
File Systems Comparison: EXT4, ZFS, NTFSFile Systems Comparison: EXT4, ZFS, NTFS
Aribhit Mishra, Mickey Barboi and Mingi Kim

File Systems Comparison: EXT4, ZFS, NTFS
Aribhit Mishra, Mickey Barboi and Mingi Kim

{aribhitm, barboi, mingi}@cs.wisc.edu{aribhitm, barboi, mingi}@cs.wisc.edu

Motivation ImplementationBenchmark Program Design at a GlanceMotivation

• Compare three of the most-widely used modern file systems : EXT4,

Implementation

1. Macrobenchmark

Benchmark Program Design at a Glance
1. Macrobenchmark

• Compare three of the most-widely used modern file systems : EXT4,

ZFS and NTFS

1. Macrobenchmark

1. General DesignClient #1Client #1Client #1

HTTP

F
ile sy

stem

Client #n…

F
ile sy

stem

Client #1 Client #n…

HTTP
ZFS and NTFS

• Lack of existing work that compares all three file systems

• Different features and implementations would mean varying

1. n clients: [1, 10, 20, 30]

2. Clients issue next request as soon as current returns

HTTP

JSON
1024x768

JPEG

F
ile sy

stem

F
ile sy

stem

RequestHTTP

JSON
• Different features and implementations would mean varying

performance over different loads

2. Clients issue next request as soon as current returns

2. Go REST HTTP Server
PostgreSQL

Go REST Server Apache

F
ile sy

stem

F
ile sy

stem

Write

Read

1. HTTP POST with 52B JSON payload

2. Clients do not share data

PostgreSQL

Serving HTTP requests with Go/PostgreSQL Serving images through Apache Server

Write

Read

File system Comparison

2. Clients do not share data

3. Server
2. Microbenchmark

Serving HTTP requests with Go/PostgreSQL Serving images through Apache Server

File system Comparison 1. Commits payload to database

2. Reads it and returns to client

2. Microbenchmark

Open File Open File Repeat 10,000 times

2. Reads it and returns to client

3. Apache WebserverThree different file systems provides different structures and features. `

Open File

Write File (1 block size)

Close

Loop until file size become 1GB

Open File

Write File (1 block size)

Open File

Write File (1 block size)

1 Block Write

Time Seq. Write 10,000 Files

1. Requesting 1024x768 JPEG, 247KB

2. Clients request unique images
EXT4 ZFS NTFS

Close
Reboot (Clear Cache)

Open File

Write File (1 block size)

Sync to Disk

File pointer reset

Write File (1 block size)

Sync to Disk

Close

Time Seq. Write

Time

10,000 Files

Write Time

2. Clients request unique images
EXT4 ZFS NTFS

Max Filename Length 255 bytes 255 characters 255 characters

Max File Size 16 GiB to 16 TiB 16 EiB 16 EiB

Open File

Read File

Close

File pointer reset
Loop until read size become 1GB

Read File (1 block size)

Close

Repeat 10,000 times

Open File

1 Block Read

Time Seq. Read

Time 10,000 Files
2. Microbenchmark

1. File I/O System calls

Max File Size 16 GiB to 16 TiB 16 EiB 16 EiB

Max Volume Size 1 EiB 256 ZiB 16 EiB

Close

Reboot
Remove

Read File (1 block size)

Loop until read size become 1GB

Set File pointer to random position

Open File

Read File (1 block size)

Close

Time
Time

Rand. Read

10,000 Files

Read Time
1. File I/O System calls

• Used different system call libraries to see the performance in

native operating system environments of each file system

Max Volume Size 1 EiB 256 ZiB 16 EiB

Checksum � � �

Block Journalling � � �

Open File

Reboot (Clear Cache)
Set File pointer to random position

Read File (1 block size) Repeat 10,000 times

Remove

CloseRand. Read

Time
10,000 Files

Delete Time native operating system environments of each file systemBlock Journalling � � �

File Changelog � � �

Write File (1 block size)

Sync to Disk

Loop until read size become 1GB

Set File pointer to random position

Write File (1 block size)

