
Distributed Transactions for Reliable Systems

Alfred Z. Spector, Dean Daniels, Daniel Duchamp,

Jef f rey L. Eppinger, Randy Pausch

Department of Computer Science

Carnegie-Mellon University

Abstract

Facilities that support distributed transactions on user-defined
types can be implemented efficiently and can simplify the con-
struction of reliable distributed programs. To demonstrate these
points, this paper describes a prototype transaction facility,
called TABS, that supports objects, transparent communication,
synchronization, recovery, and transaction management. Vari-
ous objects that use the facilities of TABS are exemplified and
the performance of the system is discussed in detail. The paper
concludes that the prototype provides useful facilities, and that it
would be feasible to build a high performance implementation
based on its ideas.

This work was supported by IBM and the Defense Advanced Research Projects
Agency, ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory
under Contract F33615-81-K-1539, and by graduate fellowships from the National
Science Foundation and the Office of Naval Research.

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of any of the sponsoring agencies or the US government.

Accent is a trademark of Carnegie.Mellon University. Perq is a trademark of
Perq Systems Corporation. TAB is a trademark of the Coca-Cola Company.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 A C M - 0 - 8 9 7 9 l- 1 7 4 - 1 - 1 2 / 8 5 - 0 1 2 7 $ 0 0 . 7 5

1. In t roduct ion

General purpose facilities that support distributed transactions

are feasible to implement and useful in simplifying the

construction of reliable distributed applications. To justify this

assertion, this paper describes the design, implementation, use,

and performance of TABS [Spector et al. 85], a prototype facility

that supports transactions on user-defined abstract objects. We

attempt to generalize from our experi6nces with the prototype,

particularly in the sections on the usage and performance of

TABS.

We define a distributed transaction facility as a distributed

collection of components that supports not only such standard

abstractions as processes and inter-process communication, but

also the execution of transactions and the implementation of

objects on which operations can be performed. Although there

is room for diversity in its exact functions, a distributed

transaction facility must make it easy to initiate and commit

transactions, to call operations on .objects from within

transactions, and to implement abstract types that have correct

synchronization and recovery properties.

Transactions provide three properties that should make them

useful in a variety of distributed applications [Lomet 77, Liskov

82, Spector and Schwarz 83]. Synchronization properties, such

as serializability, guarantee that concurrent readers and writers

of data do not interfere with each other. Failure atomicity

simplifies the maintenance of invariants on data by ensuring that

updates are not partially done. Permanence provides

programmers the luxury of knowing that only catastrophic

failures will corrupt or erase previously made updates.

Certainly, these properties of transactions are useful in

database applications [Gray 78, Date 83]. Database applications

are typically characterized by the need for absolute data

integrity, permanent updates, and careful synchronization

between processes that access large quantities of shared data.

When considering the application of transactions to other

domains such as the construction of distributed operating

systems and real time systems, there are questions pertaining to

what transaction facilities should be provided, how they should

127

be implemented to achieve adequate performance, and where

they should be used. For example, a typical question is whether

the recovery and synchronization techniques that are suitable for

database systems have sufficient performance and flexibility to

support transactions on user-defined shared abstract types in

other applications. Quite a few research projects in addition to

our own are considering these issues [Liskov and Scheifler

82, AIIchin and McKendry 83, Birman et al. 83, Diel et al.

84, Jensen and Pleszkoch 84].

The next section surveys the underlying models and

techniques on which this research is based and provides

necessary background into the function, implementation, and

use of transaction facilities. The reader who is expert in

distributed transaction processing may be able to skip most of

this section and read only the summary in Section 2.1.4.

Following this survey, Section 3 describes the interface and

implementation of TABS.

Section 4 shows how the TABS prototype is used to support

various abstract data types including arrays, queues, directories,

replicated directones and reliable terminal displays. Although

these objects do not constitute user-level applications, they

represent rather important building blocks. The primary goal of

this section is to show how the TABS interface is used and

thereby highlight its strengths and weaknesses.

Section 5 describes the performance of the TABS prototype on

a variety of benchmarks, both in terms of execution time and in

terms of primitive operations. This performance evaluation

permits us to predict the effect of changes to the system (e.g.,

combining certain TABS processes or reduced message passing

times) and conclude that high performance general purpose

transaction facilities based on the ideas of TABS are feasible.

Section 6 contains a brief comparison of TABS with two

important related systems, R= [Williams et al. 8.1] and

Argus [Liskov et al. 83]. Section 7 contains the conclusions of

this research project and directions for future work.

2. Background
This section surveys the research and development that has

influenced this work and identifies many of the algorithms and

paradigms that wehave used. The discussion is divided into two

parts. The first discusses the fundamental issues in

implementing distributed transactions on abstract objects

focusing on the objects themselves, distribution, and transaction

processing. The second part discusses the use of distributed
transactions.

2.1. Distr ibuted Transact ions on Abstract Objects

2.1.1 : Abst rac t Objects

Abstract objects are data or input/output devices, having

distinct names, on which collections of operations have been

defined. Access to an object is permitted only by these

operations. A queue object having Operations such as

Enqueue, Dequeue, EmptyQueue is a typical data object, and

a CRT display having operations such as WriteLine, and

ReadLine is a typical I /0 object. Objects vary in their lifetimes

and their implementation. The notion of object presented here is

similar to the class construct of Simula [Dahl and Hoare 72],

packages in ADA [Department of Defense 82], and the abstract

objects supported by operating systems such as Hydra [Wulf et

al. 74]. The operating system work has tended to emphasize

authorization - - an issue not addressed here.

Many models exist for implementing abstract objects that are

shared by multiple processes. In one model, objects are

encapsulated in protected subsystems and accessed by

protected procedure calls or capability mechanisms[Saltzer

74, Fabry 74]. TABS uses another model, called the client/server

model, as a basis for implementing abstract objects [Watson 81].

