,” and then searches for subsets
of those literals that form a rule that maximizes a scoring function (typically coverage; see
§4.2.4). Once Aleph has found the best rule for an example, it repeats the process on an
unexplored positive example until there are enough rules to classify all positive examples
as positive.

The literals in a rule are attributes shared by a subset of patients and can be considered
together as a common effect of the drug. Such literals can be conditions (diagnoses) or
condition classes (suggesting an ADE), drugs or drug classes (suggesting a drug–drug inter-
action), demographics (selecting subsets of the population), vitals or lab results (suggesting
an ADE or a common criterion), procedures (suggesting a “corrected” ADE or a common
criterion), or other background knowledge such as (temporal) relationships between the
above events (which tend to serve as additional criteria). Depending on the collection of lit-
erals, a rule may indicate an ADE or other medical relationship, or it may be uninformative.
Figure 4.2 (p. 40) shows examples of these various types of rules.

Aleph tries to find a predictor of the drug for every patient that discriminates well,
according to the scoring function, between those on the drug and those not on the drug.
Because Aleph looks at rules based on each individual patient while scoring those rules on
all patients, Aleph can find specific or rare relationships that only apply to a few patients, or
find general relationships that apply to many patients.

4.2.4 Evaluating Rules as Potential ADEs

Aleph learns rules in the form of Prolog (Horn) clauses and scores candidate rules by
coverage. Coverage refers to the difference in the number of positive and negative examples
that satisfy a rule. Specifically, if p positive examples and n negative examples satisfy a rule,
then the rule is given the coverage score p − n. Consider COX-2 inhibitors, for example.
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drug(X , warfarin,S,E) ←
cond(X , bleeding,D)

(a) Basic ADE as in OMOP task

drug(X , warfarin,S1,E1) ←
drug(X , antibiotics,S2,E2) ∧
cond(X , bleeding,D)

(b) Drug–drug interaction ADE

drug(X , warfarin,S,E) ←
gender(X , male) ∧
cond(X , bleeding,D) ∧
age(X ,D,A) ∧
A > 65

(c) Subgroup-specific ADE

drug(X , warfarin,S,E) ←
proc(X , hosp,D1) ∧
cond(X , bleeding,D2) ∧
drug(X , ivVitK,D3,D3) ∧
D3 >D2

(d) Temporal relationship ADE

drug(X , antipsycho,S,E) ←
lab(X , cTNT,D, 0.27,R, hi)

(e) Laboratory evidence of ADE (MI)

drug(X , warfarin,S,E) ←
proc(X , hosp,D1) ∧
cond(X , thrombosis,D2) ∧
proc(X , xrayChest,D3)

(f) Indication and uninformative literals

Figure 4.2: Example rules for the ADE task. The schema is in Figure 2.2 (p. 12).

Because COX-2 inhibitors double the risk of MI, one can expect the distribution of selected
patients to have twice as manyMIs among the positive patients (those on COX-2 inhibitors).
For example, in a sample of 200 positive patients who suffer a MI, one can expect about 100
negative patients to have a MI. The following rule says that a patient is likely on a COX-2
inhibitor if they suffered a MI. It would have a strong score of p−n = 100 and hence would
be selected by Aleph unless some other rule scores even better.

cox2ib(X)←mi(X) (4.7)

Coverage is only the default score and can easily be replaced by any user-defined scoring
function. Coverage does well at learning rules that capture interesting relationships and
discriminate well, but does not do well at identifying ADEs. Thus, coverage is used to learn
rules that hypothesize interesting ADEs, but then those rules are passed onto a second stage
that evaluates the ADE potential of each rule according to a different, causally-motivated
temporal score.

4.2.4.1 Temporal Score

The most critical part of identifying ADEs is evaluating proposed ADEs based on their
causal plausibility. Epidemiologists often estimate causal plausibility by estimating relative
risk, which compares the likelihood of some adverse event, given that a patient took a drug,
to the likelihood of that same adverse event, given that a patient did not take the drug. The
temporal scoring function accomplishes similar goals. It estimates the probability of an



4.3. Experiments 41

adverse event given a drug and uses it to rank many possible ADEs, thereby comparing
ADEs with non-ADEs.

Specifically, the temporal score (Equation 4.8) estimates the probability that a specific
condition, c, occurs after a specific drug, d, in patients who experience both. The score
then adjusts for the relative frequencies of other associated drugs and conditions by dividing
by their probabilities: the probability that any drug occurs before this condition and the
probability that any condition occurs after this drug. Here,D andC are the sets of drugs and
conditions under investigation, so d ∈ D and c ∈ C, and t is the time of the first occurrence
in a patient.

P (td < tc ∣ d, c)
P (tD < tc ∣D, c)P (td < tC ∣ d,C)

(4.8)

This score is how the ADE likelihood of a particular drug–condition pair is estimated.

4.3 Experiments

These experiments consider two cases. In the first case, drugs were associated with with
specific conditions or candidate ADEs. In terms of relational learning, an association is
represented by a rule, or definite clause, whose head is an atomic formula built from a
predicate naming the drug and a variable standing for the patient, and whose tail is an
atomic formula built from a predicate naming the condition and the same patient variable;
this form is illustrated by the COX-2 inhibitor and MI rule above. In this case the reverse
learning approach is another way to carry out a standard association study, differing only in
the scoring function employed. In the second case, a list of candidate ADEs or conditions
was not assumed; instead an ADE was represented by any conjunction of atomic formulas
with predicates naming entities from the EMR such as conditions, observations (labs or
vitals), or other drugs, or possibly predicates defined in a background theory such as before.
In this case reverse learning extended beyond the standard association study methodology.

4.3.1 OMOP Experiments and Results

The first set of experiments was with a large, real-world health insurance claims database
available through OMOP and containing over 1.2 million subjects, 17M drug reports, and
29M condition reports, for a total of 1300 drugs and over 10k conditions. This was one
of several databases available for evaluation of methods for ADE discovery (Ryan et al.,
2010). Rule learning methods were evaluated on the OMOP ADE identification task, a set
of drug–condition pairs including 9 known ADEs and 44 non-ADEs (see §2.4.2, p. 10).

As a first study, because all the other methods tested by OMOP ranked only drug–
condition pairs, Aleph was limited to rules consisting of only a single condition in the body
of the rule, that is, rules of the form of the following example:

warfarin(X)← bleeding(X). (4.9)

With its default coverage scoring function and this rule length constraint, the rules learned
by Aleph scored no better than chance. Consequently, later experiments learned rules by
coverage and then scored their ADE likelihood with the temporal score.
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The temporal score estimated ADE likelihood competitively with other methods on the
OMOP task (Madigan and Ryan, 2011; Ryan et al., 2012). Those results reported that the
best area under the ROC curve achieved by any method on any OMOP database is 0.78,
while the best AUC ROC achieved for the MSLR database is 0.73. This is quite high
considering that many approaches did no better than chance (AUC ROC of 0.5). As seen
in Figure 4.3, this method achieves 0.76 AUC ROC for MSLR, which is the best result on
MSLR and competitive with other results in general.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
ru

e 
P

os
it

iv
e 

R
at

e

False Positive Rate

AUC: 0.764

Figure 4.3: OMOP task ROC curve for MSLR.

This researcher believes the temporal score is effective because it captures aspects of
causality. The score uses temporal ordering to help it decide whether a drug causes a
condition. Further, it tries to focus on the main effect by adjusting for the influences of other
drugs and conditions. The structure of the score is similar to pointwise mutual information
which is another possible reason the score is effective.

The main benefit of using reverse machine learning with Aleph comes only with ex-
tending the possible lengths of the rule bodies. The next experiment was to do so with the
same data set. Runs of this type take substantially longer, varying from twenty minutes
to almost seven hours depending on the drug. There was no longer a ground truth against
which to score these more complex rules, but their potential value was able to be evaluated,
especially their ability to pick up on drug–drug interactions. One of the top-scoring rules
was:

warfarin(X)← bleeding(X) ∧ antibiotics(X). (4.10)

This rule represents a rediscovery that antibiotics elevate the risk of bleeding in patients on
warfarin (Baillargeon et al., 2012), and the rule scores significantly better than a rule with
bleeding alone.

4.3.2 Marshfield Clinic EHR Experiments and Results

The second set of experiments was with a very different EHR. Marshfield Clinic has one
of the oldest internally developed EHRs in the U.S., with coded diagnoses dating back to
the early 1960s. It has over 13,000 users throughout central and northern Wisconsin. Data
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Table 4.1: Bodies of top 10 rules learned for COX-2 inhibitors, using only single conditions.

Rule Pos Neg Tot P-Value

condition(A,_,‘790.29’,‘Abnormal glucose’). 333 137 470 6.80e-20
condition(A,_,‘V54.89’,‘Aftercare, other orthopedic’). 403 189 592 8.59e-19
condition(A,_,‘V58.76’,‘Aftercare, surgery genitourinary sys’). 287 129 416 6.58e-15
condition(A,_,‘V06.1’,‘Diphtheria, tetanus, pertussis’). 211 82 293 2.88e-14
condition(A,_,‘959.19’,‘Other injury of other sites of trunk’). 212 89 301 9.86e-13
condition(A,_,‘959.11’,‘Other injury of chest wall’). 195 81 276 5.17e-12
condition(A,_,‘V58.75’,‘Aftercare, surgery teeth, oral cavity, digestive sys’). 236 115 351 9.88e-11
condition(A,_,‘V58.72’,‘Aftercare, surgery nervous sys, NEC’). 222 106 328 1.40e-10
condition(A,_,‘410’,‘Myocardial infarction’). 212 100 312 2.13e-10
condition(A,_,‘790.21’,‘Impaired fasting glucose’). 182 80 262 2.62e-10

collected for clinical care is transferred daily into a data warehouse where it is integrated.
The data warehouse is the source of data for this study. Programs were developed to select,
de-identify by removing direct identifiers, and then transfer the data to a collaboration server.
For this work, the specific tables used were: ICD-9 diagnoses, observations (lab results and
other observations such as weight, blood pressure, and height), three sources of medication
information, and patient demographics (gender and birth date). Also associated with every
entry was a date, so Aleph was with background knowledge predicates to compare dates.

Two drugs were studied, warfarin and rofecoxib (Vioxx). For warfarin, the approach
easily rediscovered the known ADE of bleeding, together with the common treatment for
warfarin-induced bleeding (phytonadione, or vitamin K1).

warfarin(X)← bleeding(X,T1) ∧ phytonadione(X,T2) ∧ before(T1, T2) (4.11)

Rofecoxib is a drug that was pulled from the market because it was found to double
the risk of MI. The next experiment tested whether Aleph would uncover this link with
MI if the link were unknown. Rofecoxib belongs to a larger class of drugs called COX-2
inhibitors. The overall goal was to identify possible ADEs caused by COX-2 inhibitors.
In the reverse ML approach, the specific goal of running Aleph was to learn rules that
accurately predict which patients used COX-2 inhibitors. These rules would then be vetted
by a human expert to distinguish which were merely associated with indications of the drug
(diseases or conditions for which the drug is prescribed) and which constituted possible
ADEs (or other interesting associations, such as off-label uses for the drug).

First, the methodology was validated with a run in which only diagnoses were used
and rules were kept as short as possible—one body literal (precondition) per rule. The run
tested if the method would automatically uncover MI, a known ADE of COX-2 inhibitors.
Table 4.1 shows the ten most significant rules identified by Aleph for a single run. Note
that the penultimate rule (highlighted) identifies diagnosis 410 (MI) as a possible ADE of
COX-2. The fact that this ADE can be learned from data demonstrates that this method is
capable of identifying important drug interactions and side effects.

In some cases, a drug may cause an ADE that does not neatly correspond to an existing
diagnosis code (e.g., ICD-9 code), or that only occurs in the presence of another drug or other
preconditions. In such a case, simple one-literal rules will not suffice to capture the ADE.
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Table 4.2: Bodies of top 10 rules learned for COX-2 inhibitors, using all relations.

