
Caching in the Sprite Network File System

MICHAEL N. NELSON, BRENT B. WELCH, and JOHN K. OUSTERHOUT

University of California at Berkeley

The Sprite network operating system uses large main-memory disk block caches to achieve high
performance in its file system. It provides non-write-through file caching on both client and server
machines. A simple cache consistency mechanism permits files to be shared by multiple clients
without danger of stale data. In order to allow the file cache to occupy as much memory as possible,
the file system of each machine negotiates with the virtual memory system over physical memory
usage and changes the size of the file cache dynamically. Benchmark programs indicate that client
caches allow diskless Sprite workstations to perform within O-12 percent of workstations with disks.
In addition, client caching reduces server loading by 50 percent and network traffic by 90 percent.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management-distributed
memories, main memory, storage hierarchies, virtual memory; D.4.3 [Operating Systems]: File
Systems Management-distributed file systems; D.4.7 [Operating Systems]: Organization and
Design--distributed systems; D.4.8 [Operating Systems]: Performance-measurements

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Cache consistency, distributed file caching

1. INTRODUCTION

Caches have been used in many operating systems to improve file system
performance. Typically, caching is implemented by retaining in main memory a
few of the most recently accessed disk blocks (e.g., UNIX [16]).l Repeated
accesses to a block in the cache can be handled without involving the disk; this
feature has two advantages. First, caching reduces delays: a block in the cache
can usually be returned to a waiting process five to ten times more quickly than
one that must be fetched from disk. Second, caching reduces contention for the
disk arm, which may be advantageous if several processes are attempting to
access files on the same disk. Measurements of time-sharing systems indicate
that even small caches provide substantial benefits, and that the benefits are
increasing as larger physical memories permit larger caches [8, lo].

1 UNIX is a trademark of AT&T Bell Laboratories.

This work was supported in part by the Defense Advanced Research Projects Agency under contract
NOOO39-85-C-0269, in part by the National Science Foundation under grant ECS-8351961, and in
part by the General Motors Corporation.
Authors’ address: Computer Science Division, University of California at Berkeley, 571 Evans Hall,
Berkeley, CA 94720.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distril+.ed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0734-2071/87/0200-0134 $01.50

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988, Pages 134-154.

Network

Caching in the Sprite Network File System l 135

File
Traffic

File
Traffic

Fig. 1. File caches in the Sprite system. When a process makes a file access, it is presented first
to the cache of the process’s workstation (“file traffic”). If not satisfied there, the request is passed
either to the local disk, if the file is stored there (“disk traffic”), or to the server where the file is
stored (“server traffic”). Servers also maintain caches in order to reduce their disk traffic.

This paper describes a simple distributed mechanism for caching files among
a networked collection of workstations. We have implemented it as part of the
Sprite operating system. In Sprite, file information is cached in the main
memories of both servers (workstations with disks), and clients (workstations
wishing to access files on nonlocal disks), as shown in Figure 1. On machines
with disks, the caches achieve the same effects described above, namely, to reduce
disk-related delays and contention. On clients, the caches also reduce the com-
munication delays that would otherwise be required to fetch blocks from servers.
In addition, client. caches reduce contention for the network and for the server
machines. Since server CPUs appear to be the bottleneck in several existing
network file systems [6,14], client caching offers the possibility of greater system
scalability as well as increased performance.

There are two unusual aspects to the Sprite caching mechanism. The first is
that Sprite guarantees workstations a consistent view of the data in the file
system, even when multiple workstations access the same file simultaneously
and the file is cached in several places at once. This is done through a simple
cache consistency mechanism that flushes portions of caches and disables caching
for files undergoing read-write sharing. The result is that file access under Sprite
has exactly the same semantics as if all of the processes on all of the workstations
were executing on a single time-sharing system.

The second unusual feature of the Sprite caches is that they vary dynamically
in size. This feature was a consequence of our desire to provide very large client
caches, perhaps occupying most of the clients’ memories. Unfortunately, large
caches may occasionally conflict with the needs of the virtual memory system,
which would like to use as much memory as possible to run user processes. Sprite
provides a simple mechanism through which the virtual memory system and file
system of each workstation negotiate over the machine’s physical memory. As
the relative needs of the two systems change, the file cache changes in size.

We used a collection of benchmark programs to measure the performance of
the Sprite file system. On average, client caching resulted in a speedup of about

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

136 - M. N. Nelson, B. B. Welch, and J. K. Ousterhout

lo-40 percent for programs running on diskless workstations, compared to
diskless workstations without client caches. With client caching enabled, diskless
workstations completed the benchmarks only O-12 percent more slowly than
workstations with disks. Client caches reduced the server utilization from about
5-18 percent per active client to only about l-9 percent per active client. Since
normal users are rarely active, our measurements suggest that a single server
should be able to support at least 50 clients. In comparison with Sun’s Network
File System [13] and the Andrew file system [14], Sprite completed a file-
intensive benchmark 30-35 percent faster than the other systems. Sprite’s server
utilization was substantially less than NFS but more than Andrew.

The rest of the paper is organized as follows: Section 2 gives a brief overview
of Sprite; Section 3 describes prior work that motivated our cache design;
Section 4 presents the basic structure of the Sprite caches; Section 5 describes
the consistency protocols, and Section 6 discusses the mechanism for varying the
cache sizes; Section 7 presents the benchmark results; Section 8 compares Sprite
to other network file systems; and Section 9 describes work still to be done in
the areas of recovery and allocation.

2. OVERVIEW OF SPRITE

Sprite is a new operating system being implemented at the University of Califor-
nia at Berkeley as part of the development of SPUR, a high-performance
multiprocessor workstation [3]. A preliminary version of Sprite is currently
running on Sun-2 and Sun-3 workstations, which have about l-2 MIPS process-
ing power and 4-16 megabytes of main memory. The system is targeted for
workstations like these and newer models likely to become available in the near
future, such as SPURS; we expect the future machines to have at least five to
ten times the processing power and main memory of our current machines, as
well as small degrees of multiprocessing. We hope that Sprite will be suitable for
networks of up to a few hundred of these workstations. Because of economic and
environmental factors, most workstations will not have local disks; instead, large
fast disks will be concentrated on a few server machines.

The interface that Sprite provides to user processes is much like that provided
by UNIX [12]. The file system appears as a single shared hierarchy equally
accessible by processes on any workstation in the network (see [18] for infor-
mation on how the name space is managed). The user interface to the file system
is through UNIX-like system calls such as open, close, read, and write.