Servers encapsulate one or more data objects. They accept

request messages that specify operations and a specific object.

To implement operations, they read or modify data they directly

control and invoke operations on other servers. After an

operation is performed, servers typically send a response

message containing the result. Servers that encapsulate data

objects are called Data Servers in TABS, Resource Managers in

R ° [Lindsay et al. 84], and Guardians in Argus [Liskov et al. 83].

Message transmission mechanisms and server organizations

differ among implementations based upon the client/server

model. In these aspects, TABS is substantially influenced by the

Accent operating system kernel" on which it was

developed[Rashid and Robertson 81]. Accent provides

heavyweight processes with 32-bit virtual address spaces and

supports messages that are arbitrarily long vectors of typed

information, addressed to ports. Many processes may have send
rights to a port, but only one has receive rights. Send rights and

receive rights can be transmitted in messages along with

ordinary data. Large quantities of data are efficiently conveyed

between processes on the same machine via copy-on-write

mapping into the address space of the recipient process. This

message model differs from that of Unix 4.2 [Joy et al. 83] and

the V Kernel[Cheriton 84a] in that messages are typed

sequences of data which can contain port capabilities, and that

large messages can be transmitted with nearly constant

overhead.

The programming effort associated with packing and

unpacking messages is reduced in TABS through the use of a

remote procedure call facility called Matchmaker [Jones et al.

85]. (We use the term remote procedure call to apply to both

intra-node and inter-node communication:) Matchmaker's input

is a syntactic definition of procedure headers and its outputs are

client and server stubs that pack data into messages, unpack

data from messages, and dispatch to the appropriate procedures

on the server side.

128

Servers that never wait while processing an operation can be

organized as a loop that receives a request message, dispatches

to execute the operation, and sends a response message.

Unfortunately, servers may wait for many reasons: to synchronize

with other operations, to execute a remote operation or system

call, or to page-fault For such servers, there must be multiple

threads of control within a server, or else the server will pause or

deadlock when it needn't.

One implementation approach for servers is to allocate

independently schedulable processes that share access to data.

With this approach, a server is a class of related processes - - in

the Simula sense of the word "class." An alternative approach is

to have multiple lightweight processes within a single server

process. Page-faults still cause all lightweight processes to be

suspended, but a lightweight process switch can occur when a

server would otherwise wait. Although this approach does not

permit servers to exploit the parallelism of a multiprocesser, it

was easy to implement on Accent, and TABS uses it. The topic of

server organization has been clearly discussed by Liskov and

Herlihy [Liskov and Herlihy 83].

Before leaving the topic of abstract objects, it is necessary to

discuss how objects are named. Certainly, a port to a server and

a logical object identifier that distinguishes between the various

objects implemented by that server are sufficient to name an

object. The dissemination of these names can be done in many

ways. A common method is for servers to register objects with a

well known server process on their node, often called a name

server, and for the name server to return one or more [port,

logical object identifier] pairs in response to name lookup

requests. Name servers can cooperate with each other to

provide transparent naming across a network.

2 . 1 . 2 . D i s t r i b u t i o n

Replicated and partitioned disti'ibuted objects are feasible to

implement in the client/server model. For example, there may be

many servers that can respond identically to operations on a

replicated object. However, servers must contain the replication

or partitioning logic. The TABS project hypothesizes that the

availability of transaction support substantially simplifies the

maintenance of distributed and replicated objects.

Transparent inter-node message passing can simplify access

to remote servers. In the Accent environment, in ter -node

communication is achieved by interposing a pair of processes,

called Communication Managers, between the sender of a

message and its intended recipient on a remote node [Rashid

and Robertson 81]. The Communication Manager supplies the

sender with a local port to use for messages addressed to the

remote process. Together with its counterpart at the remote

node, the Communication Manager manages the network and

implements the mapping between the local port used by the

sender and the corresponding remote port belonging-to the

target process.

There has been considerable research aimed at providing

high-performance inter-process communication mechanisms.

Local and inter-node message facilities can be optimized with the

use of simplified protocols, machine registers, microcode, and

careful coding [Nelson 81, Specter 82, Birrell and Nelson

84, Cheriton 84b]. The TABS Project assumes that high

performance communication systems can be constructed, but it

has not invested the effort to build .one for the prototype.

However, TABS has been careful to use datagrams for

communication during transaction commit; more costly commu-

nication based on sessions is used only for the remote procedure

calls that implement operations on remote data objects. R also

uses both datagram and session-based communication [Lindsay

et al. 84].

2.1.3. Transac t i ons

Although the concept of a transaction has been defined

precisely in the literature [Eswaran et al. 76, Gray 80], TABS does

not require that objects enforce serializability, failure atomicity,

or permanence. Certainly, support exists for the standard

notions, but transactions are permitted to interfere with each

other and to show the effects of failure - - if this is useful. In

other words, TABS provides basic facilities for supporting many

different type of objects and lets the implementors choose hew

they want to use them.

Many techniques exist for synchronizing the execution of

transactions. Locking, optimistic, timestamp, and many hybrid

schemes are frequently discussed; these are surveyed by

Bernstein and Goodman [Bernstein and Goodman 81]. TABS has

chosen to use locking [Date 83]. To obtain synchronized access

to an object, a transaction must first obtain a lock on all or part of

it. A lock is granted unless another transaction already holds an

incompatible lock.

TABS chose to use locking for two reasons. First, locking is an

efficient synchronization mechanism that has been used

successfully in many commercial data management systems.

Second, because servers implement locking locally, they can

tailor their locking mechanism to provide better performance.