Rule Pos Neg Tot P-Value

gender(A,‘F’), drug(A,_,‘Ibuprofen’), 509 177 686 4.25E-38
condition(A,_,‘305.1’,‘Tobacco use disorder’).

condition(A,B,‘462’,‘Acute pharyngitis’), drug(A,B,‘Ibuprofen’). 457 148 605 1.27E-37
drug(A,_,‘Norgestimate-ethinyl estradiol’), gender(A,‘F’). 339 88 427 8.12E-36
condition(A,_,‘V70.0’,‘Routine medical exam’), drug(A,_,‘Ibuprofen’). 531 199 730 1.00E-35
condition(A,_,‘724.2’,‘Lumbago’). 433 144 577 1.44E-34
condition(A,_,‘462’,‘Acute pharyngitis’), gender(A,‘M’). 502 186 688 2.02E-34
condition(A,_,‘89.39’,‘Nonoperative exams NEC’), 415 135 550 4.12E-34

condition(A,_,‘305.1’,‘Tobacco use disorder’).
drug(A,_,‘Cyclobenzaprine HCl’), gender(A,‘M’), 493 189 682 3.60E-32

drug(A,_,‘Fluoxetine HCl’).
gender(A,‘F’), lab(A,B,‘Calcium’,9.8), 487 189 676 3.28E-31

condition(A,B,‘724.5’,‘Backache NOS’).
condition(A,_,‘V71.89’,‘Observation for other suspected condition’), 492 193 685 5.35E-31

gender(A,‘M’).

The next run used all of the background knowledge, including labs, vitals, demographics
and other drugs. Table 4.2 (p. 44) shows the top ten most significant rules that were learned
in the run, and demonstrates that rules learned by ILP are easy to interpret. According to
Fisher’s exact test, the rules identified positive cases significantly better than by chance.

The sobering aspect of this result is that Aleph learns over a hundred rules, and while
some are potentialADEs,most appear to simply describe combinations of features associated
with indications for the drug, as illustrated in Figure 4.2(f) (p. 40). At present a clinician
must then sort through this large set of rules in order to find any evidence for possible ADEs,
a laborious and imprecise process. Research is required to find ways to reduce the burden
on the clinician, including automatically focusing the set of rules toward possible ADEs and
presenting the remaining rules in a manner most likely to ease human effort.

4.4 Conclusion
This paper presents an initial study of machine learning for the discovery of unanticipated
adverse drug events (ADEs). The key contributions and lessons learned for ML are:

• ML can be used “in reverse” when the real class value of interest—in this case, some
unanticipated ADE—is not known at learning time. The experiments showed that
this approach is able to successfully uncover ADEs.

• This research demonstrates the importance of learning from years of epidemiology
research in selecting positive and negative examples for machine learning, as well as
in setting scoring functions. The goal is not to find patterns in the patients who get
prescribed a particular drug, because such patterns are already known—they are the
indications of the drug. Hence, it is important to control by using data about patients
before the drug, as well as by total amounts of data on various conditions following
various drugs.
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• Another lesson is that, despite censoring the data, a subgroup discovered with high ac-
curacy does not automatically mean one or more ADEs have been uncovered. Instead,
all rules must be vetted by a human expert to determine if they are representative of an
ADE or of some other phenomenon, such as that patients on arthritis medication such
as COX-2 inhibitors also suffer from other correlated ailments. Once these associated
conditions are also censored, learning ideally should be re-run in case ADEs were
masked by other rules that scored better.

• Another lesson is that data are multi-relational, including longitudinal (temporal),
and hence may be best analyzed by methods that can directly handle such data. It
would be desirable to take into account time from drug exposure to events, but this is
a challenging direction because different drugs can cause ADEs over different ranges
of time. Some drugs may cause an ADE within hours after they are taken, whereas
others may have permanent effects that only manifest themselves as an ADE years
later.

4.4.1 Applications for Machine Learning in Active Surveillance

In addition to the task of ADE identification that has been presented, machine learning
approaches could support many drug safety needs, including:

1. Identify and characterize temporal relationships between drugs and conditions across
the population. Is there an association between exposure to rofecoxib and cardiovas-
cular events such as MI? If so, what is the likely time-to-onset of the event, relative
to exposure? Does the risk increase over time and vary by dose?

2. Identify drug–condition relationships within patient subpopulations. Among elderly,
what are the observed effects of a particular medicine? Among patients with renal
impairment, what is rate of adverse events?

3. Identify drug–drug interactions that produce harmful effects. Which concomitant
drug combinations produce elevated risks, relative to exposure to individual products?

4. Identify risk factors and define patient subgroups with differential effects of a drug-
related adverse event. Which patients are more likely to experience adverse events?
Which patients less likely to experience adverse events?

5. Create models for predicting event onset. Which patients are likely to have expe-
rienced a MI, based on available information about diagnoses (AMI and other CV
terms), diagnostic procedures (EKG), treatments (PCI), lab tests (troponin, CK-MB),
and other observations.

Identifying previously unanticipated ADEs, predicting who is most at risk for an ADE, and
predicting safe and efficacious doses of drugs for particular patients all are important needs
for society. With the recent advent of “paperless” medical record systems, the pieces are in
place for machine learning to help meet these important needs.
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Chapter 5

Identifying ADEs using Markov
Networks and Temporal Dependence

Logical, relational rules excel at modeling structured, complex, or relational data, while
probabilities excel at modeling uncertainty and noise. Consequently, their combination, sta-
tistical relational learning (e.g., Getoor and Taskar, 2007), naturally suits machine learning
from EHR data. This perspective anticipates that modeling patient histories with logical
predicates combined into a probabilistic model will improve ADE discovery by representing
the data without alteration or approximation, and by teasing apart the noisy relationships
between all of the medical events. And these relationships, once adjusted for other in-
fluences and isolated by the model, will show evidence of ADEs and support additional,
causally-motivated scoring functions. As explained in the following chapter, this idea is im-
plemented by using feature functions (equivalent to logical predicates) to represent patient
event sequences, a log-linear Markov network to model their joint probability distribution in
the EHR database, and various scoring functions based on temporal dependence to evaluate
the likelihood of ADEs.

5.1 Empirical Causal Discovery

The detection of adverse drug events (ADEs) in observational data is a challenging task that
presents significant opportunities for improving public health. ADE detection typically pro-
ceeds by designing and conducting an observational study, a difficult, resource-intensive,
and error-prone endeavor, even without considering that there is no guaranteed way to
remove all confounding. The scale and difficulty of the problem requires automatic, com-
putational approaches to augment the existing spontaneous reporting, clinical research, and
epidemiological studies. This chapter develops such an algorithmic technique for causal
discovery in observational medical data that is free from the errors of human study design
while accurately identifying ADEs.

In particular, this chapter presents a method for empirical causal discovery, where the
goal is to distinguish causal relationships by ranking them from causal to non-causal, given
only observational data. The method employs an undirected probabilistic graphical model
(a Markov network, MN) to model the temporal relationships between random variables in
context, and then scores the relationships by their adjusted probabilistic temporal precedence.

47
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This method will be called Markov-network-assisted temporal scoring, or MNATS. By
incorporating features of other causal discovery methods into standard probabilistic models,
MNATS combines benefits of purely causal approaches and purely predictive ones.

MNATS differs from other approaches in that it is intentionally approximate and free of
assumptions. It only makes the arguably fundamental assumption that causes precede their
effects in time. This is in contrast to many techniques which make strong assumptions or
are restricted to idealized settings. Such techniques fall into three main categories: directed
probabilistic graphical models, time series, and computational epidemiology.

Directed probabilistic graphical models (Bayesian networks, BNs) are structural causal
models (SCMs)when their structurematches that of the underlying causal system. SCMs are
a class of formal causal models that include BNs, structural equation models, and the classic
framework of potential outcomes (counterfactuals) (Pearl, 2009). In the perspective of these
models, causal discovery is a network structure learning problem. (The measurement of
causal effects and adjustment for confounders is straightforward given a network.) The
structure learning algorithms developed for SCMs, such as PC (Spirtes et al., 2000), rely
on measuring conditional independence to detect provably causal structures. MNATS
differs from these constraint-based structure learners because it is not concerned with sound
inferences about causal relationships, only their empirical assessment. Further, MNATS is
temporal whereas SCMs often operate atemporally.

On the other hand, methods for time series are explicitly temporal, but they often
assume samples at regular time steps, or require a way to interpolate or approximate such
complete histories of variable values. This is this case for Granger causality (Granger,
1969) and dynamic Bayesian networks (Dean and Kanazawa, 1989). Continuous time
Bayesian networks (CTBNs) (Nodelman et al., 2002) model the value of every variable at
every instant and therefore require complete continuous trajectories of variables for learning.
Likely trajectories can be inferred, but CTBN inference is very costly and often intractable.
In contrast to continuous trajectories or regular samples, MNATS can handle point events
at arbitrary times.

The most similar approaches to MNATS are computational versions of epidemiological
study designs (such as retrospective cohort, case–control, and self-controlled studies), which
can handle events at arbitrary points in time and adjust for bias and confounding. These
studies are designed to estimate the effect size of a hypothesized cause–effect pair while
controlling for known factors. They fit into the potential outcomes framework (Rubin, 1974),
in which outcomes are compared between groups of exposed and unexposed, assuming
exchangeability of subjects. Propensity scores (Rosenbaum, 2002) and inverse probability
of treatment weighting (Robins et al., 2000) ensure the comparability of treatment groups
by matching/weighting subjects so that they are conditioned on the same measured (and
unmeasured) factors.

These types of epidemiological study designs are usually repeated for each such cause–
effect pair and therefore must be well-calibrated to produce a good ranking of many pairs.
MNATS has the benefit of considering all desired pairs at once so as to estimate the best
ranking, but does not attempt to estimate effect sizes. In this sense, it addresses the harder
problem of collective estimation but does so in a less precise way, seeking only the correct
ranking of effect sizes rather than their precise magnitudes.

Some methods do not fit into the above categories, particularly methods that model
aspects of the distribution of events and then draw inferences based on properties of the
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distribution. Some examples of this type of method are Shimizu et al. (2006), Peters et al.
(2009), and Mooij et al. (2011). MNATS shares this overall approach in its unsupervised
modeling of temporal relationships between events, and its evaluation by properties of the
probability distribution according to the learned model.

5.2 Adverse Drug Event Detection

Detecting ADEs earlier in the process of bringing drugs to market could significantly
improve public health. While side effects are usually discovered during the clinical trials for
a medication, it is possible that rare side effects will remain undetected until the drug is on
the market and taken by many more people. Therefore, automatic, algorithmic techniques
for detecting ADEs “in the wild” are crucial for patient safety. In response, organizations
such as OMOP and OHDSI, in combination with many universities, have researched such
pharmacosurveillance techniques, but there are still problems to be solved.

Even though analysismethods are still being developed, the data needed for observational
study of drug safety is conveniently being collected by computerized medical care systems,
including electronic medical records (EMR) and administrative claims (coding and billing).
EMR systems can track vital signs, symptoms, diagnoses, notes and reports, prescriptions,
tests, imaging, procedures, etc.: all the events and records of medical care. Administrative
systems usually track a subset of this information. In both cases, the data is naturally in
relational database form, which may not simply be “flattened” into a single table for use
with typical statistical and machine learning methods without losing information or altering
frequencies in the data. Thus, special techniques for relational data must be used (such
as multi-relational machine learning) or care must be taken in designing a transformation.
Thankfully, for ADE detection, everything centers around the patient, and so a natural and
equivalent representation is a timeline of clinical events.

A patient’s clinical history is a continuous timeline of dynamic factors, but it only ever
appears as a sequence of samples. Each sample, or event, can be thought of as a tuple,
(t, e, v)i, containing the time t, event type e, and value v of the event. The events are
ordered by time and indexed by i. The values can be complex, like notes and images, or
simple, like lab and vitals measurements, or nonexistent, like for occurrences of diagnoses
and prescriptions. In the following sections, “event” will usually refer to an event type rather
than an event tuple.

Medical data comes with complications, mainly because it is very noisy, but also
because it was most likely recorded for a purpose other than analysis. There can be temporal
uncertainty (events can be shifted in time or reordered), event uncertainty (events can be
repeatedly recorded without having reoccurred in the patient or be recorded differently from
reality, usually for billing purposes), and value uncertainty. The wrong level of abstraction is
another source of problems, like insufficient time precision or overly specific medications.
All these issues can be hard to address as they often depend on aspects of institutional
processes and on other (possibly unrecorded) events and information.
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5.3 Markov Network Model
In this work, relational medical data is represented as sequences S of clinical events, one
sequence s per patient. This solves the problem of trying to flatten the data for each patient
into a feature vector, but it introduces the problem of modeling arbitrary sequences of events.
One could choose to have random variables represent time steps and range over events, or
represent events and range over time steps. The latter does not handle multiple occurrences
of the same event, but limiting events to their first occurrences solves this problem (and
helps address temporal uncertainty). Thus, each event is represented by a random variable
which can take on the allowed time step values or “none,” meaning that event did not occur.