Although Sprite appears similar in function to UNIX, we have completely
reimplemented the kernel in order to provide better network integration. In
particular, Sprite’s implementation is based on a simple kernel-to-kernel remote
procedure call (RPC) facility [17], which allows kernels on different workstations
to request services of each other using a protocol similar to the one described by
Birrell and Nelson [2]. The Sprite file system uses the RPC mechanism exten-
sively for cache management.

3. BACKGROUND WORK

The main motivation for the Sprite cache design came from a trace-driven
analysis of tile activity in several time-shared UNIX 4.2 BSD systems, hereinafter
referred to as the BSD study [lo]. For those systems, the BSD study showed

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Caching in the Sprite Network File System l 137

that even small file caches are effective in reducing disk traffic, and that large
caches (4-16 megabytes) work even better by cutting disk traffic by as much as
90 percent. For the kinds of applications measured in the BSD study, it appears
that increases in memory sizes will soon make it possible to keep entire file
working sets in main memory, with disks serving primarily as backup devices.
Although the BSD study was based on time-sharing machines rather than
networks of personal workstations, we hypothesized that the results would apply
in a network environment too, and that the overheads associated with remote
file access could be reduced by caching on clients as well as servers (Sections 5.3
and 7 provide simulation and measurement data to support this hypothesis.)

An additional motivating factor for us was a concern about server contention.
A study of remote file access by Lazowska et al. concluded that the server CPU
is the primary bottleneck that limits system scalability [6]. Independently, the
designers of the Andrew file system decided to redesign their system in order to
offload the servers [14] and achieved substantial improvements as a result [4].
These experiences, plus our own informal observations of our computing envi,-
ronment, convinced us that client caching could substantially increase the
scalability of the system.

4. BASIC CACHE DESIGN

This section describes the basic organization of file caches in Sprite and addresses
three issues:

(1) Where should client caches be kept: main memory or local disk?
(2) How should caches be structured and addressed?

(3) What policy should be used for writing blocks back to disk?

The issues of maintaining cache consistency and varying the sizes of caches are
discussed separately in the following two sections.

4.1 Caches on Disk or in Main Memory?

In several previous network file systems (e.g., Andrew [4, 141 and Cedar [15]),
clients’ file caches were kept on their local disks. For Sprite we chose to cache
file data in main memory for four reasons. First, main-memory caches permit
workstations to be diskless, which makes them cheaper and quieter. Second, data
can be accessed more quickly from a cache in main memory than a cache on disk.
Third, physical memories on client workstations are now large enough to provide
high hit ratios (e.g., a l-megabyte client cache provides greater than 80 percent
read hits). As memories get larger, main-memory caches will grow to achieve
even higher hit ratios. Fourth, the server caches will be in main memory regardless
of where client caches are located: by using main-memory caches on clients too,
we were able to build a single caching mechanism for use by both servers and
clients.

4.2 Cache Structure

The Sprite caches are organized on a block basis using a fixed block size of
4 kilobytes. We made this choice largely for simplicity and are prepared to revise
it after we have more experience with the system. Cache blocks are addressed

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

138 l M. N. Nelson, 9. 9. Welch, and J. K. Ousterhout

virtually using a unique file identifier provided by the server and a block number
within the file. We used virtual addresses instead of physical disk addresses so
that clients could create new blocks in their caches without first contacting a
server to find out their physical locations. Virtual addressing also allows blocks
in the cache to be located without traversing the tile’s disk map.

For files accessed remotely, client caches hold only data blocks. Servers also
cache file maps and other disk management information. These blocks are
addressed in the cache using the blocks’ physical disk addresses, along with a
special “file identifier” corresponding to the physical device.

4.3 Writing Policy

The policy used to write dirty blocks back to the server or disk has a critical
effect on the system’s performance and reliability. The simplest policy is to write
data through to disk as soon as it is placed in any cache. The advantage of write-
through is its reliability: Little information is lost when a client or server crashes.
However, this policy requires each write access to wait until the information is
written to disk, which results in poor write performance. Since about one-third
of all file accesses are writes [lo], a caching scheme based on write-through
cannot reduce disk or server traffic by more than two-thirds.

An alternate write policy is to delay write-backs: blocks are initially written
only to the cache and then written through to the disk or server some time later.
This policy has 2 advantages over write-through. First, since writes are to the
cache, write accesses complete much more quickly. Second, data may be deleted
before it is written back, in which case it need not be written at all. In the BSD
study, 20-30 percent of new data was deleted within 30 seconds, and 50 percent
was deleted within 5 minutes. Thus, a policy that delays writes several minutes
can substantially reduce the traffic to the server or disk. Unfortunately, delayed-
write schemes introduce reliability problems, since unwritten data will be lost
whenever a server or client crashes.

For Sprite, we chose a delayed-write policy similar to the one used in UNIX:
Every 30 seconds, all dirty blocks that have not been modified in the last
30 seconds are written back. A block written on a client will be written to the
server’s cache in 30-60 seconds and will be written to disk in 30-60 more seconds.
This policy avoids delays when writing files and permits modest reductions in
disk/server traffic, while limiting the damage that can occur in a crash. We plan
to experiment with longer write-back intervals in the future.

Another alternative is to write data back to the server when the file is closed.
This approach is used in the Andrew system and NFS. Unfortunately, the BSD
study found that 75 percent of files are open less than 0.5 seconds and 90 percent
are open less than 10 seconds. This indicates that a write-on-close policy will not
significantly reduce disk or server traffic. In addition, the write-on-close policy
requires the closing Ijrocess to delay while the file is written through, which
reduces the performance advantages of delayed writes.

5. CACHE CONSISTENCY

Allowing clients to cache tiles introduces a consistency problem: what happens
if a client modifies a file that is also cached by other clients? Can subsequent
references to the file by other clients return “stale” data? Most existing network

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Caching in the Sprite Network File System 139

file systems provide only limited guarantees about consistency. For example, the
NFS and Andrew systems guarantee that once a file is closed all data is back on
the server, and future opens by other clients will cause their caches to be updated
with the new version. Under conditions of sequential write sharing in which a file
is shared but is never open simultaneously for reading and writing on different
clients, each client will always see the most up-to-date version of the file.
However, if a file in NFS or Andrew is open simultaneously on several clients,
and one of them modifies it, the other clients will not see the changes immediately;
users are warned not to attempt this kind of sharing (which we call concurrent
write sharing).