With type-specific locking, implementors can obtain increased

concurrency by defining type-specific lock modes and lock

protocols [Korth 83, Schwarz and Spector 84, Schwarz 84].

Type.specific locking requires use of a specialized compatibility

relation to determine whether a lock may be acquired by a

particular transaction.

Locking restricts the flow of information between transactions

by delaying operations on shared data, even if that delay leads to

a deadlock. Some systems implement local and distributed

deadlock detectors that identify and break cycles of waiting

transactions [Obermarck 82, Lindsay et al. 84]. However, TABS,

like many other systems, currently relies on time-outs, which are

explicitly set by system users [Tandem 82].

129

I I A

Recovery in TABS is based upon write-ahead logging, rather

than shadow paging [Lorie 77, Gray 78, Lindsay et al. 79, Gray et

al. 81, Lampson 81, Haerder and Reuter 83, Schwarz 84]. To

discuss write-ahead logging, it is first necessary to discuss the

three.tiered storage model on which it depends. Storage

consists of volatile storage - - where portions of objects reside

when they are being accessed, non.volatile storage = where

objects reside when they have not been accessed recently, and

stable storage - - memory that is assumed to retain information

despite failures. The contents of volatile storage are lost after a

system crash, and the contents of non-volatile storage are lost

with lower frequency, but always in a detectable way.

In recovery techniques based upon logging, stable storage

contains an append-only sequence of records. Many of these

records contain an undo component that permits the effects of

aborted transactions to be undone, and a redo component, that

permits the effects of committed transactions to be redone.

Updates to data objects are made by modifying a representation

of the object residing in volatile storage and by spooling one or

more records to the log. Logging is called "write-ahead"

because log records must be safely stored (forced) to stable

storage before transactions commit, and before the volatile

representation of an object is copied to non-volatile storage.

Because of this strategy, there are log records in stable storage

for all the changes that have been made to non-volatile storage,

and for all committed transactionS. Thus, the log can be used to

recover from aborted transactions, system crashes and

non-volatile storage failures.

The advantages of write.ahead logging over other schemes

have been discussed elsewhere and include the potential for

increased concurrency, reduced I / 0 activity at transaction

commit time, and contiguous allocation Of objects on secondary

storage [Gray et al. 81, Traiger 82, Reuter 84]. All objects in

TABS use one of two co-existing write-ahead logging techniques

and share a common log.

The simpler technique is value logging, in which the undo and

redo portions of a log record contain the old and new values of at

most one page of an object's representation. During recovery

processing, objects are reset to their most recently committed

values during a one pass scan that begins at the last log record

written and proceeds backward. If this value logging algorithm is

used, only one transaction at a time may modify any individually

logged component of an object that is to be failure atmhic and

permanent.

The other technique is called operation (or transition) logging.

With it, data servers write log records containing the names of

operations and enough information to invoke them. Operations

are redone or undone, as necessary, during recovery processing

to restore the correct state of objects. An important feature of

this algorithm is that operations on multi.page objects can be

recorded in one log record. The operation-based recovery

algorithm also permits a greater degree.of concurrency than the

value based recovery algorithm and may require less log space.

However, it is more complex, and it requires three passes over

the log during crash recovery, instead of the single pass needed

for the value-based algorithm. The TABS recovery algorithms

are similar to other previously published write-ahead log-based

algorithms [Gray 78, Lindsay et al. 79], and are fully described by

Schwarz [Schwarz 84].

Both value and operation logging algorithms require that

periodic system checkpoints be taken. Checkpoints serve to

reduce the amount of log data that must be available for crash

recovery and shorten the time to recover after a crash [Haerder

and Reuter 83]. At checkpoint time, a list of the pages currently

in volatile storage and the status of currently active transactions

are written to the log. Some systems also force certain pages to

non-volatile storage and abort transactions that have been

running for a long time. To reduce the cost of recovering from

disk failures, systems infrequently dump the contents of

non-volatile storage into an off-line archive.

Recently, researchers have begun to discuss high performance

recovery implementations that integrate virtual memory manage-

ment with the recovery subsystem and use higher performance

stable storage devices [Traiger 82, Banatre et al. 83, Stonebraker

84, Diel et al. 84]. Section 3 discusses how virtual memory

management and recovery are integrated in TABS.

The most important component of a transaction facility not yet

discussed is the one that commits and aborts transactions.

Commit algorithms vary in their efficiency and

robustness [Lindsay et al. 79, Dwork and Skeen 83]. TABS uses

a tree-structured variant of the 2-phase commit protocol, in

which each node serves as coordinator for the nodes that are its

children. Though 2-phase commit is simple and efficient, it does

have failure modes in which nodes participating in a distributed

transaction must restrict access to some data until other nodes

recover from a crash. TABS could use one of the other commit

algorithms that do not have this deficiency.

As a final point in the implementation of transactions, the

increased interest in building nested abstractions using

transactions has led to the investigation and implementation of

facilities for supporting nesting [Reed 78, Moss 81, Liskov et al.

83]. These facilities limit the concurrency anomalies that can

occur within a single transaction that has simultaneous threads

of control, and they permit portions of a transaction to abort

independently.

TABS has a limited subtransaction facility, which was very easy

to implement. It can be characterized by its synchronization and

commit policies. With respect to synchronization, a subtrans-

action behaves as a completely separate transaction. This

provides protection between simultaneous threads of control,

but may cause intra-transaction deadlock if two subtransactions

update the same data. With respect to commit, a subtransaction

130

A II

is not committed until its top-level parent .transaction commits,

but a subtransaction can abort without causing its parent

transaction to abort. Subtransactions that can abort

independently permit their parent to tolerate the failure of some

operations.