A log-linear Markov network (MN, Equations 5.1 and 5.2, (e.g., Koller and Friedman,
2009)) is used to model the distribution of patient event sequences P (S).

P (S = s) = 1
Z

exp(∑
i

θifi(s)) (5.1)

Z =∑
s∈S

exp(∑
i

θifi(s)) (5.2)

The MN incorporates binary features for the occurrences of each event and for the temporal
ordering of each pair of events. These features are the feature functions fi in Equation 5.1,
and can be thought of as the following logical predicates applied to a sequence S:

• event(S,X): true if event X occurs in sequence S
• co-occur(S,X,Y ): true if both events X and Y occur in sequence S
• before(S,X,Y ): true if events X and Y occur in sequence S and X occurs earlier than
Y

The before and co-occur features span any number of time steps, which allows them to pick
up on long-range effects.

Given a data set of patient event sequences, the MN is fitted to the data using maximum
likelihood. Then the weights of the features and the corresponding inferred probabilities
are fed into various scoring functions.

These features induce a MN graph structure that completely connects all the random
variables. Since this structure is not decomposable, the options for inference are limited to
sampling or exact inference. For the sake of precision, exact inference was chosen along
with limiting the size of the problem to ensure feasibility. The size of the space of sequences
with at most one occurrence of each event is a function of the number of events e and the
maximum sequence length n:

n

∑
l=0

e!
(e − l)!

. (5.3)

The purpose of modeling patient event sequences with these features is to capture the
marginal temporal relationships between every pair of events and to adjust those relationships
in the context of all the other events. The temporal relationships can then be used to infer
causal relationships. Of course, the main problem in causal inference is identifying and
adjusting for the effects of confounders. By connecting each pair of events, each pairwise
relationship can take on its individual responsibility for the observed data. This allows the
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MN to automatically adjust effects in the presence of all other effects and therefore address
the issues of confounding.

5.4 Temporal Scoring
Traditionally, investigators have used relative risk (in cohort studies) and the odds ratio
(in case–control studies) to assess causality in observational studies. In the case of a
MN modeling temporal relationships, it is not clear what score would best assess causal
relationships among pairs of events. Several possibilities are considered here, focused on
the idea of quantifying the strength of temporal relationships in context.

Treating the MN like a regression model, the weights of the before features show the
marginal relative importances (marginal multiplicative probability effect) of those ordered
event pairs in the distribution of sequences. Therefore, one can rank drug–condition pairs
directly by the weight of the corresponding before feature,

BF ∶= w(d→ c). (5.4)

Considering that the strength of the temporal precedence is more important, one can rank
by the smoothed ratio of the exponentiated weights (REW),

REW ∶= e
w(d→c) + α1

ew(c→d) + α2
. (5.5)

The alphas shrink the estimate towards the null hypothesis and help avoid extreme ratios
when the size of either weight is small.

Another measure of the strength of temporal precedence is the prevalence of that event
order compared to the prevalence if the events were independent. One way to formulate
plain dependence as a score is

P (d, c)
P (d)P (c)

. (5.6)

To adapt this to the temporal realm recognize that P (d, c) = P (d→ c)+P (c→ d), and that,
if d and c are independent, P (d → c) = P (c → d) and P (d, c) = 2P (d → c) = 2P (c → d).
Thus, a version of temporal dependence for d→ c is

TD ∶= 2P (d→ c)
P (d)P (c)

. (5.7)

A very similar score replaces the denominator terms with their transition probability
equivalents to form temporal transition dependence (TTD),

TTD ∶= 2P (d→ c)
P (d→ C)P (D → c)

. (5.8)

HereD andC are the sets of drugs and conditions of interest, f(x→ Y ) = ∑y′∈Y f(x→ y′),
and f(X → y) = ∑x′∈X f(x′ → y), in terms of some function f (probability, counts, etc.).

These denominator terms are very similar to the marginal probabilities P (d) and P (c),
but focus on the space of drugs occurring before conditions, and therefore can be considered
better normalizing terms.
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The above score was inspired by its connection to temporal dependence and also by the
temporal score in Page et al. (2012),

TS ∶= P (d→ c ∣ d, c)
P (d→ C ∣ d,C)P (D → c ∣D, c)

, (5.9)

which is estimated in terms of counts on event sequences with

#(d→c)+α
#(d→c)+#(c→d)+2α

#(d→C)+α
#(d→C)+#(C→d)+2α

#(D→c)+α
#(D→c)+#(c→D)+2α

(5.10)

using an additive smoothing value of α = 1.
Adjusted relative risk is the standard score for assessing causality in cohort studies.

Similarly, the probabilities as modeled and adjusted by the MN can be used to calculate the
relative risk. However, the conditional probabilities in the definition of relative risk (RR)
must be interpreted as temporally ordered, as is done in the context of a cohort study. This
means the partition of patients having the condition before the drug (c → d) is considered
unexposed to the drug at the time of the condition. The result is the following expression in
terms of MN probabilities.

RR ∶= P (c ∣ d)
P (c ∣ ¬d)

=
P (c,d)
P (d)
P (c,¬d)
P (¬d)

temporally=
P (d→c)

P (d)−P (c→d)
P (c)−P (d→c)

1−P (d)+P (c→d)

(5.11)

This MN-adjusted relative risk is compared to the unadjusted (crude) relative risk which
is computed using the following expression in terms of counts on the event sequences. This
expression retains the temporal interpretation. “#(⋅)” is the total count.

cRR ∶=
#(d→c)

#(d)−#(c→d)
#(c)−#(d→c)

#(⋅)−#(d)+#(c→d)

(5.12)

Finally, ranking sum ensembles are used to combine the predictive benefits of the above
scores. A ranking sum ensemble takes as input the ranks of two or more scores and re-ranks
by the negative of the sum of corresponding elements. (The negative keeps small sums at
the top of the ranking.) Concretely, the ranking sum ensemble score for a given example x
(a drug–condition pair in this case) and two scoring functions f1 and f2 is

RSES(x) ∶= − (rank(f1(x)) + rank(f2(x))) . (5.13)

5.5 OMOP Task, Data, and Methods
Causal discovery performance was tested on an ADE detection task developed by the
Observational Medical Outcomes Partnership (OMOP) (see §2.4.2, p. 10). OMOP was
an organization that created standards for interoperable observational healthcare databases
and researched methods to evaluate the safety of medical products. The general task they
developed is to rank drug–condition pairs from causal to non-causal using data from an
EMR database. OMOP developed the task by selecting 10 drug classes of interest and 10
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health outcomes of interest. They then selected 53 pairs from the Cartesian product of those
sets, 9 of which are true, known ADEs. The selections were made according to research
objectives, drug labeling, and extensive literature review (Ryan et al., 2012). The specific
pairs are listed in the same article in Table III, or in Table 2.1 (p. 10), and were used exactly
as defined to ensure fair comparison.

The task was evaluated on data from five databases (Table 3.3, p. 25), also provided
by OMOP, although they were commercially available. In the OMOP research laboratory
environment, these databases were converted to a common data model with a single schema
and unified coding systems.

MNATS was compared on the OMOP task against eight methods from the OMOP
methods library whose performance was studied by Ryan et al. (2012). The OMOPmethods
are described in that paper and in the following summaries.

CCO Case–crossover implements a crossover study design that compares the outcome risk
during an interval of exposure to the risk in a non-exposure interval from the same
person (Schneeweiss et al., 1997).

CCS Case–control surveillance implements a standard case–control study design that es-
timates risk odds ratios after matching by demographic factors (Rosenberg et al.,
2012).

DP Disproportionality analysis compares the occurrence frequency of exposure–outcome
pairs to their expected frequency if the events were independent (Zorych et al., 2011).

HDPS High-dimensional propensity score implements a new-user cohort design that ad-
justs risk estimates by matching stratified propensity scores estimated with logistic
regression (Schneeweiss et al., 2009).

ICTPD Information component temporal pattern discovery compares patterns of outcomes
before and after exposure in the same person using information component dispro-
portionality analysis (Norén et al., 2010).

IUD Incident user design implements an inception cohort design with a Cox proportional
hazards model and propensity score matching for risk adjustment (Ray, 2003).

OS Observational screening implements a traditional cohort study design that compares
outcome risk between groups of exposed and unexposed people (Ryan et al., 2009).

USCCS Univariate self-controlled case series compares outcome risk under exposure and
non-exposure within each person and only among people who have had the outcome
(Whitaker et al., 2006).

5.6 Experiments

Experiments were run to compare MNATS to the OMOP methods described above. The
experiments used the OMOP task and the five OMOP databases. MSLR served as the
development and tuning data. The scoring functions to be evaluated on all five databases
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were picked based on their performance on MSLR.1 This contrasts with the results from the
OMOP methods which were not tuned. For each database, Ryan et al. (2012) reported the
best performance of each method across all its parameter settings.

Patient event sequences were extracted from each of the five databases in temporal
order. When multiple events occurred on the same day in the same patient, their order was
randomized. These events were then limited by selecting only the first occurrences of events
of interest in the task. Events within each patient were sampled to limit the sequences to
a target length of six. This preserved longer-term effects compared to picking consecutive
events. Because of this sampling, five data sets of sequences were extracted from each
EMR database and their results were averaged. Note that the only differences between these
extracted data sets are the sequences from patients who had more than six events of interest
and therefore underwent sampling.

A log-linearMNwith event, co-occur, and before featureswas then fitted to the data using
exact inference and L-BFGS optimization. Probabilities for all the events, co-occurrences,
and temporal relationships (all the feature predicates) were computed. These and the fitted
parameters were then fed into the various scoring functions. The resulting scores were
used to rank the drug–condition pairs and compute corresponding ROC areas. The crude
scoring functions (cTTD, cTS, cRR) were computed from the same patient event sequences
used to fit the MNs, rather than computed from all the data in the databases, to ensure fair
comparison. The ensembles are indicated with hyphens (e.g., TTD–cTS means the ranking
sum ensemble of TTD and cTS). The ROC areas for all the scoring functions and methods
are in Table 5.1. The OMOP methods have the advantage of using all the available data in
the databases rather than only the extracted patient event sequences, and also have their best
results reported.

Each pair of methods was tested for better performance using a two-sided, paired t-test
across the five databases. The top 20 of these comparisons are listed in Table 5.2, along
with a few other notable comparisons. Comparisons with cRR have been omitted from
the listing, but not the ranking, because almost all methods outperformed it. The pairwise
performance analysis ignored BF and REW for the same reasons. Due to the large number
of pairwise comparisons among the 16 included methods, no comparison was found to be
statistically significant after controlling the false discovery rate at the 0.01 level with the
Benjamini–Hochberg procedure. Nevertheless, some of the pairs had notable AUC ROC
differences.

The ensemble TTD–cTS achieved the best average score overall (0.78). Among the
OMOP methods, HDPS had the best average (0.76). Among the crude scoring functions,
cTS had the best average (0.69), surprisingly outperforming the adjusted scoring functions.
Both TTD and cTS were comparable to the averages of the OMOP scores. TTD–cTS
performed quite a bit better than the average of the OMOP scores (by 0.10), but less so (by
0.08) after omitting the worst performer, IUD. TTD–cTS also outperformed its constituent
scores, TTD (by 0.11) and cTS (by 0.09).

All methods performed consistently better than random (AUC ROC 0.5) except IUD.
The weakest methods were IUD, cRR, TD, and REW on average. Indeed, even the OMOP
average performed better than these methods.

1 A database was used for tuning in this way because splitting up the 53 positive and negative pairs of the
task into training, tuning, and testing sets would leave only three positives per split and be impractical.
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Table 5.1: The ROC areas for the various methods and databases. Results above the
double line come from Table VI in Ryan et al. (2012). Methods below the double line
were developed in this work (except cTS) and are MN-assisted unless prefixed with “c.”
Category maxima are in bold. Some CCS runs were computationally infeasible and do not
have results.