For Sprite we decided to permit both concurrent and sequential write sharing.
Sprite guarantees that whenever a process reads data from a file, it receives the
most recently written data, regardless of when and where the data were last
written. We did this in order to make the user’s view of the file system as clean
and simple as possible and to encourage use of the file system as a shared system-
wide store for exchanging information between different processes on different
machines. We hope that shared files will be used to simplify the implementation
of system services such as print spoolers and mailers. Of course, we still expect
that concurrent write sharing will be infrequent, so the consistency algorithm is
optimized for the case in which there is no sharing.

It is important to distinguish between consistency and correct synchronization.
Sprite’s mechanism provides consistency: each read returns the most up-to-date
data. However, the cache consistency mechanism cannot guarantee that concur-
rent applications perform their reads and writes in a sensible order. If the order
matters, applications must synchronize their actions on the file using system
calls for file locking or other available communication mechanisms. Cache
consistency simply eliminates the network issues and reduces the problem to
what it was on time-sharing systems.

Sprite uses the file servers as centralized control points for cache consistency.
Each server guarantees cache consistency for all the files on its disks, and clients
deal only with the server for a file: there are no direct client-to-client interac-
tions. The Sprite algorithm depends on the fact that the server is notified
whenever one of its files is opened or closed, so it can detect when concurrent
write sharing is about to occur. This approach prohibits performance optimiza-
tions (such as name caching) that allow clients to open files without contacting
the files’ servers. Section 8 discusses the potential performance improvements
that name caching could provide.

5.1 Concurrent Write Sharing

Concurrent write sharing occurs for a file when it is open on multiple clients,
and at least one of them has it open for writing. Sprite deals with this situation
by disabling client caching for the file, so that all reads and writes for the file go
through to the server. When a server detects (during an “open” operation) that
concurrent write sharing is about to occur for a file, it takes two actions. First, it
notifies the client that has the file open for writing, if any, telling it to write all
dirty blocks back to the server. There can be at most one such client. Second,
the server notifies all clients that have the file open that the file is no longer
cacheable. This causes the clients to remove all of the file’s blocks from their

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

140 ’ M. N. Nelson, B. B. Welch, and J. K. Ousterhout

caches. Once these two actions are taken, clients will send all future accesses for
that file to the server. The server’s kernel serializes the accesses to its cache and
produces a result identical to running all the client processes on a single time-
shared machine.

Caching is disabled on a file-by-file basis and only when concurrent write
sharing occurs. A file can be cached simultaneously by many clients as long as
none of them is writing the file, and a writing client can cache the file as long as
there are no concurrent readers or writers on other workstations. When a file
becomes noncacheable, only those clients with the file open are notified; if other
clients have some of the file’s data in their caches, they will take consistency
actions the next time they open the file, as described in the next section. A
noncacheable file becomes cacheable again once it is no longer undergoing
concurrent write sharing; for simplicity, however, Sprite does not reenable
caching for files that are already open.

5.2 Sequential Write Sharing

Sequential write sharing occurs when a file is modified by one client, closed, then
opened by some other client. There are two potential problems associated with
sequential write sharing. First, when a client opens a tile it may have out-of-date
blocks in its cache. To solve this problem, servers keep a version number for
each file, which is incremented each time the file is opened for writing. Each
client keeps the version numbers of all the files in its cache. When a file is
opened, the client compares the server’s version number for the file with its own.
If they differ, the client flushes the file from its cache. This approach is similar
to NFS and the early versions of Andrew.

The second potential problem with sequential write sharing is that the
current data for the file may be in some other client’s cache (the last writer need
not have flushed dirty blocks back to the server when it closed the file). Servers
handle this situation by keeping track of the last writer for each file; this client
is the only one that could potentially have dirty blocks in its cache. When a
client opens a file, the server notifies the last writer (if there is one and if it is a
client different from the opening client) and waits for it to write its dirty blocks
through to the server. This ensures that the reading client will receive up-to-date
information when it requests blocks from the server.

5.3 Simulation Results

We used the trace data from the BSD study to estimate the overheads associated
with cache consistency and also to estimate the overall effectiveness of client
caches. The traces were collected over 3-day midweek intervals on 3 VAX-ll/
780s running 4.2 BSD UNIX for program development, text processing, and
computer-aided design applications; see [lo] for more details. The data were used
as input to a simulator that treated each time-sharing user as a separate client
workstation in a network with a single file server. The results are shown in
Table I. Client caching reduced server traffic by over 70 percent and resulted in
read-hit ratios of more than 80 percent.

Table II presents similar data for a simulation in which no attempt was made
to guarantee cache consistency. A comparison of the bottom-right entries in
Tables I and II shows that about one-fourth of all server traffic in Table I is due

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Caching in the Sprite Network File System l 141

Table I. Server Traffic with Cache Consistency

Client cache size Blocks read Blocks written Total Traffic ratio (%l

0 Mbvte 445.815 172.546 618.361 100

0.5 Mbyte 102,469 96,866 199,335 32

1 Mbyte 84,017 96,796 180,813 29

2 Mbvtes 77,445 96,796 174,241 28

4hJbvtes 75.322 96.796 172.118 28

8Mbytes 75,088 96,796 171,884 28

Notes: Client caching simulation results based on trace data from the BSD study. Each
user was treated as a different client with client caching and a 30-second delayed-write
policy. The table shows the number of read and write requests made by client caches to
the server for different client cache sizes. The “Traffic Ratio” column gives the total
server traffic as a percentage of the total file traffic presented to the client caches. Write
sharing is infrequent: Of the write traffic, 4041 blocks were written through because of
concurrent write sharing, and 6887 blocks were flushed back because of sequential write
sharing.

Table II. Server Traffic, Ignoring Cache Consistency

Client cache size Blocks read Blocks written Total Traffic ratio f%)

0 Mbyte 445,815 172,546 618,361 100

0.5 Mbyte 80,754 93,663 174,417 28

1 Mbyte 52,377 93,258 145,635 24

2 Mbytes 41,767 93,258 135,025 22

4 Mbvtes 38.165 93,258 131,423 21

8 Mbytes 37,007 93,258 130,265 21

to cache consistency. Table II is not realistic in the sense that it simulates a
situation in which incorrect results would have been produced, nonetheless, it
provides an upper bound on the improvements that might be possible with a
more clever cache consistency mechanism.

6. VIRTUAL MEMORY AND THE FILE SYSTEM

In addition to guaranteeing coherency between the client caches, we wanted to
permit each client cache to be as large as possible. For example, applications that
do not require much virtual memory should be able to use most of the physical
memory as a file cache. However, if the caches were fixed in size (as they are in
UNIX), then large caches would leave little physical memory for running user
programs, and it would be difficult to run applications with large virtual memory
needs. In order to get the best overall performance, Sprite allows each file cache
to grow and shrink dynamically in response to changing demands on the ma-
chine’s virtual memory system and file system. This is accomplished by having
the two modules negotiate over physical memory usage.