2.1.4. Summary of Implementation Issues

The major points of this development can be tersely

summarized: TABS supports transactions on abstract objects.

Objects are implemented within server processes, and

operations on objects are invoked via messages with a remote

procedure call facility to reduce the programming effort of

packing, unpacking, and dispatching. Inter-node communi-

cation uses both sessions and datagrams. Inter.transaction

synchronization is done via locking, with time-outs used to

resolve deadlock. Write-ahead logging is the basis of recovery

and transaction commit is done via the tree structured two.phase

commit protocol. A limited subtransaction model is imple-

mented.

2.2. Use of Transactions

Currently, transactions are primarily used to support the

hierarchical, relational, and networked abstract types used in

database systems. Date surveys these abstract types and

describes some aspects of their implementation [Date 88]. The

literature contains many descriptions of more general types, and

there are some implementations of these. For example, Lomet,
Weihl and Liskov, and Schwarz and Spector have written about

buffer, directory, queue, and mailbox types [Lomet 77, Weihl and

Liskov 83, Schwarz and Spector 84], and there have been a few

experimental transactional file systems, e.g., one described by

Paxton [Paxton 79].

The properties provided by these transactional types simplify

abstractions that are built on them. For example, the invariants

needed for the replicated objects described by Gifford, Bloch et

al., and Herlihy [Gifford 79, Bloch et al. 84, Herlihy 84] are easier

to maintain. The availability of distributed transactions make it

easier to generate R*'s query execution plans [Daniels 82]. The

integrity guarantees of a mail system, such as one sketched by

Liskov, are also simplified. More collections of abstract types,

combined into larger and more diverse applications, will

undoubtedly be developed as general purpose transactions

facilities become more prevalent. (See Section 4 for a discussion

of abstract types that we have built.)

3. An Experimental Design -
The TABS Prototype

The TABS Prototype is implemented in Pascal on a collection

of networked Perq workstations [Perq Systems Corporation 84]
running a modified version of the Accent operating system. At

each node, there is one instance of the TABS facilities and one

or more user-programmed data servers and/or applications.

Data servers are programmed with the aid of system supplied

libraries for doing synchronization and recovery, and for

performing a data server's role during two.phase commit.

Applications initiate transactions and call data servers to perform

operations on objects. The library interfaces to TABS are

described in detail in Section 3.1.

Application J [A p p l i c a t i o n

Data Server J

I Recovery]
Manager

J Ob jec t I

l Object J

Data Server

Transaction
Manager

[C°°unicati°n] ! Na°e
Manager Server

Accent Kernel

- - R e c o v e r a b l e
Processes

--TABS
System
Components

Figure 3-1 : The Basic Components of'a TABS Node

The TABS facilities are made up of four processes that run on

Accent (see Figure 3-1). The processes, called Name Server,

Communication Manager, Recovery Manager, and Transaction

Manager, perform name dissemination, network communication,

recovery and log management, and transaction management,

respectively. Section 3.2 briefly describes the implementation of

these TABS processes and our modifications to Accent.

TABS began to operate in the Fall of 1984, and all the facilities

described in this paper are operational with one exception.

Operation-based recovery and the necessary type.specific

locking is not supported in the TABS libraries, though the

operation-based algorithm has been tested and integrated with

the value-based algorithm. The system contains about 51,000

lines of Matchmaker, Pasmac macro language [Lansky 80], and

Pascal sources. This count includes one data server and

application that we use in testing releases, but it does not include

the changes we have made to the Accent kernel.

3.1. The Tabs Programming Interface

The interface to TABS is provided by three libraries. The sewer
library, used only by data servers, supports shared/exclusive

131

Routine Purpose

InitServer(ServerlD)

ReadPe rmanent Data(OiskAdd ress)
returns (VirtualAddress, DataSize)

RecoverServer

AcceptRequests(DispatchFunction)

C reateObjectlD(Virt ualAdd ress, I~ngth)
retu rns (ObjectlO)

Conver tObiectlDtoVirt ualAddress(ObjectlD)
returns (VirtualAddress)

LockObject(ObjectlD, LockMode)

ConditionallyLockObject(ObjectlO, LockMode)
returns (Boolean)

IsObjectLocked(ObjectlD)
returns (Boolean)

PinObject(ObjectlO)

UnPinObject(ObjectlD)

UnPinAIIObject$

PinAndBuffer(ObjectlD)

LogAndUnPin(ObjecUD)

LockAndMa rk(ObjectlD, LockMode)

PinAndBuffe rMa rkedObjecta

LogAndUnPinMarkedObjecta

ExecuteTransaction(TransactionProcedure)

Startup

Startup

Startup

Startup

Address Arithmetic

Address Arithmetic

Locking

Locking

Locking

Paging Control

Paging Control

Paging Control

Paging Control, Logging

Logging, Paging Control

Locking

Paging Control, Logging

Paging Control, Logging

Transaction Management

Tab le 3-1 : The Complete TABS Server Library
This table summarizes the library routines used by data servers. The routine names have been made as explicit as possible; a
description of their function may be found in the accompanying prose. The typos of the parameters and return values are
shown as well as the general purpose of each routine. Routines used both by data servers and applications are .shown in
Tables 3-2 and 3-3.

locking, value logging, and miscellaneous utilities. The

transaction management library provides routines for controlling

the execution of transactions. The name server library provides

access to TABS name dissemination services. The use of many

routines from these libraries is illustrated in Section 4.

3.1.1. The Server L i b r a r y

The functions that make up t.he server library fall into six broad

categories. These categories are listed beside the procedure

headers of the library routines in Table 3-1.

Four procedures are used to initialize the data server.