Method MSLR GE MDCD MDCR CCAE Avg

CCO 0.64 0.65 0.71 0.65 0.67 0.66
CCS 0.69 0.67 — — — 0.68
DP 0.74 0.63 0.70 0.68 0.69 0.69
HDPS 0.74 0.66 0.83 0.79 0.76 0.76
ICTPD 0.72 0.66 0.77 0.77 0.78 0.74
IUD 0.55 0.41 0.61 0.60 0.58 0.55
OS 0.67 0.64 0.68 0.65 0.68 0.66
USCCS 0.68 0.62 0.70 0.73 0.73 0.69

Avg OMOP 0.68 0.62 0.71 0.70 0.70 0.68
Avg no IUD 0.70 0.65 0.73 0.71 0.72 0.70

TTD–cTS 0.86 0.66 0.80 0.77 0.81 0.78
RR–cTS 0.76 0.64 0.74 0.72 0.73 0.72

BF 0.66 0.56 0.66 0.62 0.57 0.62
REW 0.68 0.58 0.62 0.58 0.52 0.60
TD 0.65 0.52 0.61 0.57 0.59 0.59
TTD 0.72 0.57 0.73 0.68 0.68 0.67
RR 0.68 0.52 0.62 0.63 0.61 0.61
cTS 0.71 0.66 0.70 0.74 0.64 0.69
cTTD 0.64 0.57 0.71 0.67 0.63 0.64
cRR 0.59 0.50 0.60 0.61 0.56 0.57

Notably, TTDoutperformedTDby 0.08, suggesting thatmarginal transition probabilities
are more important to causal discovery than plain marginal probabilities. It also appears
that the MN was successful in automatically adjusting for confounding effects, as RR
outperformed cRR on every database by an average of 0.04, and TTD likewise outperformed
cTTD on every database. However, despite adjustment, RRwas still weaker than the average
of the OMOP methods, but its ensemble, RR–cTS, had a better average than the OMOP
methods.

5.7 Discussion

Scoring techniques based on temporal dependence performed as well as the OMOPmethods
despite their different perspectives. The methods developed in this work are simple and
do not rely on epidemiological approaches or other expert knowledge. However, they do
incorporate functionality important for causality: temporality and adjustment for other ef-
fects. Further, that ensembling outperforms the OMOP methods and improves performance



56 Chapter 5. Identifying ADEs using Markov Networks and Temporal Dependence

Table 5.2: The top 20 and other notable comparisons using a two-sided, paired t-test. Almost
all methods outperform cRR; those rows are not listed.

Rank Better Worse P-Value

05 TTD–cTS TD 1.17e-03
06 ICTPD TD 1.28e-03
07 TTD–cTS IUD 1.53e-03
08 HDPS TD 1.55e-03
09 HDPS IUD 2.12e-03
10 RR–cTS TD 2.12e-03
11 ICTPD IUD 2.20e-03
16 TTD–cTS RR 3.28e-03
17 RR–cTS IUD 3.53e-03
19 HDPS RR 4.88e-03
20 ICTPD RR 4.90e-03
21 cTS TD 7.21e-03
22 DP TD 7.36e-03
23 USCCS TD 8.19e-03
24 TTD–cTS OS 8.55e-03
25 TTD–cTS cTTD 8.56e-03
26 cTS IUD 8.95e-03
27 RR–cTS RR 9.16e-03
28 DP IUD 9.31e-03
29 USCCS IUD 9.36e-03

49 TTD–cTS TTD 3.93e-02
50 TTD TD 4.14e-02
51 TTD–cTS cTS 4.50e-02

over its constituents, demonstrates that basic machine learning techniques are relevant and
applicable to problems in epidemiology.

MNATS with the TTD scoring function works because it focuses on temporal relation-
ships, by modeling the transitions between variables, and because it adjusts effects in the
context of other effects, by modeling the joint distribution in detail. Evidence of adjustment
can be seen in the performance of RR when compared to cRR and TTD when compared to
cTTD. On the score side, the performance of TDD compared to TD suggests that it is much
more important what events transition to what other events rather than merely if the events
occur. MNATS thus incorporates temporality and adjustment, two fundamental aspects of
causal discovery.

MNATS relies on no other assumptions and therefore is more widely applicable than
methods built for idealistic scenarios or that require lots of background knowledge or
expertise. It also only requires the minimum of temporal information: just the order of
events and not their precise times or lags.

One of the main disadvantages of MNATS is that it does not estimate effect size.
However, in many scenarios, it may be sufficient to collectively rank causal relationships,
especially if a good ranking would be as effective at prioritizing ADEs for further investi-
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gation.

One of the more serious limitations of MNATS compared to other approaches is its
inability to handle the full database worth of data, both in terms of the length of event
sequences and in terms of the number of events of interest. Including full patient histories
would provide evidence ofmore relationships to themodel. While administrative claims data
is somewhat sparse and sequences of length six cover the large majority of patient histories
without sampling, this is partly an effect of the small number of events, and, in any case,
does not extend to the larger, denser histories found in EMR data. Expanding the number
of events considered at once is likely crucial to improving the performance of MNATS.
Considering more events allows the MN to learn more specific, truer, and, consequently,
sparser relationships than what is possible when those relationships are represented in
proxy by their “projection” down to fewer events. Including more events also increases
the likelihood of observing variables that would otherwise be unmeasured confounders, or
observing variables that screen off confounding effects.

Both the issues of number of events and sequence length are issues of scale. Thus,
increasing the scale at which MNATS operates is an important next step. This will undoubt-
edly involve approximate inference. Other than this, it is not clear how to address scaling
MNATS, but there may be ways to approximate and sparsify the graphical structure of the
model to enable message passing inference algorithms.

Using a ranking sum ensemble is causally justified because it essentially averages its
inputs, similar to forming a consensus, which does not change the causal validity of the
inputs. Imagining the algorithms are experts, there is greater confidence when their opinions
agree yet nothing is taken away from the causal knowledge in their individual opinions. In
this way, the ensemble affords the agreements greater weight, as the sum of the inputs moves
towards the extreme. Disagreements are afforded lesser weight, as their sum moves towards
the middle of the range. It is these averaging effects that make ensembles more robust and
less prone to overfitting.

However, ensembles only provide benefit if the inputs are sufficiently different; there
must be disagreements to settle. The idea of using an ensemble with MNATS was born out
of noticing differences in the rankings produced by various scores, but it was not clear what
was responsible for the differences. In the case of TTD–cTS, the constituent scores differ in
that the MN adjusts TTD and cTS uses conditional probabilities. It may be possible, then,
that over-adjustment (TTD) combined with under-adjustment (cTS) is responsible for their
joint performance. In any case, the ensemble combines their strengths and is more robust
as a result.

The lack of success of the BF and REW scoring functions suggests that it is difficult
to interpret the parameters of a MN on their own as if they were regression coefficients.
This counterintuitive result makes the interpretation ofMN parameters an attractive topic for
further study. These results were also surprising in that the REW scoring function performed
verywell on synthetic data from the second generationOMOP simulator (OSIM2). However,
it was later discovered that cRRperforms just aswell asREWonOSIM2data, which suggests
that the synthetic relationships in that data are not representative of real-world data.
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5.8 Conclusion
The performance of MNATS on the OMOP task shows that incorporating causal features,
especially time, into standard machine learning methods can succeed at causal discovery.
Indeed, such causal features appear to be necessary, as ignoring them leads to poorer results.
The performance of MNATS also shows that combinations of simple (even naïve) scoring
functions can surpass the best performance of sophisticated, domain-specific methods. That
these patterns hold over multiple databases demonstrates that MNATS generalizes to other
EMR settings. Collectively, these results establish that ML is relevant and applicable to
causal discovery problems in epidemiology, including identifying ADEs in observational
data.



Chapter 6

Temporal Inverse Probability
Weighting for Discovering ADEs
Especially in Generic Drugs

Even though “reverse machine learning” and the various temporal dependence scoring
functions may have done reasonably well at identifying ADEs in the OMOP task, they
were not very successful at controlling for confounding. Despite applying reverse machine
learning with a self-controlled study design, it was especially prone to associating a drug
with the diseases it is used to treat (its indications), suffering “confounding by indication.”
This chapter addresses such confounding with a study design that controls for both treatment
and changes over time, and with analysis methods that correct for treatment propensity and
hypothesize effects. The methods employ off-the-shelf machine learning classifiers, making
them easy to implement and widely applicable. This combination of study design and
novel analysis successfully identifies ADEs in synthetic data and discovers causally-relevant
differences between brand and generic versions of drugs.

6.1 Introduction

Due to our intuition that reasoning about the world fundamentally relies on understanding
causality, causal discovery has been a technical research area within artificial intelligence
for a long time (e.g., Pearl, 1988) and continues to draw substantial attention, particularly
in applications to healthcare. In 2008, the FDA’s Sentinel Initiative (U.S. Food and Drug
Administration, 2008) helped direct this attention towards adverse drug events (ADEs) in
response to their high societal impact: ADEs cost many lives and an estimated $30 billion
per year in the USA alone (Sultana et al., 2013). The FDA initiated a series of programs
for computational postmarketing surveillance (“pharmacovigilance” or “pharmacosurveil-
lance”) that spurred the development of many methods for ADE discovery. Most of those
methods targeted ADEs in general, but generic drugs raise unique considerations, such as
patient choice and time-varying confounding, which motivate the development of a method
that addresses the special challenges and opportunities of pharmacosurveillance of generic
drugs.

59
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Were a generic to have unique effects, one challenge is not knowing what those effects
might be before the generic enters themarket. For approval, manufacturersmust certify that a
generic has the same amounts of the same active ingredients and demonstrate bioequivalence
through studies in vivo, among other requirements (U.S. Food and Drug Administration,
2017). This similarity actually means that any effect specific to a generic is unlikely to have
been suspected based on evidence from the brand. Clinical trials for the brand often hint at
issues even if they do not have the power to confirm them. While generics do not need to
undergo clinical trials, bioequivalence studies may surface similar hypotheses, but they are
much more limited than clinical trials, often testing on only a few tens of young, healthy
individuals (Lewek and Kardas, 2010). This makes them unlikely to discover differences
in patient outcomes that are subtle or involve complex medical contexts, leaving possible
ADEs underexplored. Existing methods for ADE detection, such as those methods studied
by OMOP or its successor OHDSI (see §5.2), assume the task is to match drugs with a
finite set of predefined ADEs such as kidney injury, liver failure, or myocardial infarction
(heart attack). Given the unknown nature of possible generic-specific effects, such existing
methods for ADE detection are not appropriate for the crucial step of hypothesizing ADEs.
This work proposes a general machine learning approach that does not require possible
ADEs to be predefined.

Another challenge of ADE discovery in generics is the large difference in time between
when the brand version debuts and when the generic version debuts. Furthermore, when
the generic debuts it often happens that health insurance providers will require that patients
switch from brand to generic. Together, these circumstances mean that any observational
study of brand versus generic versions of a drug will face study groups that are exclusive in
both time and treatment, making the groups less comparable than in a typical observational
study. However, a key characteristic of ADE discovery in generics is that patients are on the
generic version for the same reasons they are on the brand version. This effectively matches
on risk factors and indicationswhich helpsmake the groupsmore comparable again. Inmany
cases, the patients are even the same, having switched from brand to generic. Through self-
controlled studies, ADE discovery in generics offers an opportunity to reduce the especially
difficult problem of unobserved confounders, confounders that are not included in the data
and may not be included as latent variables in any models. Nevertheless, the large time
gap remains a difficulty because of the potential for temporal or time-varying confounders.
This work proposes an approach specifically designed to take advantage of the similarity
between study groups and control for temporal confounding.

With the unique challenges and opportunities of generic drug ADE discovery in mind,
this work proposes an approach to causal discovery from observational data that analyzes
an observational study with general machine learning classifiers and temporal inverse prob-
ability weighting. The study design takes advantage of the brand versus generic setting
where (1) the treated groups have similarities, like sharing risk factors and indications, or
involving the same patients at different times, (2) the treatments are sequential, making
temporal confounding a problem, and (3) all of the possible effects of treatment are not
precisely defined nor even suspected before the analysis. This approach potentially gener-
alizes to other tasks in similar settings, but evaluating its generalizability beyond generic
drug pharmacosurveillance is future work. Within this scope of evaluation, the proposed
approach is found to be more accurate at identifying the true generic-specific ADEs in
synthetic data than differential prediction, and it hypothesizes plausible effects of generic
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drugs when analyzing real EHR data.