The file system module and the virtual memory module each manage a separate
pool of physical memory pages. Virtual memory keeps its pages in approximate

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

142 l M. N. Nelson, B. B. Welch, and J. K. Ousterhout

least-recently-used (LRU) order through a version of the clock algorithm [9].
The file system keeps its cache blocks in perfect LRU order, since all block
accesses are through the read and write system calls. Each system keeps a time-
of-last-access for each page or block. Whenever either module needs additional
memory (because of a page fault or a miss in the file cache), it compares the age
of its oldest page with the age of the oldest page from the other module. If the
other module has the oldest page, then it is forced to give up that page; otherwise,
the module recycles its own oldest page.

The approach just described has two potential problems: double caching and
multiblock pages. Double caching can occur because virtual memory is a user of
the file system; backing storage is implemented using ordinary files, and read-
only code is demand-loaded directly from executable files. A naive implementa-
tion might cause pages being read from backing files to end up in both the file
cache and the virtual-memory page pool; pages being eliminated from the virtual-
memory page pool might simply get moved to the file cache, where they would
have to age for another 30 seconds before being sent to the server. To avoid these
inefficiencies, the virtual-memory system bypasses the local file cache when
reading and writing backing files. A similar problem occurs when demand-loading
code from its executable file. In this case, the pages may already be in the file
cache (e.g., because the program was just recompiled). If so, the page is copied to
the virtual-memory page pool, and the block in the file cache is given an “infinite”
age so that it will be replaced before anything else in memory.

Although virtual memory bypasses its local file cache when reading and writing
backing files, the backing files will be cached on servers. This makes servers’
memories into an extended main memory for their clients.

The second problem with the negotiation between virtual memory and the file
system occurs when virtual memory pages are large enough to hold several file
blocks. Is the LRU time of a page in the file cache the age of the oldest block in
the page, the age of the youngest block in the page, or the average age of the
blocks in the page? Once it is determined which page to give back to virtual
memory, what should be done with the other blocks in the page if they have been
recently accessed? For our Sun-3 implementation of Sprite, which has &kilobyte
pages but 4-kilobyte file blocks, we used a simple solution: the age of a page is
the age of the youngest block in the page, and when a page is relinquished all
blocks in the page are removed. We are currently investigating the effect of this
policy on tile system performance.

We also considered more centralized approaches to trading off physical memory
between the virtual memory page pool and the file cache. One possibility would
be to access all information through the virtual memory system. To access a file,
it would first be mapped into a process’s virtual address space and then read and
written just like virtual memory, as in Apollo’s DOMAIN system [7]. This
approach would eliminate the file cache entirely; the standard page replacement
mechanisms would automatically balance physical memory usage between file
and program information. We rejected this approach for several reasons, the
most important of which is that it would have forced us to use a more complicated
cache consistency scheme for concurrent write sharing. A mapped-file approach
requires a file’s pages to be cached in a workstation’s memory before they can be

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Caching in the Sprite Network File System 143

accessed, so we would not have been able to implement cache consistency by
refusing to cache shared tiles.

Another possible approach would have been to implement a centralized physical
memory manager, from which both the virtual memory system and the file system
would make page requests. The centralized manager would compute page ages
and make all replacement decisions. We rejected this approach because the most
logical way to compute page ages is different for virtual memory than for files.
The only thing the two modules have in common is the notion of page age and
LRU replacement. These shared notions are retained in our distributed mecha-
nism, which leaves each module free to age its own pages in the most convenient
way. Our approach also permits us to adjust the relative aging rates for virtual
memory and file pages, if that should become desirable. Our initial experiences
with the system suggest that virtual memory pages should receive preferential
treatment, particularly in times of memory contention: the sequential nature of
file accesses means that a low file-hit ratio has a much smaller impact on system
performance than a low virtual-memory hit ratio.

7. BENCHMARKS

This section describes a series of benchmarks we ran to measure the performance
of the Sprite file system. Our goal was to measure the benefits provided by client
caches in reducing delays and contention by answering the following questions:

-How much more quickly can file-intensive programs execute with client caches
than without?

-How much do client caches reduce the load placed on server CPUs?

-How much do client caches reduce the network load?

-How many clients can one server or network support?
-How will the benefits of client caches change as CPU speeds and memory size

increase?

All of our measurements were made on configurations of Sun-3 workstations
(about 2 MIPS processing power). Clients were Sun-3/75s and Sun-3/160s
with at least 8 megabytes of memory, and the server was a Sun-3/180 with
12 megabytes of memory and a 400-megabyte Fujitsu Eagle disk.

7.1 Microbenchmarks

We wrote several simple benchmarks to measure the low-level performance of
the Sprite file system. The first set of benchmarks measured the time required
for local and remote invocation of three common naming operations. These
measurements are given in Table III. Each of these operations requires contacting
the server of the named file. The remote versions took 3-4 times as long as the
local versions: about half of the elapsed time for the remote operations was spent
executing in the server’s CPU. The second set of benchmarks measured the raw
read and write performance of the Sprite file system by reading or writing a
single large file sequentially. Before running the programs, we rigged the system
so that all the accesses would be satisfied in a particular place (e.g., the client’s

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

144 . M. N. Nelson, B. B. Welch, and J. K. Ousterhout

Table III. Cost of Common File-Name Lookup Operations

Diskless

Ooeration Local disk Elapsed time Server CPU time

OoeniClose 2.17ms 8.11ms 3.75ms

Failed Open

Get Attributes

1.48ms 4.13ms 2.01ms

1.28ms 4.47ms 2.12ms

Notes: Times are milliseconds per operation on a patbname with a single component.
The first row is the cost of opening and closing a file, the second row is the cost of
opening a file that does not exist, and the third row is the cost of getting the
attributes of a file (“stat”).

Table IV. Read and Write Throughput, Kbytes/Second

Local cache Server cache Local disk Server disk

Read 3269 475 224 212

Write 2893 380 197 176

cache). Table IV shows the I/O speeds achieved to and from caches and disks in
different locations, using large files accessed sequentially.

Table IV contains two important results. First, a client can access bytes in its
own cache 6-8 times faster than those in the server’s cache. This means that, in
the best case, client caching could permit an application program to run as much
as 6-8 times faster than it could without client caching. The second important
result is that a client can read and write the server’s cache at about the same
speed as a local disk. In our current implementation, the server cache is twice as
fast as a local disk, but this is because Sprite’s disk layout policy only allows one
block to be read or written per disk revolution. We expect eventually to achieve
throughput to local disk at least as good as 4.3BSD, or about 2-3 times the rates
listed in Table IV; under these conditions the local disk will have about the same
throughput as the server’s cache. In the future, as CPUs get much faster but
disks do not, the server’s cache should become much faster than a local disk, up
to the limits of network bandwidth. Even for paging traffic, this suggests that a
large server cache may provide better performance than a local disk.