In i tServer initializes server library data structures, and

ReadPermanentData maps the data server's recoverable data

into virtual memory. (See Section 3.2.1.) RecoverServer

accepts the log records that the Recovery Manager reads from

the log. This procedure understands the format of the log

records written by the server library routines during forward

processing, and calls the server library's undo/redo code to

restore the data to a transaction-consistent state. Once the

virtual memory copy of the recoverable data is consistent, the

data server calls AcceptRequests . This routine takes a

procedure argument that dispatches on operation request

messages.

Since a programmer works with virtual addresses but the log

manager works with disk addresses contained in ObjectlDs, data

servers must do address translation. The routines

Crea teOb jec t lD and Conve r tOb jec t lD toV i r t ua lAdd ress

perform these conversions.

Three routines support locking. LockOb jec t attempts to

acquire a lock, and waits if the lock is not available.

Cond i t i ona l l yLockOb jec t also attempts to acquire a lock, but

it returns immediately if the lock is unavailable.

I sOb jec tLocked returns true if and only if a lock is set. All

unlocking is done automatically by the server library at commit or

abort time.

Paging control operations prevent the kernel from paging an

object to secondary storage. They are used to ensure that an

object's permanent representation is not changed before all

modifications to it have been logged. P inObjec t prevents the

kernel from paging an object to secondary storage until

UnPinObjec t or UnPinAI IObjects is called.

132

The paging control operations are usually performed as side

effects of logging routines. P inAndBuf fer pins the specified

object and then copies the existing (old) value of the object into a

buffer in anticipation of a modification. After the modification is

made, LogAndUnPin sends the (buffered) old value and the

existing (new) value to the Recovery Manager and unpins the

object.

The checkpoint protocol requires that data servers not wait

(e.g., for a lock) while objects are pinned. One approach to

meeting this requirement is to set all locks before any

modifications are performed. The server library facilitates this by

providing three routines: LockAndMark locks the specified

object and enqueues a reference to the object on a "to be

modified" queue. P inAndBuf fe rMarkedObjec ts pins every

object on the queue and copies each ob.ject's current (old) value

into buffers. LogAndUnPinMarkedObjec ts sends to the

Recovery Manager the (buffered) old value and existing (new)

value for each object on the queue When all the old and new

values are logged, LogAndUnPinMarkedObjec ts unpins all

the objects and deletes the queue.

The remaining routine, ExecuteTransact ion, takes a

procedure argument and executes that procedure within a new

top.level transaction.

Lightweight processes use a coroutine mechanism embedded

within every data server. The server library treats each incoming

request as a separate coroutine invocation. A coroutine switch is

performed only when an operation waits, e.g., for a lock or for

starting a transaction. The server library contains additional

code that automates a data server's participation in t ran~ct ion

commit, abort, and checkpoint.

3.1.2. The Transaction Management L ibrary

The routines in the transaction management library provide a

standard interface to transaction management functions (see

Table 3-2). BeginTransact ion creates a eubtransaction of the

specified transaction. To create a new top.level transaction, a

special null Transact ion lD is given as the argument.

EndTransact ion and Abor tTransact ion initiate commit and

Routine

BeginTransaction(TransactionlD)
retu rns(NewTransactionlD)

EndT ransaction(TransectionlD)
returns(Boolean)

A bo rtTransaction(TransactionlD)

TranaaotionlsA borted(TransactionlO)
[exception]

Table 3-2: The TABS Transaction Management Library

abort of the specified transaction, respectively. The

Transac t ion lsAbor ted exception is raised in the application

process if the specified transaction has been aborted by some

other process.

3.1.3. The Name Server L ib rary

The abstractions represented by data servers are permanent

entities that must persist despite node failures, even though the

ports through which they are accessed change. The TABS Name

Server implements an interface that allows a single name to be

mapped to one or more <port, Log ica lObject ldent i f ie r> pairs.

A data server has the option of servicing operation requests for

several objects on the same port, and independent data server

processes can together implement replicated objects. The most

important routines in the Name Server library are summarized in

Table 3-3.

Routine

Register(Name, Type, Port, ObjectlD)

DeRegister(Name, Port, ObjectlD)

LookUp(Name, NodeName, OesiredNumbefOfPortlDs, MaxWait)
retu rns(A r rayOfPortlDPairs, Retu rnNum berOfPo rtlDs)

Table 3-3: The TABS Name Server Library

3.2. Imp lementa t ion of TABS

Most of the operations TABS libraries provide to data servers

and applications are implemented by the TABS System

components and the Accent kernel. The modifications to the

kernel and the TABS system components are summarized in this

section and described in more detail in a recent paper [Spector

et al. 85].

3.2.1. The Accent Kernel

The failure atomic and/or permanent data stored by data

servers are stored in disk files that are mapped into virtual

memory. These files are called recoverable segments. When

mapped into memory, the kernel's paging system updates a

recoverable segment directly instead of updating paging

storage [Eppinger and Spector 85].

To support the write-ahead log algorithms used by TABS, the

kernel sends three types of messages to the Recovery Manager.

The first message indicates that a page frame that is backed by a

recoverable segment has been modified for the first time. The

second message indicates that the kernel wants to copy a

modified page back to its recoverable segment. The kernel does

not write the page until it receives a message from the Recovery

Manager indicating that all log records that apply to this page

133

have been written to non.volatile storage. The third and final

message indicates whether the contents of a page frame have

been successfully copied to a recoverable segment.

In addition to the special messages that support the

write.ahead log algorithms, the Accent Kernel also implements

the paging control primitives of the server library.

A final modification to Accent has been made to support the

TABS operation logging recovery algorithm. This algorithm

requires that the kernel atomically write a sequence number

each time it copies a page of a recoverable segment to

non-volatile storage. This sequence number (currently, 39 bits)

is stored in header space that is available on a Perq disk sector.