6.2 ADE Discovery

6.2.1 Adverse Drug Events

ADEs are estimated to account for up to 30% of hospital admissions and at least $30
billion in annual healthcare costs (Sultana et al., 2013). Although the U.S. Food and Drug
Administration (FDA) and its counterparts elsewhere have preapproval processes for drugs
that are rigorous and involve randomized controlled clinical trials, such processes cannot
possibly uncover everything about a drug. While a clinical trial might use only a thousand
patients, once a drug is released on the market it may be taken by millions of patients (Stang
et al., 2010). As a result, additional risks often come to light after a drug is released on the
market to a larger, more diverse population.

While generic drugs are expected to act the same as brand drugs in general, and studies
generally show equivalence (e.g., Desai et al., 2019), some of these additional risks might
be specific to generic drugs. Rightly or wrongly, concerns have been raised because generic
drugs may have differences in inactive ingredients, pharmacokinetic profiles, or especially
manufacturing processes, so differences in safety or efficacy could theoretically occur.
Leclerc et al. (2017) claimed evidence for differences in ADE profiles of brand versus
generic ACE inhibitors, and the FDA found differences in efficacy of brand versus generic
versions of both methylphenidate and bupropion (U.S. Food and Drug Administration,
2016).

Due to the risks of ADEs to patient safety, the FDA and other USA government agencies
made pharmacovigilance a high national research priority. In response, the FDA, National
Institutes of Health, and PhARMA formed theObservationalMedical Outcomes Partnership
(OMOP) (Stang et al., 2010) to develop and compare methods for ADE detection. More
recently, many of the original OMOP investigators continue working under its successor,
the Observational Health Data Sciences and Informatics (OHDSI) program (Hripcsak et al.,
2015). Their contributions include a benchmark ADE identification task, standardized data
models, and tools for computational epidemiology, some of which are described in §6.2.3.

6.2.2 Causal Discovery

The ADE detection task can be viewed as a special case of general causal discovery. The
objective of causal discovery is to determine what direct causal relationships exist among
a set of variables given measurements of those variables. For example, the variables may
include many drugs and conditions, and one might want to know if Vioxx (when it was on
the market) can cause myocardial infarction (MI). Or, one might want to know if switching
patients from brand to generic methylphenidate can cause an increase in a particular ADHD
symptom or code. The gold standard for testing for such causal relationships is a randomized
controlled trial (e.g., a clinical trial). But generic drugs are not required to undergo clinical
trials, so the main source of information about them is pharmacosurveillance, which is
observational: one does not get to intervene and randomize patients to the brand or generic
drug; one can only observe what drug they take and what happens to them subsequently, as
recorded in EHR or claims data.
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Figure 6.1: Structural causal model in which indication I (e.g., MI) has a causal effect on
both a drug D (e.g., beta blocker) and an ADE E (e.g., death). I is a confounder of D and
E: if I is not observed one might falsely conclude that D causes E.

In general, inferences from observational data are subject to confounding by other
variables. For example, beta blockers are known to reduce the risk of MI, but from purely
observational data one would be tempted to conclude the reverse, since patients on a beta
blocker appear to have a higher probability of MI than those not on a beta blocker. The
reason of course is that being at higher risk for MI leads to taking beta blockers, but it
also leads to more MIs. Thus, MI confounds the effect of beta blockers on death. This
is a common scenario called confounding by indication (MI “indicates” prescribing beta
blockers) and is shown in Figure 6.1. In general, any variable could be a confounder, not
just an indication. The antidote to confounding is to observe I and measure its influence
on both D and E. Once measured, its influence can be removed, leaving just the effect of
D on E (which could be nothing). This is called adjusting or controlling for confounding.
However, it is impossible to observe and control for all variables that might influence a
particular causal relationship of interest, so one cannot guarantee that inferences based on
observational data are free from confounding.

6.2.3 Existing Methods for ADE Discovery in EHRs

Causal discovery has been studied for years within artificial intelligence (e.g., Pearl, 1988)
and statistics (e.g., Good, 1961), but has only more recently been applied to ADE discovery.
OMOP evaluated the ability of various methods to rediscover known ADEs from data in
EHR and insurance claims databases (Madigan and Ryan, 2011). One method that OMOP
evaluated was disproportionality analysis (Zorych et al., 2011). Disproportionality analysis
constructs a 2 × 2 table of patient counts for a drug and a condition, and uses measures
such as odds ratio or relative risk to ask if a higher association exists between the drug
and condition than would be expected by chance. OMOP found disproportionality analysis
methods perform relatively poorly at ADE detection in EHR data, most likely because of
confounding variables.

One method that performed especially well in the OMOP evaluations was multiple self-
controlled case series (MSCCS) (Simpson et al., 2013). It performs a regularized Poisson
regression to predict the count of any event type, such as MI, based on a patient’s exposure
to drugs over a given time interval. Its success may lie in its use of a patient-specific baseline
risk that partially adjusts for unobserved confounders. If multiple patients suffered an MI
while on Vioxx, one might explain MI risk in part with a substantial positive coefficient on
Vioxx in the Poisson regression, whereas a patient who took no drugs might have his MI
explained instead by a high baseline risk. Other subsequent approaches have attempted to
extend this idea by modeling risks that vary over time for a single patient (Kuang et al.,
2017), though such a time-varying baseline must be heavily regularized, or by combining
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patient-specific baselines with probabilistic graphical model learning (Geng et al., 2018).
The classic framework for causal inference is the Rubin causal model (Rubin, 1974),

which provides the foundation for modern causal inference in both randomized and non-
randomized studies. Units are divided into treated and control groups; then the response to
treatment in each group is measured and compared. When the only difference between the
groups is the treatment (as is the case in randomized studies), then the difference between
the groups is the treatment effect. In nonrandomized (observational) studies, confounders
may affect both the likelihood of treatment and response, thus obscuring the treatment effect.
One way to control for this confounding is to first model a patient’s likelihood for treatment,
their propensity score (Rosenbaum and Rubin, 1983), and then select or reweight patients
to balance the distributions of propensities in the treated and control groups, perhaps by
inverse probability weighting (IPW) (Robins et al., 1994). Propensity scoring is sensitive to
the type of propensity models constructed (often logistic regression models) and the validity
of its assumptions, such as that there are no unobserved confounders.

Differential prediction1 (Linn, 1978; Radcliffe and Surry, 1999) extends the approach
of the Rubin causal model by building models of response in each of the treated and control
groups and then comparing those models. While differential prediction was developed
in standardized testing, to search for systematic biases, and in marketing, to evaluate the
effectiveness of targed advertising, it has been used for causal inference (Gutierrez and
Gérardy, 2017), for example by Robins (1994), Vansteelandt and Goetghebeur (2003), and
Nassif et al. (2012).

The above methods estimate the causal relationship between two variables at a time.
Another body of work estimates all of the direct causal relationships among a set of variables
at once: structural causal modeling (Spirtes et al., 2000; Pearl, 2009). In this framework,
a structural equation model or causal Bayesian network represents the causal system (the
“laws of nature”). Such a model does causal inference by answering queries about the
effects of interventions or counterfactual situations. Causal discovery is done by learning
the structure of the model, that is, by learning which variables directly affect which other
variables. Alternatively, a structure can be presumed or assembled from other knowledge,
such as individual relationships derived from controlled studies or experiments. Because
structural causal models represent a larger causal system, they subsume the Rubin causal
model (Pearl, 2009), but are more difficult to learn and are still subject to confounding, as
described in Figure 6.1.

All of the work reviewed so far assumes that possible ADEs have been identified and
precisely defined before the analysis. For example, OMOP’s evaluation identified ten ADEs
of interest and included precise, sometimes complex, definitions of ADE occurrence. One
piece of prior work asserted that it may not be known what ADEs a drug might cause
(Page et al., 2012). Therefore, one cannot put the unknown ADE into a graphical model
as a variable, or use it as the target for supervised machine learning, such as for Poisson
regression in MSCCS or differential prediction. Instead, Page et al. (2012) proposed using
“reverse machine learning” to build a model to “predict” who takes a drug compared to
controls, based on events that happened after starting the drug. In their approach, every
case (drug taker) has a matching control (never taker) of the same age and gender (and

1Differential prediction is also known in various fields as uplift modeling, difference in differences, or
structural mean models.
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Vioxx Arthritis MI

Hypertension Statin

Figure 6.2: One case–control pair in reverse machine learning, which builds a model that
distinguishes cases from controls given data starting after the first event of interest (Vioxx,
red line).

ideally propensity, though they did not use that), and the only data used to discriminate
between cases and controls is data after the case patient started the drug. For example, with
the patient history in Figure 6.2 and what is known about Vioxx, reverse machine learning
might build a model that predicts “case” if the patient has an MI and “control” otherwise.
They used inductive logic programming to classify cases and controls, but in principle any
classification method could be used.

6.3 Methods for Finding Differential Effects of a Generic Drug

This work addresses the following novel task, generic adverse drug event (ADE) discovery:

Given a database of clinical records, discover effects caused by taking the
generic version of a drug that are different than the effects caused by the brand
version.

To help make this task tractable, it is assumed that (1) an effect can be represented by
some combination of features available in the data and (2) any effect worth discovering
occurs frequently enough to be distinguishable from noise given the number of patients
on the brand and generic versions of a drug. Nevertheless, this task poses two major
challenges: hypothesizing effects that are causally reasonable (Hill, 1965) and controlling
for confounding.

To address these challenges, this work proposes an approach, causal discovery machine
learning, that analyzes controlled observational studies with machine learning methods.
While ML methods do not normally produce models that are causally reasonable, by com-
bining them with appropriate study designs they become instruments of causal inference.
This combination produces a general approach to causal discovery that applies equally well
to any two treatments as it does to brand and generic versions of a drug.

6.3.1 Hypothesizing Effects Using Causal Discovery Machine Learning

Since effects are not predefined, the first challenge posed by generic ADE discovery is
hypothesizing the causal effects. The proposed approach tackles this by searching for
a function that maximimally distinguishes two treatments while minimizing confounding.
The function is aMLmodel and the search is the training process. Training operates in terms
of the features of the data, so building a model effectively selects a subset of informative
features, features that in this case explain the differences between brand and generic. These
principal features define the effects.
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To make this work, the proposed approach constructs a supervised binary classification
task. The typical way to do this would be to make a suspected ADE the class label and then
learn to predict it. For example, if it was suspected that the generic version of a drug caused
myocardial infarction (MI), then a model could be trained to predict who will have a MI.
Then the model could be inspected to see if the generic drug proved to be a useful predictor
of MI. But because it is not known in advance what differences exist between patients taking
the brand and generic versions of a drug, one cannot perform such ordinary supervised
learning. Therefore, the proposed approach instead sets up the classification task with the
drug as the class label: generic-takers are positive examples and brand-takers are negative
examples. This is learning in reverse in terms of time and causation: while normally one
would predict an ADE given a drug of interest, the proposed approach “predicts” who has
been on what version of the drug given the medical events they experience after starting
that drug. After training the model, it can be inspected to see what differences between
brand and generic have been found. Page et al. (2012) proposed a similar “reverse machine
learning” approach for hypothesizing ADEs, but they did not control for confounding.

6.3.2 Reducing Confounding Using Self-Controlled Studies

Since any approach that attempts causal discovery from observational data faces the pos-
sibility of confounding, the second challenge posed by generic ADE discovery is reducing
such possibilities, especially for temporal confounding. The proposed approach tackles
this by setting up a self-controlled study, which takes advantage of the similarities between
brand-takers and generic-takers to implicitly match on observed and unobserved variables,
thereby reducing the effects of confounders, especially unobserved ones.

First, patients taking brand or generic versions of a drug are taking it for the same
reasons: they share indications. Recall Figure 6.1 and consider a study of two unrelated
treatments where units do not share predisposition towards treatment. In such a study,
confounding by indication I might manifest itself by causing an analysis to propose effects
E that are associated with I . For example, if drug D is a beta blocker, then an analysis
might propose MI as an effect because MI is more common in patients on beta blockers.
But MI is an indication for (cause of) taking beta blockers, not an effect. A study of brand
versus generic avoids this problem because patients take either of the drug versions for the
same reasons, the same indications I , thus controlling for confounding by indication.