7.2 Macrobenchmarks

The microbenchmarks give an upper limit on the costs of remote file access and
the possible benefits of client caching. To see how much these costs and benefits
affect real applications, we ported several well-known programs frcm UNIX to
Sprite and measured them under varying conditions. We ran each benchmark
three times for each data point measured. As depicted in Table V the I/O columns
give the average rates at which file data were read and written by the benchmark
when run on Sun-3s with local disks and warm caches; that is, they measure the
benchmark’s I/O intensity.

7.2.1 Application Speedups. Table VI lists the total elapsed time to execute
each of the macrobenchmarks with local or remote disks and with client caches
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Caching in the Sprite Network File System - 145

Table V. Macro Benchmarks

I/O (Kbytes/second)

Proaram Descrintion Read Write

Andrew Copy a directory hierarchy containing 70 tiles and 200 Kbytes 54.9 34.4
of data; examine the status of every tile in the new subtree; read
every byte of the files; compile and link the files. Developed by
M. Satyanarayanan for benchmarking the Andrew file system;
see 141 for details.

Fs-make Use the “make” program to recompile the Sprite file system: 33 56.6 28.9
source files and 33.800 lines of C source code.

Simulator Simulate set-associative cache memory using a 3375-Kbyte 23.0 0.0
address trace.

sort Sort a l-Mbyte file. 47.0 90.2

Diff Comnare 2 identical 1-Mbvte files. 252.4 0

Nroff Format the text of this naner. 16.1 18.1

Table VI. Execution Times Measured on Sun-3s

Benchmark

Local disk with Diskless, server Diskless, client
cache cache only and server caches

Cold Warm Cold Warm Cold Warm

Andrew 261 249 373 363 291 280
105% 100% 150% 146% 117% 112%

Fs-make 660 649 855 843 698 685
102% 100% 132% 130% 108% 106%

Simulator 161 147 168 153 167 147
109% 100% 114% 104% 114% 100%

sort 65 61 74 72 66 61
107% 100% 121% 118% 108% 100%

Diff 22 8 27 12 27 8
165% 100% 225% 147% 223% 100%

Nroff 53 51 57 56 53 52
103% 100% 112% 109% 105% 102%

Notes: The top number for each run is total elapsed time in seconds. The bottom
number is normalized relative to the warm-start time with a local disk. Cold means that
all caches, both on server and client, were empty at the beginning of the run. Warm
means that the program was run once to load the caches, then timed on a second run.
In the “Diskless, Server Cache Only” case, the client cache was disabled, but the server
cache was still enabled. In all other cases, caches were enabled on all machines. All
caches were allowed to vary in size using the VM-FS negotiation scheme.

enabled or disabled. Without client caching, diskless machines were generally
about lo-50 percent slower than those with disks. With client caching enabled
and a warm start, the difference between diskless machines and those with disks
was very small; in the worst case, it was only about 12 percent. Figure 2a shows
how the performance varied with the size of the client cache.

We expect the advantages of client caching to improve over time for two
reasons. First, increasing memory sizes will make larger and larger caches feasible

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

146 - M. N. Nelson, B. B. Welch, and J. K. Ousterhout

p 40%
e
r
C

50%

.** ___ x-.- ._._. *- .__._ -__ T

- Andrew
sort
Fs-make
Simulator
Nroff
Diff

0 1 2 3 4
Megabytes of Cache

(a)

Fig. 2. Client degradation and network traffic (diskless Sun-3s with client caches, warm start) as a
function of maximum client cache size. For each point, the maximum size of the client cache was
limited to a particular value. The “degradation” shown in (a) is relative to the time required to
execute the benchmark with a local disk and warm cache. The network traffic shown in (b) includes
bytes transmitted in packet headers and control packets, as well as file data. The diff benchmark did
not fit on graph (b); for all cache sizes less than 2 Mbytes this benchmark has an I/O rate of 185
kilobytes/second and for all larger cache sizes it has an I/O rate of only 0.5 kilobytes/second.

and will increase their effectiveness. Second, processor speeds are increasing
faster than network or disk speeds; without caches, workstations will end up
spending more and more of their time waiting for the network or disk.

7.2.2 Network Utilization. In their analysis of diskless file access, based on
Sun-2 workstations, Lazowska et al. concluded that network loading was not yet
a major factor in network file systems [6]. However, as CPU speeds increase, the
network ban&i&h is becoming more and more of an issue. Figure 2b plots
network traffic as a function of cache size for our benchmarks running on
Sun-3s. Without client caching, the benchmarks averaged 6.5 percent utilization
of the lo-Mbit/second Ethernet. The most intensive application, cliff, used
15 percent of the network bandwidth for a single client. Machines at least
5 times faster than Sun-3s will be widely available within a few years (e.g., the
SPUR workstations under development at Berkeley or the recently announced
Sun-4); a single one of these machines would utilize 30-50 percent of the Ethernet
bandwidth running the benchmarks without client caching. Without client
caches, application performance may become limited by network transmission
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Caching in the Sprite Network File System - 147

- Andrew
+ sort

.-.-.+. Fs-make
+.. Simulator

- Nroff

0
x

0 1 2 3 4
Megabytes in Cache

(b)

Fig. 2 (continued)

delays, and the number of workstations on a single Ethernet may be limited by
the bandwidth available on the network.

Fortunately, Figure 2b shows that client caching reduces network utilization
by about a factor of 10 to an average of about 0.6 percent for the benchmarks.
This suggests that lo-Mbit Ethernets will be adequate for the current generation
of CPUs and perhaps 1 or 2 more generations to follow. After that, higher
performance networks will become essential.

7.2.3 Server Load. One of the most beneficial effects of client caching is its
reduction in the load placed on server CPUs. Figure 3 shows the server CPU
utilization with and without client caching. In general, a diskless client without
a client cache utilized about 5-20 percent of the server’s CPU. With client
caching, the server utilization dropped by a factor of 2 or more to 2-9 percent.