Remove
Write & sync

Time
Rand. Write

Time

Delete Time

File Changelog � � �

Internal Snapshotting � � Partial

Data Deduplication � � �

Open/Create Read Write Move File Pointer

Linux open() read() write() lseek()

Sync to Disk

Close

Remove

Write File (1 block size)

Close

Time Time

1GB FileData Deduplication � � �

Allocate-on-flush � � �

Linux open() read() write() lseek()

Windows CreateFile() ReadFile() WriteFile() SetFilePointer()

Remove
Close

Remove

Single block size read/write

1GB File

Delete Time
Allocate-on-flush � � �

Variabe Block Size � � �

Windows CreateFile() ReadFile() WriteFile() SetFilePointer()

Sync to Disk Close Remove

Linux fsync() close() unlink()

Single block size read/write

operation test
Large file I/O test Small files bulk I/O test

Results

Linux fsync() close() unlink()

Windows FlushFileBuffers() CloseHandle() DeleteFile()
Results

2. Time measurement1. Macrobenchmark Results

Windows FlushFileBuffers() CloseHandle() DeleteFile()

2. Time measurement

Design
1. Macrobenchmark Results

Get Time Function Time Precision

1. Macrobenchmark

a) Serving images through Apache Server

Get Time Function Time Precision

Linux clock_gettime() with CLOCK_REALTIME 25 nanosecond

a) Serving images through Apache Server

i. Serve image from static directory to n clients
Windows GetSystemTimePreciseAsFileTime() 100 nanosecond

i. Serve image from static directory to n clients

ii. Clients issue sequential requests with no

intercommunication amongst clientsintercommunication amongst clients

iii. Images removed from drive, and recopied between tests

Conclusion

iii. Images removed from drive, and recopied between tests

b) Serving HTTP requests with Go and PostgreSQL

i. Client issues HTTP requests trying with a JSON payload
Conclusion

1. EXT4 slightly outperforms ZFS with NTFS lagging behind

i. Client issues HTTP requests trying with a JSON payload

ii. Server creates a new record in database for each request 1. EXT4 slightly outperforms ZFS with NTFS lagging behind

2. EXT4 shows consistent performance across all metrics, while ZFS

ii. Server creates a new record in database for each request

c) Compiling Go

• Download Go source code and compile it and NTFS have wider dispersion

3. ZFS outperforms when dealing with large files with at least 32KB
2. Microbenchmark Results

• Download Go source code and compile it

2. Microbenchmark 3. ZFS outperforms when dealing with large files with at least 32KB

access size in microbenchmark

4. Differences in Operating Systems and Application could have

2. Microbenchmark Results
2. Microbenchmark

a) Single block size read/write operation test

b) Large file I/O test 4. Differences in Operating Systems and Application could have

affected results
b) Large file I/O test

c) Small files bulk I/O test affected results

• Apache, PostgreSQL and Go are native to Linux

• Native home of ZFS is Solaris, not Linux

c) Small files bulk I/O test

Test Environment

• Native home of ZFS is Solaris, not Linux

Test Environment

Source CodeSource Code

1. Macrobenchmark

• Intel i7 6700k (8 threads at 4.2gHz, 8MB cache)

• 32GB DDR4 RAM 1. Macrobenchmark
• https://github.com/damouse/fs-bench-suite

2. Microbenchmark

• 32GB DDR4 RAM

• System Drive : Samsung SM951 NVMe with 512GB of capacity 2. Microbenchmark
1. Single RW

1. Linux : https://github.com/MingiK1m/cs736_rwbm

• System Drive : Samsung SM951 NVMe with 512GB of capacity

• Testing Drive : Western Digital 500GB HDD (7200 max RPM)

• Operating Systems:
1. Linux : https://github.com/MingiK1m/cs736_rwbm
2. Windows : https://github.com/MingiK1m/cs736_rwbm_windows

2. Large/Small file(s) benchmark
1. Linux : https://github.com/MingiK1m/cs736_fsbm

• Operating Systems:

• NTFS run on Windows 10 2. Large/Small file(s) benchmark
1. Linux : https://github.com/MingiK1m/cs736_fsbm
2. Windows : https://github.com/MingiK1m/cs736_fsbm_windows

• NTFS run on Windows 10

• EXT4 and ZFS run on Ubuntu 16.0.4