The Recovery Manager sends the sequence number to the

kernel in the message that indicates that the page can be written

to disk. During crash recovery, the Recovery Manager sends a

request to the kernel when it wishes to read a page's sequence

number.

3.2.2. Recovery Manager

The Recovery Manager coordinates access to the log. The log

should be on stab/e storage; but, because of our Perq hardware

restrictions (only one disk), the non-volatile storage used for the

log is not stable. Hence, we do not consider disk failures in this

work.

The Recovery Manager writes log records in response to

messages sent by data servers, the Transaction Manager, and

the Accent kernel. Log records written in response to kernel

messages help to identify (at recovery time) the pages that were

in memory at crash time. All log records are written into a volatile

buffer until the buffer fills or until the buffer is forced to

non.volatile storage by either the write-ahead-log or commit

protocols. Upon transaction abort, the r.ecovery manager follows

the backward chain of log records that were written by the

transaction and sends messages to the servers instructing them

to undo their effects.

After a node crash, the Recovery Manager scans the log one or

more times. It directly interprets the recovery log records, but it

must pass transaction management records back to the

Transaction Manager. The Recovery Manager then queries the

Transaction Manager to discover the state of the transaction.

Based on this information, the Recovery Manager gives each

data server instructions to redo or undo previously performed

operations. In this way the Recovery Manager assures that

objects in recoverable segments reflect only the operations of

committed and prepared transactions.

The last function of the Recovery Manager is to coordinate

checkpoints. After a crash, the Recovery Manager must read the

portion of the log written after the last checkpoint. Depending on

the contents of the checkpoint record, earlier sections of the log

may also be read, but the most recent checkpoint record

contains enough information to determine when crash recovery

will be complete. In our system, checkpoints are performed at

intervals determined by the transaction manager or when the

system is close to running out of log space. In the latter instance,

the Recovery Manager runs a reclamation algorithm that

attempts to reclaim log space. Log reclamation may force pages

back to disk before they would otherwise be written.

3.2.3. Transact ion Manager

The Transaction Manager's major responsibilities are imple-

menting commit protocols and allocating globally unique

transaction ioentifiers. Application processes and data servers

send the Transaction Manager messages to begin a transaction,

to attempt to commit a transaction, or to force a transaction to be

aborted. The tree-structured two.phase commit protocol used

by Transaction Manager is based on a spanning tree where a

node A is a parent of another node B if and only if A were the first

node to invoke an operation on behalf of the transaction on

B. The information about a node's relation to the nodes directly

above and below it in the spanning tree is kept by its

Communication Manager.

There are two messages that processes send to inform the

Transaction Manager of the progress of a transaction. The first

is sent by a data server the first time it is asked to perform an

operation on behalf of a particular transaction; doing so enables

the Transaction Manager to know which servers it must inform

when the transaction is being terminated. The other message is

sent by the Communication Manager the first time an inter.node

message is sent or received on behalf of a particular transaction.

This message indicates that there are remote sites that have

servers active on behalf of the given transaction. At this point,

the Transaction Manager becomes aware that remote sites are

involved in the transaction, but it cannot yet identify these sites.

The complete site list is obtained from the Communication

Manager during commit processing.

The existence of subtransactions in the TABS model does not

complicate transaction management. The same messages that

are used to inform the Transaction Manager about top-level

transactions are used for subtransactions. The only regard in

which transaction processing differs is that subtransactions can

be aborted without requiring the parent transaction to abort.

Subtransactions, however, may not be committed before their

parents. When a parent transaction commits or aborts, its

subtransactions are committed or aborted as well.

3.2.4. Communication Manager

The Communication Manager is the only process that has

access to the network. It implements three forms of network

communication: datagrams for the distributed two-phase

commit; reliable session communication for implementing

remote procedure calls; and broadcasting for name lookup by

the Name Server.

134

For session communication, two Communication Managers

cooperate to provide at-most-once, ordered deli~/ery of

arbitrary-sized messages. The Communication Manager detects

permanent communication failures and, thereby, aids in the

detection of remote node crashes. The Communication Manager

also scans any transaction identifiers included in messages and

is responsible for constructing the local portion of the spanning

tree that the Transaction Manager uses during two-phsse

commit. In particular, the Communication Manager records the

node's parent, whether the transaction was initiated by a remote

node, and the list of all the node's children. It also records a

small amount of additional information that is used for detecting

some types of node crashes.

3.2.5. Name Server

In TABS, the Name Server process on each node maintains a

mapping of object names to one or more <port,

log ica l -ob ject - ident i f ie r> pairs for all the objects managed by

data servers on that node. Whenever the Name Server is asked

about a name it does not recognize, it broadcasts a name lookup

request to all other Name Servers. If the broadcast is successful,

the Communication Managers on the local and the remote

machine automatically establish a session between the

requesting node and the data server implementing the named

object.

4. The TABS Prototype In Use

This section presents five of the data servers we have

implemented with the TABS prototype: The integer array server,

the weak queue server, the I0 server, the B-tree server, and the

replicated directory object. The integer array server, B-tree

server, and replicated directory object all preserve the

serializability, failure atomicity, and permanence of the

transactions that invoke them. The I0 server provides a

permanent, non-failure atomic object, aod the weak queue server

provides a permanent, failure atomic object that is not

serializable.

4.1. The Integer Ar ray Server

The integer array server maintains an array of (one word)

integers, and provides the following abstract operations:

FUNCTION Get .Cel l (ce l lN.um: i n t e g e r) :
i n t e g e r ; '

PROCEDURE Se tCe l l (ce l ' lNum: i n t e g e r ;
va l ue : i n t e g e r) ;

The two operations supported by the integer array server are

simple enough that the best description is the Pascal code that

implements one of them. Note that the virtual address of a cell is

obtained by adding the proper offset to the base of the

recoverable segment.