7.2.4 Contention. In order to measure the effects of loading on the performance
of the Sprite file system, we ran several versions of the most server-intensive
benchmark, Andrew, simultaneously on different clients. Each client used a
different copy of the input and output files so there was no cache consistency
overhead. Figure 4 shows the effects of contention on the client speed, on the
serverls CPU, and on the network. Without client caches, there was significant
performance degradation when more than a few clients were active at once. With
7 clients and no client caching, the clients were executing two-and-a-half times

ACM Transactions on Computer System, Vol. 6, No. 1, February 1966.

148 l M. N. Nelson, 9. 9. Welch, and J. K. Ousterhout

U
I 10%
1
i
z
y 5%
i
0
n

0%
Andrew Fs-make Simulator Diff Nroff

0 No client cache, cold

m No client cache, wsrm

0 Client cache, cold

m Client cache, warm

Fig. 3. Client caching reduces server loading by a factor of 2-5 (measured on Sun 3s with
variable-size client caches).

more slowly, the server was nearly 80 percent utilized, and the network was over
30 percent utilized. With client caching and 7 active clients, each ran at a speed
within 30 percent of what it could have achieved with a local disk; server
utilization in this situation was about 50 percent and network utilization was
only 5 percent.

The measurements of Figure 4 suggest that client caches allow a single Sun-3
server to support at least 10 Sun-3 clients simultaneously running the Andrew
benchmark. However, typical users spend only a small fraction of their time
running such intensive programs. We estimate that 1 instance of the Andrew
benchmark corresponds to about 5-20 active users, so that 1 Sun-3 Sprite file
server should be able to support at least 50 Sun-3 users. This estimate is based
on the BSD study, which reported average file I/O rates per active user of
.5-1.8 kilobytes/second. We estimate that the average total I/O for an active
Sun-3 workstation user will be about 8-10 times higher than this, or about
4-18 kilobytes/second because the BSD study did not include paging traffic
and was based on slower machines used in a time-sharing mode (we estimate
that each of these factors accounts for about a factor of 2). Since the average
I/O rate for the Andrew benchmark was 90 kilobytes/second, it corresponds
to about 5-20 users. This estimate is consistent with independent estimates
made by Howard et al., who estimated that 1 instance of the Andrew benchmark
corresponds to 5 average users [4], and by Lazowska et al., who estimated about
4 kilobytes/second of I/O per user on slower Sun-2 workstations [6]).

The server capacity should not change much with increasing CPU speeds, as
long as both client and server CPU speeds increase at about the same rate. In a
system with servers that are more powerful than clients, the server capacity
should be even higher than this.

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988.

Caching in the Sprite Network File System - 149

1 60% _..,_.__.. .._..... ,.._......... ..__...........

No Client Caches

n ,/’
t 1oo%. .._..._.... _.... .._._. ._ =“:

D ,,*’

i

80% . .._ .._ T.L..
,’

:
60% . .._........... ,,::”

a
I 40% _ ..‘.._.. .._...,.....

0

n 5.. 20% _ .._._._._......... .._..

0%’ * *
012345 6 I 8

Number of Clients

(a)

u

t
i
1
i
z
a
t
i

0
n

80%-.. .+

No Client Caches / ,,*’

50% . ..f .._.. .._ I’
40% . ,,/ :,I

4
30% . _,................... ‘!I

:’ With Client Caches
20% . jl/_l..... $!! .._ .._....._..

10% .

“I”
oii345638

Number of Clients

(b)

35%
1

... _._...
No Client Caches .*

N 30% . .,.... ..+::I
e ,’
t

,,+-

tJ Z5%/’ -.. ..-

1:
,’

,/’
u 20%“““‘. .-.... ..-.. ,*---‘. ..“’ ..-..’ .“‘.‘.’ ...-.. ,
! ,,,’

+‘: 1 15 %.......................:

I’
z
; *o%.. ;‘I

4 5% _ ~~~.

O%- ’ - ’ ’ ’ - (
0 1 2 3 4 5 6 7 8

Number of Clients

(cl

Fig. 4. Effect of multiple diskless clients running the Andrew benchmark simultaneously on different
files in a Sun-3 configuration with variable-size client caches. (a) shows additional time required by
each diskless client to complete the benchmark relative to a single client running with local disk. (b)
shows server CPU utilization. (c) shows the percentage network utilization.

8. COMPARISON TO OTHER SYSTEMS

The Sprite file system is only one of many network file systems that have been
implemented in the last several years. Table VII compares Sprite to six other
well-known systems for five different parameters. Most of these parameters have

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

150 l M. N. Nelson, 6. B. Welch, and J. K. Ousterhout

Table VII. Comparison of File Systems

System

NFS
u31

Cache Cache Writing Consistency Cache
location size policy guarantees validation

Memory Fixed On close or 30 Sequential Ask server on open
second delay

RFS
111
Andrew
[41

Locus
I111

Memory Fixed Write-through

Disk Fixed On close

Memory Fixed On close

Sequential,
Concurrent

Sequential

Sequential,
Concurrent

Ask server on open

Server calls client when
modified

Ask server on open

Apollo
[71

CFS
P51

Memory Variable Delayed or on Sequential Ask server when locked
unlocked

Disk Variable On SModel Not applicable Not applicable

Sprite Memory Variable 30 second delay Sequential,
Concurrent

Ask server on open

Notes: All of the systems but Apollo, Cedar and Sprite are variants of the UNIX operating system.
The Apollo system delimits active use of a file by lock and unlock instead of open and close. The
Cedar File System (CFS) only caches immutable files and provides a different type of cache
consistency than the other systems. SModel is a software tool that is used to move cached files
that have been changed back to their file server.

already been discussed in previous sections; this section focuses on the cache
consistency issues and compares Sprite’s performance with NFS and Andrew.

Of the systems in Table VII, only two systems besides Sprite support both
sequential and concurrent write sharing. The &FS system handles concurrent
write sharing in a fashion similar to Sprite by disabling caching. However, RFS
is based on write-through and disables caching on the first write to a file, rather
than during the open. Locus supports concurrent write sharing without disabling
caching. Instead, it uses a token-passing scheme in which each client must have
a read or write token in order to access a file; the kernels pass the tokens around
and flush caches in a way that guarantees consistency. The Apollo system does
not support concurrent write sharing but provides lock and unlock primitives
that concurrent readers and writers can use to serialize their accesses; the system
flushes caches in a way that guarantees consistency if the locking primitives are
used correctly.

All of the systems in Table VII, except Andrew, check with a file’s server when
the file is opened or locked in order to ensure that the client’s cached copy is up
to date. The Andrew system used the check-on-open approach initially but was
later redesigned to have the servers keep track of which clients have cached
which files and to notify the clients when the files are modified. This allows
clients to open files without contacting the servers and resulted in a substantial
reduction in server loading. For Sprite we decided to process all opens and file-
naming operations on the servers in order to avoid the complexity of maintaining
file-name caches on clients.
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966.