Nevertheless, other variables could be confounders, including variables not observed nor
even imagined. In fact, this risk is greater when hypothesizing effects because any variable
that appears more associated with brand or generic could be part of the hypothesized effect,
and such variables are likely to be confounders that will bias the analysis. This leads to the
second reason that the brand versus generic setting has an advantage: many patients switch
from brand to generic. Entering these patients into the study makes it self-controlled, which
means the same patients are in both treatment groups. This matches the groups exactly on
observed and unobserved variables, thereby controlling for even unobserved confounders.

However, patients that switch from brand to generic (or generic to brand) might change
over time, meaning that self-control cannot help with temporal confounding. Temporal or
time-varying confounding can occur when the relationship between two variables changes
over time. For example, when generic gabapentin became available in early 2005, the
healthcare system studied here quickly switched patients from brand (Neurontin) to generic.
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Around the same time, the healthcare system also switched from paper to electronic pre-
scriptions. As a result, the variable “prescription transmitted electronically” is the best
discriminator between brand and generic when the study does not control for changes over
time. This variable does not cause generic; it is a temporal confounder. Because things can
change between when a patient takes different versions of a drug, temporal confounding is
exacerbated in the setting of brand versus generic. The proposed approach tackles this by
additionally employing temporally-matched control groups. While all of these similarities
reduce confounding, they can never guarantee to eliminate confounding due to the nature of
observational studies.

6.3.3 Study Design

To discover differences between brand and generic versions of drugs, observational studies
were constructed and then analyzed with machine learning. A typical observational study
compares a treated group with a control group, but that does not work in the case of brand
and generic drugs because there are two treatments and there exists the possibility of other
factors changing over time, leading to temporal confounding. Thus, a study design was used
that paired each treatment group with a temporally-matched control group, as in Figure 6.3.

tBefore After

T1B T2A

CB CA

Figure 6.3: Controlled before–after study for two sequential treatments, T1 and T2.

The study design in Figure 6.3 is a type of controlled before–after study (Shadish et al.,
2002). It contains two treatments, T1 and T2, before (B) and after (A) a threshold in time t,
which can be chosen globally or per unit (patient). Each treated unit has a control unit that
corresponds in time. The treated groups establish the effects and the temporally-matched
control groups provide a baseline for comparison and eliminate confounding.

In the case of brand versus generic, many patients switch from brand to generic and
are therefore members of both T1B and T2A. Including these switchers in the study makes
it self-controlled. Because the number of switchers tends to be relatively small, all of the
patients that ever took brand or generic were entered in the study to increase its power and
robustness. Specifically, there were three matching scenarios: (1) brand to generic switchers
were matched with generic to brand switchers as in a crossover design, (2) leftover switchers
were matched with never-takers, and (3) brand-only-takers were matched with generic-only-
takers and served as each other’s controls: the brand-taker served as T1B and CA and
the generic-taker served as T2A and CB . Accordingly, the time threshold was chosen per
matched pair. All matching included the time period of the drug as well as demographics
and measures of interaction with the health system.

How can such a study be analyzed? Let T1B be the group taking the brand version of
a drug, T2A be the group taking the generic version, and f be some outcome measure of
each group. Then the difference between treated groups f(T2A) − f(T1B) is the effect, the
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difference between control groups f(CA) − f(CB) models the changes over time, and the
difference in differences is the temporally-adjusted effect, Equation 6.1.

(f(T2A) − f(T1B)) − (f(CA) − f(CB)) (6.1)
= f(T2A) − f(T1B) − f(CA) + f(CB) (6.2)
=(f(T2A) − f(CA)) − (f(T1B) − f(CB)) (6.3)

Equation 6.1 is equivalent to first finding the effect of each treatment group compared to the
baseline of its control group and then finding the difference between those effects, which is
Equation 6.3. (Note that the same relationships hold after replacing differences with ratios.)

The typical analysis approach in fields such as statistics or epidemiology would be to
estimate Equation 6.2—for example, with a regression model—but we desire an approach
that will work in general with many machine learning models, so we treat it as a binary
classification task by taking the signs of the terms as the class labels: +T2A, −T1B , −CA,
+CB . That is, the positive examples are T2A and CB together, and the negative examples
are T1B and CA together, pitting the diagonals of Figure 6.3 against each other. This design
controls for temporal and other differences because each classification group includes both
before and after units, and both treated and control units. Also, by setting up analyses to
discover differences between these groups based on data after treatment, this design adapts
the analyses to hypothesize effects and do causal discovery machine learning.

6.3.4 Analyses

The observational studies were constructed according to the study design in Figure 6.3
and then analyzed with classification, differential prediction, and a method developed here,
temporal inverse probability weighting (IPW). The classification method applied binary
classifiers directly to the positives and negatives from the study design. Any binary classifier
could work in this setup, but this work focused on those that produced interpretable feature
weights so that humans could follow up on any potential ADE discoveries. Specifically,
logistic regression (LR)was chosen because it is a commonly usedmodel in causal inference,
and support vector machines (SVMs) with linear kernels were chosen because they were
also used for differential prediction. It turns out that applying binary classification to this
study design is already a form of differential prediction, accomplished on regular data by
flipping the labels of the control groups (Jaśkowski and Jaroszewicz, 2012). It will be called
differential classification.

The second analysis method was “proper” differential prediction using SVMs (with
linear kernels) modified to maximize uplift (Kuusisto et al., 2014). (Uplift is a measure
of differences between groups analogous to Equation 6.2.) Differential prediction seeks to
predict whether units will respond to treatment by comparing treated and control groups. It
works by building a model of response to treatment, building a separate model of response
despite no treatment, and then comparing the two models, although some methods model
both responses with a single, combined model that explains the differences between the
treated and control groups. It was originally conceived as a way to target marketing at
individuals who would respond by making a purchase (or not), but it turns out to also be
applicable to analyzing controlled studies. The standard setting of predicting the response
from the treatment must be adapted to the setting of discovering differences between brand
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and generic because there are two treatments and the response is to be discovered. This
can be done by noticing that there are still the four groups of Figure 6.3: brand–before,
generic–after, control–before, and control–after. Thus, the groups remain the same, but
instead of treatment and response, the experimental dimensions are drug and time.

6.3.4.1 Temporal Inverse Probability Weighting

In addition to differential classification and prediction, the studies were analyzed using
inverse probability weighting (IPW) (Rosenbaum and Rubin, 1983; Imbens and Rubin,
2015), which this work adapts to the temporal setting of controlled before–after studies
as follows. First, a model of temporal trends is built by training a classifier to classify
control units as before or after. Next, that classifier predicts before or after for each of
the brand (before) and generic (after) units. The units that the classifier predicts correctly
exhibit similar temporal trends to those that exist in the controls. The units that the classifier
predicts incorrectly cannot be distinguished based on temporal trends, so their distinguishing
characteristics have to do with taking brand or generic (which are the only other differences
except those due to confounding, for which the study design controls). Then, each treated
unit is reweighted by the inverse of the probability that the model assigns to its correct label.
This downweights units that exhibit mainly temporal trends and upweights units that do
not, thereby controlling for temporal trends and focusing on differences between brand and
generic. Finally, a second classifier is trained on the reweighted brand- and generic-takers
to discover the differences between them. LR and SVMs were the classifiers used.

More precisely, given pairs (x, y)i of feature vectors and labels for control units C and
treated units T , temporal IPW is done by (1) modeling the control units −CB and +CA with
one modelM1, (2) usingM1 to predict the labels of the units in the treated groups −T1B
and +T2A, (3) reweighting the treated units by the reciprocal of the predicted probability of
their true label (Equation 6.4), and (4) modeling the reweighted treated units with a second
modelM2. Feature weights then come from inspectingM2.

w(xi, yi) ∶=
1

P̂M1(Y = yi ∣X = xi)
(6.4)

Temporal IPW can be understood as finding a feature that maximizes the ratio of time-
and treatment-specific relative risks. The relative risk of a feature (outcome) f in the brand
and generic groups compared to controls is, respectively,

P (f ∣ T = b,W = bef)
P (f ∣ T = 0,W = bef)

and
P (f ∣ T = g,W = aft)
P (f ∣ T = 0,W = aft)

(6.5)

where T is the treatment, brand b, generic g, or neither 0, and W is when, before or after.
The ratio, generic over brand, of these relative risks is

P (f ∣ g, aft)/P (f ∣ 0, aft)
P (f ∣ b,bef)/P (f ∣ 0,bef)

= P (f ∣ g, aft)
P (f ∣ b,bef)

P (f ∣ 0,bef)
P (f ∣ 0, aft)

. (6.6)

The second term in the right-hand side of Equation 6.6 reweights according to the reciprocal
of changes over time in the control groups, corresponding to the inverse probability in
Equation 6.4. Considering the right-hand side of Equation 6.6, temporal IPW works by
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first finding a set of features that maximizes the second term and then finding a (possibly
different) set of features that maximizes the first term. Thus, in actuality, the maximized
quantity is a pseudo-relative risk where the relative outcomes may differ.

Compared to the other methods, temporal IPW has an optimization objective that cannot
be gamed and has greater statistical efficiency. The risk with IPW in general is that a few
patients get enormous weights. The strength of IPW based on temporal propensity scores
is that such uneven weighting is unlikely if changes over time in population health and the
health system are small and gradual. In theory then, if there exist differences in health events
that make it possible to learn a modelM in model class C (say, the class of linear SVMs)
that can distinguish between patients on generic and brand with AUC ROC A > 0.5, then
temporal IPW, together with an effective learning algorithm for C and enough data, should
make it possible to approximateM and achieve AUC A. In contrast, differential prediction
is unlikely to succeed in this same way because it can drive its objective up by learning a
model that has an especially low AUC on the control patients rather than an especially high
AUC on the treated patients. While differential classification does not suffer this malady,
it is also unlikely to approximateM or achieve AUC A because fully half of its training
examples (the controls) are not actually labeled according toM, that is, according to the
true class of brand or generic. Hence, ifM has an AUC of A = 0.5+a when distinguishing
brand −T1B and generic +T2A,M will have an AUC only half as good, A′ = 0.5+ a

2 , when
applied to the differential classification training data, {−T1B,−CA} and {+T2A,+CB}. As
a result, differential classification may find a model different fromM that spuriously has a
higher AUC.

6.3.4.2 Evaluation

To evaluate the analyses on the synthetic data, the experiments used the AUC ROC of
identifying the true effects specific to the generic. That is, to do well, a model needed to
score the events that are the true effects of the generic higher than all other events. The score
of an event was the weight given to the corresponding featureXj by the model. For logistic
regression, this was the regression coefficient (log odds of the feature), and for SVMs (both
differential and plain) this was the coefficient of the feature in the linear kernel.

6.3.5 Electronic Health Records Data

The data used in the experiments came from electronic health records (EHR) databases.
Typical EHR data is kept in a relational database and consists of multiple tables for informa-
tion like demographics, diagnoses, drugs, procedures, measurements such as lab tests and
vitals, etc. Each row in a table can be considered an event if it has a timestamp; otherwise it
can be considered a fact. Viewed from the perspective of a single patient, all the facts and
events pertaining to that patient form a sequence of events that is that patient’s history or
timeline. All of the data was analyzed in the form of patient histories: the relevant period
of time was extracted from the patient’s history, the events during the period were counted,
and the counts formed a feature vector along with demographic facts.

Experiments were conducted on both synthetic and real-world EHR data, the former to
provide a ground truth for evaluating the methods, and the latter to apply those methods to
finding actual differences between brand and generic drugs.
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6.3.5.1 Synthetic Data

The synthetic data was generated by a continuous time Bayesian network (CTBN) (Nodel-
man et al., 2002). A network was designed with representative structure that involved risk
factors, indications, drugs, procedures, and adverse drug events (ADEs). The temporal
differences were the availability of the generic version of drug D1 and a distractor, the
introduction of procedure P2. These were introduced midway through the samples and are
indicated by dashed lines in Figure 6.4. The difference between brand and generic was an
extra ADE: both brand and genericD1 causedA1, but only genericD1 causedA2. To make
the synthetic data realistically difficult, D1 causes A2 with an incidence of 5.5 occurrences
per 100 patients per year, which agrees with the literature (e.g., Gurwitz et al., 2003).

R1 R2 R3

I1 I2 I3

D1 D2 P1

A1
A2

A3
P2

Figure 6.4: Network for CTBN for synthetic data. (R)isk factor, (I)ndication, (D)rug,
(P)rocedure, (A)DE. P2 is introduced at the same time as generic D1, midway through the
sampled patient histories. GenericD1 causes A2 whereas brand does not. The dashed lines
indicate these temporal differences. Perpendicular arrowheads ⊣ mark inhibitors.