FUNCT%ON SetCell(srreyPort:port: { far RPC }
transection:rid;
cetlNum:tnteger:
value:Integer): 6enerelReturn;

{ SetCelt sets array[cettNum] to contetn 'vetue' }

VAR
ObJ: ObjectZD; { object for the cell }
stze: t n t e g e r ; { the | tzc of a celt }

BEGZN

ZF (ce11Num >- 1) AND (ce11Num <= mexCe!1) THEN
BEGIN
stze :o VordStze(tnteger);
obj :- CreateObJectID(baseOfArray +

(ce11Num-1) " s t z e . 81ze);
LockObJsct(obJ, Vrt te);
PtnAndSuffer(obJ);
obJ.ptrt :- value; (do the esstgnlllent }
LogAndUnPtn(obJ);
SotColl :- Success;
END

ELSE SetCell : -]ndexOutOfRenge;

END;

The implementation of GetCell is very similar, and the

combined code for both operations requires 50 lines of Pascal.

The balance of the 140 lines of code in the integer array server

perform module imports and initialization. The integer array

server is a very straightforward data server; it uses only the

two.phase locking, value logging techniques found in many

transaction-based systems. The data servers described below

take more advantage of the flexibility of TABS.

4.2. The Weak Queue Server

The weak queue server provides access to a weak queue,

sometimes called a semi-queue [Weihl and Liskov 83, Schwarz

and Specter 84]. In a weak queue, items in the queue are not

guaranteed to be dequeued strictly in the order that they were

enqueued. Relaxing the strict FIFO nature of the queue allows

greater concurrency while retaining failure atomicity. The weak

queue server provides the following abstract operations:

PROCEDURE Enqueue(data : i n t e g e r) ;
FUNCTION Dequeue: i n t e g e r ;
FUNCTION IsQueueEmpty: boo lean ;

The queue is implemented as an array of individually Iockable

elements, with head and tail pointers bounding the currently

used section of the array. Because gaps may exist in the range

between the head and tail pointers, each element in the array

contains both its contents and an extra boolean, InUse,

indicating whether that element actually contains a value that is

currently stored in the queue. Enqueue and Dequeue set and

clear this InUse bit, and if they abort, this bit is restored along

with the previous contents of the element. The head pointer is a

permanent, failure atomic object. The tail pointer can be

recomputed after crashes by examining the head pointer and

InUse bits, so it is kept in volatile storage.

135

To add a new item to the queue, Enqueue places the item in

the element below the tail pointer, sets that element's InUse bit

to true, and sets the tail pointer to the new element, if the

Enqueue later aborts, this will leave a gap in the array when the

InUse bit is reset to false. Because the tail pointer is not locked,

the weak queue server relies on the monitor semantics of TABS

coroutines to ensure that only a single transaction at a time can

update the tail pointer.

Dequeue is more complex, because elements in the array may

not be legally dequeued for either of two reasons: If an element

is locked, another operation is still manipulating it; If an element's

InUse bit is False, the Enqueue of that element aborted, or the

element has already been successfully removed. Dequeue

scans elements starting at the head pointer, using the

IsOb jec tLocked primitive, and then testing the InUse bit.

When an unlocked element whose InUse bit is True is found,

Dequeue locks it and returns its contents.

Enqueue and Dequeue both read the head pointer to check

for a full queue. Dequeue does not alter the head pointer

because this would restrict concurrency. The head pointer must

eventually be moved, however, or the queue will fill. Abstractly,

one imagines a "garbage collection" operation that gets

randomly invoked and moves the head pointer past any elements

that are not locked, and whose InUse bits are False, The current.

implementation does the garbage collection as a side effect of

Enqueue.

The weak queue server is 380 lines of Pascal code. Its design

prompted the addition of the Cond i t i ona l l yLockOb jec t and

IsObjec tLocked primitives to the server library. Much of the

w(/rk that went into creating the weak queue server dealt with

mapping the logical operations on the queue into manipulations

of data with the value logging mechanisms. For this reason, we

believe that certain abstract data types are more suited to

operation logging than value logging.

4.3. The Inpu t /Ou tpu t Server

The I0 server extends the domain of TABS to include the

bitmap display by restoring the screen contents after a failure,

and by giving the user a comfortable model of transaction-based

input/output The current implementation uses character

input/output in a standard typescript fashion. Recovering the

screen is straightforward; TABS runs within a window manager

that provides overlapping, rectangular windows. Restoring the

screen requires keeping track of a window's contents and

location in a recoverable segment. 1

Providing a good user model of transaction-based I0 is more

complex. Writing to a terminal is often cited as the caponical

1The easiest way to test whether windows are restored to the correct location
is to mark display screens with grease pencils. This leads to research on
chemicals that remove grease pencil markings from display screens ..

non-recoverable action. An obvious approach is to buffer all

output and only display it if the transaction commits, but this

technique fails for conversational transactions. The I0 server

displays all output as it occurs, in a style that indicates the

current state of the transaction that performed the output. While

a transaction is in progress, the output is displayed in gray, to

indicate its tentative nature. If the transaction commits, the

output is redrawn in black, to indicate that the operation really

occurred. If the transaction aborts, lines are drawn through the

output. This is preferable to making the output disappear, which

is disconcerting to the user. Users know that an operation has

not really happened until its output is displayed in black.

Figure 4-1: Sample Display Screen
This is an actual snapshot of the current I0 server running a trivial bank
implementation. This example exhibits the I0 server; the bank application also
uses the integer array server to store its information.