Caching in the Sprite Network File System l

Table VIII. Estimated Improvements from Name Caching and Server Callback

Degradation Server utilization Network utilization

Handle Handle Handle
Benchmark Original

Andrew 12.5%

Fs-make 5.6%

locally

6.2%

1.0%

Original

8.9%

6.7%

locally

5.6%

4.1%

Original

1.04%

-75%

locally

.69%

-45%

151

Although we are generally satisfied with Sprite’s performance and scalability,
we were curious about how much improvement would be possible if we imple-
mented client-level name caching with an Andrew-like callback mechanism.
Table VIII contains simple upper bound estimates. The estimates were made by
counting invocations of Open and Get Attributes operations in the benchmarks
and recalculating degradations and utilizations under the assumption that all of
these operations could be executed by clients without any network traffic or
server involvement. The table suggests that client-visible performance would
only improve by a few percentage points (even now, clients run almost as fast
with remote disks as with local ones), but server utilization and network utiliza-
tion would be reduced by as much as one-third. This could potentially allow a
single server or network to support up to 50 percent more clients than in the
current implementation. Our estimate for improvement in Sprite is much smaller
than the measured improvement in Andrew when Andrew switched to callback.
We suspect that this is because the Andrew servers are implemented as user-
level processes, which made the system more portable but also made remote
operations much more expensive than in Sprite’s kernel-level implementation. If
the Andrew servers had been implemented in the kernel, we suspect that there
would have been less motivation to switch to a callback approach.

Figure 5 compares Sprite to the Andrew and NFS file systems using the
Andrew benchmark. The measurements for the NFS and Andrew file systems
were obtained from [4]. Unfortunately, the measurements in [4] were taken by
using Sun-3/50 clients, whereas we had only Sun-3/75 clients available for
the Sprite measurements; the Sun-3/75 is about 30 percent faster than the
Sun-3/50. In order to make the systems comparable, we normalized for
Sun-3/50 clients: the Sprite elapsed times from Table VI and Figure 4 were
multiplied by 1.3, and the server utilizations from Figure 4 were divided by 1.3
(the servers were the same for the Sprite measurements as for the Andrew and
NFS measurements; slowing down the Sprite clients would cause the server to
do the same amount of work over a longer time period for lower average
utilization). Another difference between our measurements and the ones in [4]
is that the NFS and Andrew measurements were made using local disks for
program binaries, paging, and temporary files; for Sprite, all of this information
was accessed remotely from the server.

Figure 5 shows that, for a single client, Sprite is about 30 percent faster than
NFS and about 35 percent faster than Andrew. The systems are sufficiently
different that it is hard to pinpoint a single reason for Sprite’s better performance;
however, we suspect that Sprite’s high-performance kernel-to-kernel RPC mech-

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988.

152 - M. N. Nelson, 6. B. Welch, and J. K. Ousterhout

3M) .., ,.

2oo ..,.... .,. ,.. ., ,....

I()()

I---- 0
0 1 2 3 4 5 6 7 8

Number of Clients

(a)

y 50%
1

;;>/
1 ,<=
i
i

40% J .’‘....;c. ... ‘.‘... .-. .‘.... ‘.

7. ,:’
a 30% .
!

:”
. ..--~--&.

..;,,:.<r...
,

i 20% .