6.3.5.2 Real EHR Data

The real EHR data was deidentifiedmedical records data fromMarshfield Clinic. It included
tables for demographics, diagnoses, drugs, measurements (labs and vitals), procedures,
observations, visits, and deaths. The data spanned years 1978–2018, and included 1.7M
patients and 1.5G events. Patient histories had 872 events on average (quartiles: 0%: 1,
25%: 22, 50%: 140, 75%: 727, 100%: 134k).

6.4 Results
The methods from §6.3 were first evaluated on synthetic data where the ground truth ADEs
specific to the generic version of an artificial drug were known. Then the same methods
were applied to actual EHR data, using real-world brand–generic drug pairs that have been
on the market long enough to have demonstrated their safety.

6.4.1 Synthetic Data

Samples were drawn from the CTBN in Figure 6.4 to produce three data sets each with
10M patients. Subsets of each large data set were then formed by taking the first n patients,
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where n ranged from 101 to 107 (the full size). In a given subset of patients, only some
took the brand or generic version of the drug of interest; these patients became the cases
in a before–after study. Furthermore, each case and its matched control contributed an
example for each of the before and after periods, leading to the classification task having
four examples for each case–control pair. The sizes of the data sets in terms of these numbers
are in Figure 6.5(a), averaged over the three data sets.

Patients Cases Examples

10 2 8
100 20 81

1 000 174 697
10 000 1 772 7 088

100 000 17 698 70 792
1 000 000 177 008 708 033
10 000 000 1 770 737 7 082 948

(a) Data sets
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(c) Best classification (“Tuned”)
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Figure 6.5: Data sets and learning curves for discovering the true generic-specific ADEs
in the experiments on the synthetic data. CLS: differential classification, DFP: differential
prediction, IPW: temporal IPW, LR: logistic regression, SVM: support vector machine with
a linear kernel, Cases: patients taking the brand or generic of interest, Examples: feature
vectors for the classification task.

Each method was applied to each subset of each data set and then evaluated by how
well it identified the correct generic-specific ADE (see §6.3.5.1). Figures 6.5(b)–6.5(d)
show the results of this evaluation in the form of learning curves after averaging the results
over the three data sets. Because the training task (distinguishing between brand-takers and
generic-takers in a before–after study encoded as a binary classification task) is different
from the evaluation task (discovering generic-specific ADEs), the standard notions of tuning
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do not directly apply, which meant there was no standard way of picking hyperparameters.2
Thus, learning curves from three different ways of picking hyperparameters are shown. In
Figure 6.5(b), the methods with the defaultC = 1 were picked; in Figure 6.5(c), the methods
with the best AUC ROC on the classification task were picked; and in Figure 6.5(d), the
methods with the best AUC ROC on the ADE discovery task were picked, as if an oracle
had provided the correct hyperparameters. The AUCs ROC were averaged over all the data
sets and data sizes before picking the best. One can see that “tuning” the hyperparameters
by picking the best on the classification task is not a good tactic; the classification accuracy
is not very predictive of the causal discovery accuracy. Indeed, it appears that SVMs are the
most sensitive to hyperparameters, with IPW-SVM having an inverse relationship between
accuracy and ADE discovery. On the other hand, LR appears to be the most robust to
hyperparameters, as it does consistently well for both differential classification and IPW.
Overall, the IPWmethods tend to do better than the differential classification and prediction
methods, which perform similarly to each other.

6.4.2 Discussion of Synthetic Data Results

These results demonstrate the success of temporal IPW at causal discovery, which can be
explained in part by temporal IPW’s statistical efficiency and rigorous formulation. Unlike
differential classification, temporal IPWdoes not dilute theADE signal by combining treated
and control groups, and so it is more sensitive to differences between the before (brand)
and after (generic) groups. Unlike differential prediction, temporal IPW cannot game its
objective by inadequately modeling the controls, and so it is more likely to discover actual
differences between brand and generic.

These results also illustrate a remaining challenge: how to tune hyperparameters for
causal discovery. Because causal discovery is not a supervised task, the standard techniques
do not directly apply. However, they indirectly apply, and can be adapted by collecting
known true / false causal relationships and treating them as a binary classification task. A
set of such labeled cause–effect pairs can be divided into sets for training, tuning, and testing
in the standard ways. One problem with this is that the cause–effect pairs are unlikely to
be independent, even given the data. The more important problem is that the number of
known causal effects in a given domain is usually fairly small, so dividing them up results
in unreliable tuning estimates. This paucity of known causal effects is exacerbated when
studying brand and generic versions of drugs because the generic should have few, if any,
causal differences, much less generic-specific ADEs. Thus, causal discovery, especially for
generic ADEs, would benefit from new ideas for tuning, perhaps related to how to transfer
hyperparameters between tasks.

The strength of experiments on synthetic data is that the true causal relationships are
known and can be used to directly evaluate the accuracy of causal discoveries. Of course,
the weakness is that synthetic data may be unrepresentative of the real-world task in various
ways. The next experiments study actual brand and generic drugs in real EHR data, which
brings the challenge that not all differences and effects are known.

2The hyperparameters were just the regularization strength parameter for SVMs (C) and LR (λ).
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Table 6.1: Top 10 / 50k features from IPW-LR by LR coefficient magnitude. Features that
favor generic have positive coefficients.

(a) Bupropion

Score Feature

-0.029 Ex-smoker
-0.014 Albuterol 0.09 mg inhaler
0.013 Chiropractic manipulative treatment
-0.012 Polyethylene glycol powder for oral

solution
-0.012 Furosemide 20 mg tablet
-0.012 Ferrous sulfate 325 mg tablet
-0.011 Vitamin B12
-0.011 Omeprazole 20 mg capsule
-0.011 Acetaminophen 250mg / aspirin 250

mg / caffeine 65 mg tablet
-0.011 Mometasone furoate 0.05 mg nasal

spray

(b) Duloxetine

Score Feature

-0.020 Ex-smoker
-0.016 Albuterol 0.83 mg/ml inhalant solu-

tion
-0.015 Cholecalciferol 2000 unt oral cap-

sule
-0.014 Glucose in capillary blood
-0.014 Glucose in blood by test strip
-0.014 Glucose finger stick
-0.013 Fluticasone propionate 0.1 mg / sal-

meterol 0.05 mg dry powder inhaler
-0.013 Albuterol 0.09 mg inhaler
-0.013 Outpatient visit
0.012 Non-smoker

(c) Gabapentin

Score Feature

0.269 Other measurements / exams
0.184 Glomerular filtration rate
0.180 eGFR with normals for non-black
0.113 Lidocaine 0.05 mg patch
0.113 Cyclobenzaprine hydrochloride 10

mg tablet
0.113 Naproxen 500 mg tablet
0.112 Citalopram 40 mg tablet
0.109 Obstructive sleep apnea syndrome
0.108 Essential hypertension
0.107 Albuterol 0.09 mg inhaler

(d) Methylphenidate

Score Feature

-0.004 Year of birth
-0.002 Smoker
-0.001 BP systolic
-0.001 BP diastolic
-0.001 No matching concept
-0.001 Albuterol 0.09 mg inhaler
-0.000 Sertraline 100 mg tablet
-0.000 Insulin lispro pen injector
-0.000 Insulin glargine pen injector
-0.000 Budesonide 0.16 mg / formoterol fu-

marate 0.0045 mg inhaler

6.4.3 Real EHR Data

To explore what differences the methods could discover between brand and generic drugs
in real EHR data, four drugs were studied that were available in a generic version and
had widespread use: (1) bupropion, a NDRI antidepressant that also helps with smoking
cessation, (2) duloxetine, a SSRI antidepressant that also treats anxiety, fibromyalgia, and
neuropathic pain, (3) gabapentin, an anticonvulsant that also treats neuropathic pain, and
(4) methylphenidate, a stimulant that treats attention deficit hyperactivity disorder (ADHD).
For each of these drugs, a controlled before–after study was constructed by extracting data
from a deidentified EHR database from Marshfield Clinic. As in the experiments on the
synthetic data, the features were counts of event occurrences plus demographics, for a total
of 49045 features in the EHR data. In order to focus the results for human interpretation,
the best methods from the synthetic experiments were used. These were IPW-LR and
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Table 6.2: Top 10 / 50k features from IPW-SVM by SVM coefficient magnitude. Features
that favor generic have positive coefficients.

(a) Bupropion

Score Feature

-1.791 Outpatient visit
-1.584 Tetrahydrocannabinol in urine
1.564 Adverse reaction to food
-1.513 Tobramycin 0.003 mg ophthalmic

ointment
-1.507 Dexamethasone 6 mg tablet
-1.487 Injection of sacroiliac joint
-1.480 Quetiapine fumarate
1.469 Hysteroscopy, surgical
-1.446 H1N1 immunization
-1.384 Abnormal sexual function

(b) Duloxetine

Score Feature

-2.231 Outpatient visit
-1.408 Pharmacologic management with

minimal psychotherapy
1.271 Phentermine
-1.141 Individual psychotherapy
1.138 Drug screen
-1.095 Outpatient visit, established patient
-1.064 Linaclotide 0.29 mg capsule
1.044 Topiramate 50 mg capsule
1.006 Alopecia
-0.973 Mirtazapine

(c) Gabapentin

Score Feature

1.898 Injections of muscle trigger points
-1.741 Outpatient visit
1.624 Fluoroscopic guidance for spinal in-

jection procedures
-1.539 Gynecological exam
-1.533 Lipid metabolism disorder
-1.315 Speech / Language deficit from ce-

rebrovascular accident
-1.314 Spinal anesthetic injection
1.306 Naproxen sodium 220 mg tablet
1.254 Other measurements / exams
-1.253 Reiter’s disease

(d) Methylphenidate

Score Feature

1.828 Epinephrine 0.5 mg/ml injector pen
-1.764 Outpatient visit
-1.679 Ciprofloxacin 3 mg / dexamethasone

1 mg otic suspension
-1.579 Asthma exacerbation
1.478 One-on-one cognitive skills training
1.444 Vertebral column disorder
1.443 Immunization for a minor
-1.438 Male
-1.428 Unknown race
-1.413 Hydroxyzine hydrochloride 10 mg

tablet

IPW-SVM, using the the best hyperparameters from the synthetic experiments.
The top differences between brand and generic discovered by IPW-LR and IPW-SVM

are shown in Tables 6.1 (p. 73) and 6.2 (p. 74), respectively. What patterns can be seen
in these groups of features? For brand duloxetine (Table 6.1(b)), IPW-LR turns up several
features having to do with diabetes. Diabetes also appears to be associated with brand
methylphenidate (Table 6.1(d)), which is also associated with a higher year of birth (younger
patients) and asthma. Asthma and related treatments are a pattern in these results, appearing
8 times with brand and once with generic when considering both IPW-LR and IPW-SVM
together. Perhaps relatedly, steroids and antihistamines occur two times with brand and
once with generic. Another pattern seen in both IPW-LR and IPW-SVM is the association
of generic gabapentin with pain management events (Tables 6.1(c) and 6.2(c)), namely
higher numbers of prescriptions for NSAID naproxen, lidocaine anesthetic patches, and
muscle relaxant cyclobenzaprine. Another pattern that IPW-SVM finds across all drugs
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Table 6.3: Top 10 / 50k features from CLS-LR by LR coefficient magnitude. Features that
favor generic have positive coefficients.

(a) Bupropion

Score Feature

11.044 Female
10.980 Male
9.050 White
6.524 Mixed racial group
6.450 Unknown race
5.891 Nepafenac 3 mg/ml ophthalmic sus-

pension
5.783 Heat syncope
-5.261 Ammonia in plasma
-5.109 H1N1 immunization
4.982 Changes in skin texture

(b) Duloxetine

Score Feature

4.609 Male
4.586 Female
-4.353 General exam
-4.270 Bipolar disorder
-4.203 MMRV vaccine
4.087 Methylsulfonylmethane 1000 mg

capsule
4.059 Anodontia
-3.972 Psychotherapy service
-3.828 Periodic comprehensive exam
-3.792 Bulimia nervosa

(c) Gabapentin

Score Feature

6.096 Mixed racial group
5.998 Female
5.873 Male
5.775 Unknown race
4.045 Nasal hemorrhage control
-3.889 Radiologic exam of wrist
-3.631 Spinal anesthetic injection
-3.496 Periodic comprehensive exam
3.360 Problem-focused oral exam
3.357 Hypertensive heart and chronic kid-

ney disease

(d) Methylphenidate

Score Feature

8.257 Female
7.926 Male
6.633 Throat pain
-6.499 Loratadine 10 mg tablet
5.762 White
5.712 Epinephrine 0.5 mg/ml injector pen
5.684 Vertebral column disorder
5.463 General well-being finding
5.403 Clinical finding procedure
-5.390 Benign neoplasm of choroid

(Table 6.2) is the association of brand with more visits, even psychotherapy visits, which
can be expensive. None of the patterns in the features suggest obvious temporal confounders.