10% .

~~~~~ 

,‘.................... 

O%J 1 * * * . . . ’ 
0 1 2 3 4 5 6 7 8 

Number of Clients 

(b) 

Fig. 5. Performance of the Andrew benchmark on 3 different file systems: Sprite, Andrew, and NFS. 
(a) shows the absolute running time of the benchmark as a function of the number of clients executing 
the benchmark simultaneously, and (b) shows the server CPU utilization as a function of number of 
clients. The Andrew and NFS numbers were taken from [4] and are based on Sun-3/50 clients. The 
Sprite numbers were taken from Table VI and Figure 4 and renormalized for Sun-3/50 clients. 

anism (versus more general-purpose but slower mechanisms used in NFS and 
Andrew), Sprite’s delayed writes, and Sprite’s kernel implementation (versus 
Andrew’s user-level implementation) are major factors. As the number of con- 
current clients increased, the NFS server quickly became saturated. The Andrew 
system showed the greatest scalability: each client accounted for only about 
2.4 percent server CPU utilization compared to 5.4 percent in Sprite and over 
20 percent in NFS. We attribute Andrew’s low server CPU utilization to its 
use of callbacks. Figure 5 reinforces our claim that a Sprite file server should be 
able to support at least 50 clients: our experience with NFS is that a single server 
can support lo-20 clients, and Sprite’s server utilization is only one-fourth that 
of NFS. 

9. FUTURE WORK 

There are two issues concerning client caching that we have not yet resolved in 
the Sprite implementation: crash recovery and disk overflow. The current system 
is fragile because of the amount of state kept in the main memory of each server. 
If a server crashes, then all the information in its memory, including dirty blocks 
in its cache and information about open files, is lost. As a result, all client 
processes using files from the server usually have to be killed. In contrast, the 
servers in Sun’s NFS are stateless. This results in less efficient operation (since 
all important information must be written through to disk), but it means that 
clients can recover from server crashes: the processes are put to sleep until the 
server reboots, then they continue with no ill effects. 
ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1988. 



Caching in the Sprite Network File System l 153 

We are currently exploring ways to provide better recovery from server crashes 
in Sprite. One possibility is to use write-through in the servers’ caches. Table IV 
shows that a client can write to a server’s disk at 176 kilobytes/second, yet with 
client caching even the most intensive benchmark generated data for the server 
at less than 20 kilobytes/second (see Figure 2b). Thus it appears that it might be 
possible to make server caches write through without significant performance 
degradation. This would guarantee that no file data would be lost on server 
crashes. Client caches would still use a delayed-write policy, so the extra overhead 
of writing through to the server cache would only be incurred by the background 
processes that clean client caches. In addition, clients should be able to provide 
servers with enough information to reopen files after a server crash. We hope 
that this approach will enable clients to continue transparently after server 
crashes. 

The second unresolved issue has to do with “disk-full” conditions. In the 
current implementation, a client does not notify the server when it allocates new 
blocks for files. This means that when the client eventually writes the new block 
to the server (as much as 30 seconds later), there may not be any disk space 
available for the block. In UNIX, a process is notified at the time of the “write” 
system call if the disk is full. We plan to provide similar behavior in Sprite with 
a simple quota system in which each client is given a number of blocks from 
which it can allocate disk space. If the client uses up its quota, it requests more 
blocks from the server. When the amount of free disk space is too small to give 
quotas to clients, clients will have to submit explicit disk allocation requests to 
the server whenever they create new blocks. 

10. CONCLUSIONS 

Sprite’s file system demonstrates the viability of large caches for providing high- 
performance access to shared file data. Large caches on clients allow diskless 
client workstations to attain performance comparable to workstations with disks. 
This performance is attained while utilizing only a small portion of servers’ CPU 
cycles. The caches can be kept consistent using a simple algorithm because write 
sharing is rare. By dynamically varying the cache sizes, Sprite permits the file 
caches to become as large as possible without impacting virtual memory 
performance. 

The high performance attainable with client caches casts doubts on the need 
for local disks on client workstations. For users considering the purchase of a 
local disk, our advice is to spend the same amount of money on additional 
memory instead. We believe that this would improve the performance of the 
workstation more than the addition of a local disk: it would not only improve file 
system performance by allowing a larger cache, but it would also improve virtual 
memory performance. 

ACKNOWLEDGMENTS 

We are grateful to M. Satyanarayanan for providing us with the Andrew bench- 
mark and his measurements of that benchmark on Andrew and NFS. Andrew 
Cherenson, Fred Douglis, Garth Gibson, Mark Hill, Randy Katz, and Dave 

ACM Transactions on Computer System, Vol. 6, No. 1, February 1988. 



154 l M. N. Nelson, 6. 6. Welch, and J. K. Ousterhout 

Patterson provided numerous helpful comments that improved the presentation 
of the paper. 

REFERENCES 

1. BACH, M. J., LUPPI, M. W., MELAMED, A. S., AND YUEH, K. A remote-file cache for RFS. In 
Proceedings of the USENIX Summer 1987 Conference (Phoenix, Ariz., June 1987), USENIX 
Association, Berkeley, Calif., 1987, 275-280. 

2. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure calls. ACM Trans. Comput. 
Syst. 2,1 (Feb. 1984), 39-59. 

3. HILL, M. D., EGGERS, S., LARUS, J., TAYLOR, G., ADAMS, G., BOSE, B. K., GIBSON, G., HANSEN, 
P., KELLER, J., KONG, S., LEE, C., LEE, D., PENDLETON, J., RICHIE, S., WOOD, D., ZORN, B., 
HILFINGER, P., HODGES, D., KATZ, R., OUSTERHOUT, J., AND PATTERSON, D. Design decisions 
in SPUR. IEEE Comput. 19,ll (Nov. 1986), 8-22. 

4. HOWARD, J. H. ET AL. Scale and performance in a distributed file system. ACM Trans. Comput. 
Syst. 6, 1 (Feb. 1988). (To be published). 

5. KLEIMAN, S. R. Vnodes: An architecture for multiple tile system types in Sun UNIX. In 
Proceedings of the USENZX I986 Summer Conference (Atlanta, Ga., June 1986), USENIX 
Association, Berkeley, Calif., 1986, 238-247. 

6. LAZOWSKA, E. D., ZAHORJAN, J., CHERITON, D., AND ZWAENEPOEL, W. File access performance 
of diskless workstations. ACM Trans. Comput. Syst. 4, 3 (Aug. 1986), 238268. 

7. LEACH, P. J., LEVINE, P. H., DOUROS, B. P., HAMILTON, J. A., NELSON, D. L., AND STUMPF, B. 
L. The architecture of an integrated local network. IEEE J. Selected Areas Commun. SAC-l, 5 
(Nov. 1983), 842-857. 

8. LEFFLER, S., KARELS, M., AND MCKUSICK, M. K. Measuring and improving the performance 
of 4.2BSD. In Proceedings of the USENZX 1984 Summer Conference (Salt Lake City, Utah, June 
1984), USENIX Association, Berkeley, Calif.,‘1984, 237-252. 

9. NELSON, M. Virtual memory for the Sprite operating system. Tech. Rep. UCB/CSD 86/301, 
Computer Science Div. (EECS), Univ. of California, Berkeley, 1986. 

10. OUSTERHOUT, J. K., DA COSTA, H., HARRISON, D., KUNZE, J. A., KUPFER, M., AND THOMPSON, 
J. G. A trace-driven analysis of the 4.2 BSD UNIX file system. In Proceedings of the 10th 
Symposium on Operating Systems Principles (Orcas Island, Wash., Dec. l-4, 1985). ACM, New 
York, 1985, 15-24. 

11. POPEK, G. J., AND WALKER, B. J., Eds. The LOCUS Distributed System Architecture. The MIT 
Press, Cambridge, Mass., 1985. 

12. RITCHIE, D. M., AND THOMPSON, K. The UNIX time-sharing system. Commun. ACM 17, 7 
(July 1974), 365-375. 

13. SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. Design and imple- 
mentation of the Sun network filesystem. In Proceedings of the USENZX 1985 Summer Confer- 
ence (Portland, Ore., June 1985), USENIX Association, Berkeley, Calif., 1985, 119-130. 

14. SATYANARAYANAN, M., HOWARD, J. H., NICHOLS, D. A., SIDEBOTHAM, R. N., SPECTOR, A. Z., 
AND WEST, M. J. The ITC distributed file system: Principles and design. In Proceedings of the 
10th Symposium on Operating Systems Principles (Orcas Island, Wash., Dec. l-4, 1985). ACM, 
New York, 1985, 35-50. 

15. SCHROEDER, M. D., GIFFORD, D. K., AND NEEDHAM, R. M. A caching file system for a 
programmer’s workstation. In Proceedings of the 10th Symposium on Operating Systems Principles 
(Orcas Island, Wash., Dec. l-4, 1985). ACM, New York, 1985, 25-34. 

16. THOMPSON, K. UNIX time-sharing system: UNIX Implementation. Bell Syst. Tech. J. 57, 6 
(July-Aug. 1978), 1931-1946. 

17. WELCH, B. The Sprite remote procedure call system. Tech. Rep. UCB/CSD 86/302, Computer 
Science Div. (EECS), Univ. of California, Berkeley, Calif., 1986. 

18. WELCH, B., AND OUSTERHOUT, J. Prefix tables: A simple mechanism for locating tiles in a 
distributed filesystem. In Proceedings of the 6th International Conference on Distributed Comput- 
ing Systems (Cambridge, Mass., May 1986), IEEE Computer Society Press, New York, 1986, 
184-189. 

Received May 1987; revised August 1987; accepted September 1987 

ACM Transactions on Computer Systems, Vol. 6, No. 1, February 1966. 