For reference and comparison, the results from the other methods are also included,
using the best hyperparameters from the synthetic experiments as above. The differential
classification methods, CLS-LR (Table 6.3, p. 75) and CLS-SVM (Table 6.4, p. 76), have
a number of top features in common, and the top features from CLS-SVM and DFP-SVM
(Table 6.5, p. 77) for each drug are quite similar. Any further discussion of patterns in the
results from these methods is foregone here, however, because their lower causal discovery
accuracy makes meaningful interpretation questionable.

6.4.4 Discussion of EHR Results

IPW-LR and IPW-SVM rediscovered some known relationships, and suggested some new,
plausiably causal, relationships. The associations of diabetes with brand duloxetine and
methylphenidate in the IPW-LR results can be readily explained: duloxetine treats diabetic
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Table 6.4: Top 10 / 50k features from CLS-SVM by SVM coefficient magnitude. Features
that favor generic have positive coefficients.

(a) Bupropion

Score Feature

-2.770 Year of birth
1.918 Rhythm ECG
-1.872 Tetrahydrocannabinol in urine
-1.648 Methscopolamine bromide
-1.626 Morphine sulfate 30 mg capsule
-1.611 Health and behavior assessment
-1.564 Thyroid imaging
1.557 Scrotal varices
1.556 Radiologic exam of clavicle
-1.540 Toe contusion

(b) Duloxetine

Score Feature

1.555 Blood test
1.534 Refraction disorder
1.497 Male
1.484 Methylsulfonylmethane 1000 mg

capsule
-1.478 Eszopiclone 3 mg tablet
-1.473 Hemorrhoids
1.459 Female
-1.433 Bipolar disorder
1.347 Clorazepate 3.75 mg tablet
1.340 Positive pregnancy test

(c) Gabapentin

Score Feature

-3.333 Year of birth
1.998 Benazepril 10 mg tablet
1.938 Hypertensive heart and chronic kid-

ney disease
-1.770 Dental caries
1.760 Nasal hemorrhage control
1.740 Pityriasis versicolor
-1.685 Palindromic rheumatism
-1.655 Ketoprofen 200 mg capsule
-1.632 Dobutamine
1.626 Injections of muscle trigger points

(d) Methylphenidate

Score Feature

2.104 Female
2.052 Desoximetasone 0.5 mg/ml cream
1.973 Male
-1.801 Crushing injury of hand
1.781 Epinephrine 0.5 mg/ml injector pen
1.669 Vertebral column disorder
1.632 Altered mental status
1.587 Senile hyperkeratosis
1.568 Throat pain
1.544 Hearing problem

neuropathy (Smith and Nicholson, 2007) and methylphenidate treats ADHD which is as-
sociated with higher risk of diabetes mellitus type 2 (Chen et al., 2018). However, it is
not clear why these associations appear with only the brand drugs. Perhaps health plans
that provide better diabetic care also pay for brand drugs, or perhaps patients who are more
involved with their care prefer brand drugs. The association of brand methylphenidate with
younger patients is curious. Is there a mistrust by parents or physicians of prescribing
generic methylphenidate to younger patients, perhaps as a reaction to the news that some
generics had reduced efficacy?

The association of generic gabapentin with increased pain management events is a
consistent signal across both IPW-LR and IPW-SVM. While it is possible that generic-
takers interact with the health system more to manage their pain, this association suggests a
possible lack of efficacy of generic gabapentin. (There is evidence that taking brand improves
outcomes through easier adherence (Sicras-Mainar et al., 2015; Candido et al., 2016).)
Another consistent signal is the association of brand drugs with asthma. This is probably
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Table 6.5: Top 10 / 50k features from DFP-SVM by SVM coefficient magnitude. Features
that favor generic have positive coefficients.

(a) Bupropion

Score Feature

-3.264 Year of birth
1.956 Rhythm ECG
-1.788 Human insulin
-1.768 Methscopolamine bromide
-1.743 Morphine sulfate 30 mg capsule
-1.737 Abnormal sexual function
-1.733 Tetrahydrocannabinol in urine
1.693 Nepafenac 3 mg/ml ophthalmic sus-

pension
-1.636 Toe contusion
-1.629 Thyroid imaging

(b) Duloxetine

Score Feature

-10.423 Year of birth
-10.246 Age
2.244 Methylsulfonylmethane 1000 mg

capsule
-1.780 Individual psychotherapy service
1.779 Blood test
-1.776 Eszopiclone 3 mg tablet
-1.707 General exam
1.616 Refraction disorder
1.602 Methylphenidate 10 mg capsule
-1.585 Hemorrhoids

(c) Gabapentin

Score Feature

-4.173 Year of birth
2.359 Benazepril 10 mg tablet
2.112 Nasal hemorrhage control
2.017 Mixed racial group
-1.952 Dental caries
-1.949 Palindromic rheumatism
-1.851 Spinal anesthetic injection
1.836 Female
-1.801 Retroperitoneal ultrasound
-1.798 Certification procedure

(d) Methylphenidate

Score Feature

-6.225 Year of birth
-3.054 Age
2.613 Hearing problem
2.522 Desoximetasone 0.5 mg/ml cream
2.477 Clarithromycin 250 mg tablet
-2.412 Crushing injury of hand
-2.382 Albuterol 1 mg inhalation solution
2.367 Interpersonal relationship finding
2.341 Epinephrine 0.5 mg/ml injector pen
2.312 Vertebral column disorder

due to people with chronic conditions such as asthma preferring brand drugs, but treatments
for asthma that reduce serotonin may worsen ADHD and other psychological conditions
(Pretorius, 2004), leading to treatment with bupropion, duloxetine, or methylphenidate.

The pattern of brand drugs andmore visits is also worth examining, as it relates to access
to care and the quality thereof. The association can be explained by differences in health
plans where a plan that pays for brand also pays for more services in general. Such a plan
usually costs more, so this explanation reinforces the positive correlation between brand
drugs, better healthcare, and higher socioeconomic status, which is just another way of
saying that patients who take generics are at a disadvantage. Unfortunately, the plausibility
of this inference cannot be checked because socioeconomic features are not included in the
data, and thus our methods cannot control for them. One remedy would be to include more
socioeconomic features as routine demographics in EHR data.
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6.5 Conclusion
Temporal IPW is a newmethod for causal discovery from observational data that is effective
at discovering generic-specific ADEs in combination with controlled before–after studies.
Such studies address the unique challenges and opportunities of ADE discovery in generic
drugs by supporting causal discovery ML for hypothesizing ADEs and, especially with
self-control, offering better control of confounders, including temporal and unobserved
confounders. The benefits of this study design are also available to general causal discovery
with other methods, such as differential classification using off-the-shelf ML classifiers.
Together, these contributions to causal discovery promote the study of drug safety and
thereby help to mitigate the high impact of ADEs on society.



Chapter 7

Conclusion

While accurate causal discoverywill remain a challenging task due to the intrinsic limitations
of observation as a source of information, the variousmethods for causal discovery described
in this work contribute to the progress being made in taming the uncertainties of causal
inference from observational data. Of these methods, TMNs focus on learning the structure
of dynamic causal models of patient event sequences, thereby representing the structural
causal modeling paradigm. Representing the observational studies paradigm, relational
rule learning and temporal IPW focus on causal discovery ML for hypothesizing effects in
the context of self-controlled and before–after studies. Filling in between the paradigms,
the MNATS method models patient histories with temporal Markov networks, evaluating
potential ADEs with model-adjusted scores of temporal dependence. Collectively, these
methods offer ways to address a number of the challenges of causal discovery.

One challenge, often regarded as the most significant in causal inference, is confound-
ing, which threatens to undermine any analysis of observational data. Partial solutions
come from the two schools of thought regarding causal inference: properly-conducted ob-
servational studies and accurate structural causal models. Self-controlled studies reduce
confounding from both observed and unobserved variables in the relational rule learning
analyses. Temporal IPW employs a more sophisticated study design, a before–after study
that is self-controlled and involves crossover and matching. This not only controls for
observed and unobserved confounders, it also minimizes time-varying confounding. Bias
is reduced by reweighting to adjust for propensity for treatment. Nested within a self-
controlled study, the temporal score improves estimates of causal effects by adjusting for the
influences of other variables. A more global approach to adjustment is taken by MNATS,
which adjusts other scores of temporal dependence by estimating them with probabilities
from a model of the distribution of patient histories. While an explicit study design is not
involved, analyzing patient event sequences as they evolve over time achieves similar control
of confounding through self comparison. These benefits of patient-specific modeling are
also available to TMNs, but, more importantly, TMNs build on the formal foundations of
structural causal models in order to learn causally-accurate structures.

Effective postmarketing pharmacosurveillance for ADEs requires large volumes of data
involving many variables and therefore requires any applicable methods to be scalable.
Reformulating structure learning in terms of parameter learning avoids the combinatorial
nature of most algorithms for learning the structure of causal models, thereby making them
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scalable to larger numbers of variables. That the sufficient statistics needed for learning
can be computed in one pass over the data solves the data scalability problem. Similarly,
temporal dependence scores are efficient to evaluate, even on large data sets. When setting
up observational studies, as for causal discovery ML or temporal IPW, subsets of the data
are selected corresponding to the exposures and outcomes of interest. Even with millions
of patients, the selected data sets remain small enough to analyze quickly with most off-the-
shelf ML classifiers, and those that are slower usually offer advantages worth waiting for,
such as inventiveness in the case of ILP, or accuracy in the case of SVMs.

Other challenges stem from the relational format and messiness of EHR data, which is
the kind of data typically used for pharmacosurveillance. The relational format is addressed
with relational rule learning and by transforming the data into event sequences which can
be analyzed with time series methods or observational studies. TMNs excel in this scenario
through their feature functions, which not only model time but demonstrate an ability
to handle the irregularity, missingness, and noise of EHR event sequences. Observational
studies have similar abilities to handle the vagaries of such sequences through their flexibility
in how events are defined, counted, and aggregated over the study periods. However, leaving
researchers so much leeway to determine how to prepare data for modeling can lead to
unprincipled analyses compared to a comprehensive modeling approach.

A final problem for genuine causal discovery is hypothesizing appropriate effects. This
is where MLmethods have a potentially large advantage over epidemiology methods, which
are not designed for such exploratory analysis. Causal discovery ML develops a solution
to this problem by inverting the temporal order of the problem: a model that accurately
classifies known labels from the past, given data from the future, has probably discovered
some consequence of the labels. Such effects, whether described by relational rules or by
important features in a model, are not limited by human imagination or bias, and point
towards causal relationships that could be medically relevant, such as ADEs.

Thesis The various causal discovery methods developed in this body of work have been
tested on ADE detection tasks in both synthetic and real-world EHR data. Together with
the evidence presented above, the results of these experiments demonstrate that:

Methods that are causal, scalable, and applicable to irregular, sparse, and
noisy event sequences discover causal effects more accurately than methods
that ignore causality or cannot handle the scale and messiness of EHR data.
Furthermore, methods that can hypothesize effects improve genuine causal
discovery by avoiding the limitations of human bias.

The methods in this dissertation address ADE discovery in EHR data, contributing new
techniques to the broader body of work on computational pharmacosurveillance. In contrast
to the broader body, these methods focus on the situations in which the possible effects
are unknown, and distinguish themselves by bridging ML and epidemiology: they bring
aspects of causal inference and observational studies to ML, and apply learning techniques
and formal causal models to tasks in epidemiology. The wider perspective achieved by
combining multiple approaches to causality illuminates the dark corners and blindspots of
the individual perspectives, and creates a path for advancing causal discovery. This path
has already led to the new methods for discovering ADEs herein, and promises to lead to
additional techniques for augmenting our ability to understand why things happen.
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