In area one, the user successfully deposited 35 dollars to a checking account.
The user knew that the action had occurred (committed), because its output was
displayed in black. In area two. the user attempted to withdraw 80 dollars from a
checking account, but the node failed during the transaction, causing it to abort.
The I0 server restored the screen when the system became available, and the
user is currently trying again in area three, where the transection is still in
progress. The rectangles drawn around user input indicate that the characters
have been read by the application.

Multiple input/output areas are maintained on the screen, to

allow for concurrent interaction with the user. The abstract

oper~ionsare:

FUNCTION O b t a i n I O a r e a : i o A r e a I D ;
PROCEDURE D e s t r o y l O a r e a (i o A r e a : i o A r e a I D) ;
PROCEDURE Wr i teToArea (i o A r e a : i o A r e a I D ;

d a t a : S t r i n g) ;
PROCEDURE W r i t e l n T o A r e a (i o A r e a : i o A r e a I D ;

d a t a : S t r i n g) ;
FUNCTION ReadCharFromArea(ioArea : i o A r e a I D) :

Char ;
FUNCTION ReadL ineF romArea (i oA rea : i o A r e a I D) :

S t r i n g ;

136

To display output even after a client transaction later aborts,

the I0 server maintains permanent, non.failure atomic data in an

array of characters for each area. Rather than having the client

transaction modify this array, the I0 server uses

ExecuteTransact ion to invoke a new top-level transaction to

write the data for each operation. If the client transaction aborts,

the characters stored via the ExecuteTransact ion will not be

altered.

In order to display the output of a transaction, the I0 server

needs to determine the status (aborted, committed, or in

progress) of the transaction. The Transaction Manager cannot

provide this facility, because doing so would require retaining an

infinite amount of log data. When a transaction establishes

ownership of an area, the IO server uses ExecuteTransac t ion

to write aborted into a state object in the data structure for the

area. The I0 server then has the client transaction lock the state

object and set it to contain committed. This causes an old

value/new value pair of aborted/committed to be written in the

log for the client transaction. The I0 server can now determine

the transaction's current state by using the IsOb jec tLocked

primitive. If the state object is locked, the client transaction is

still in progress, if the object is no longer locked, then the

transaction has finished. If the state object contains aborted, the

transaction aborted, and the object was reset by the recovery

mechanisms. Otherwise, the object contains committed, and the

I0 server knows that the transaction must have committed.

The implementation is 2500 lines of Pascal code, and, like the

weak queue server, uses the ability to test if an object is currently

locked. The I0 server also provides an example of a data server

that needs to invoke transactions of its own in order to process

requests. The I0 server is interesting because it extends the

domain of the transaction model.

The B-tree server was originally implemented as a Pascal

program running outside the TABS environment. By using the

LockAndMark, P inAndBuf ferMa rkedObjec ts , and

LogAndUnPinMarkedObjec ts primitives, we were able to use

most Of the existing code intact. These routines allowed us to

avoid bracketing every assignment in the original program with

P inAndBuf fer and LogAndUnPin calls, in order to avoid

having data pinned when requesting other locks. The total

modifications, including initialization and storage allocation

changes, increased the size of the B-tree server from 4500 to

5000 lines of Pascal code.

4.5. A Replicated Directory Object

The replicated directory object provides an abstraction

identical to a conventional directory but stores its data in multiple

directory representative servers on different nodes. The

replicated directory uses our variation of Gifford's weighted

voting algorithm for global coordination [Gifford 79, Daniels and

Spector 833, Bloch et al. 84]. Each of the directory representative

servers uses a B.tree server to actually store the data, and

requires another 2700 lines of code to perform localized

functions for the voting algorithm. The interface to client

programs is provided by a module that does global coordination

of the voting, and is implemented as 1100 lines of code that are

linked in with the client program.

The replicated directory object demonstrates many of the

facilities of the TABS prototype: Aborting transactions that use

the replicated directory requires recovery on multiple nodes, and

committing transactions requires the global coordination

protocols for multiple node commit. Our tests so far involve 3

nodes, which permits one node to fail and have the data remain

available.

4.4. The B-Tree Server

The B-tree server maintains arbitrary collections of directory

entries in B-trees, and is being used in an implementation of

replicated directories. The B-tree server provides the standard

operations on multi-key directories: add, delete, modify, etc.

Indices on non-primary keys are implemented as separate

B-trees, each of which points to the primary key B.tree's leaves

which contain the data.

Because the B-tree server dynamically allocates storage within

the recoverable segment, it was necessary to create a

recoverable storage allocator. If a transaction uses an operation

that allocates storage, and the transaction later aborts, the

memory is made available for re-use. The B.tree server

maintains a separate storage pool for each size object that it

allocates, and allocates blocks from the pool using techniques

similar to the weak queue server. This technique works for fixed

sized blocks, but cannot be used for variable size block

allocation, which will be implemented in future data servers using

operation-based logging.

4.6. Evaluation of Data Servers

The data servers that have been created cover a good range of

the design space, although we have currently restricted our data

servers to use standard read/write locking and value logging.

Most of the advantages of the system are easy to overlook

because they involve simply having a system in the first place.

For example, recovery, synchronization, and communication

mechanisms exist as tools that are relatively easy to use.

Moreover, these tools are not mechanically imposed, which has

made it possible to to add new primitives easily, and to build

several data servers that use these tools in novel ways.

These flexible tools underscore our major claim: Many

interesting data servers are difficult, if not impossible, to build

using traditional read/write locking. In support of this claim, we

note that all the data servers except the integer array server

required the addition of primitives to circumvent the locking

mechanism, and that even with these additions, the imple-

mentors were required to use unnecessarily complex algorithms

137

and/or unprotected reads of data. We intend to explore the

type-specific locking capability of TABS with future data servers.

Our second claim is: Value logging is inconvenient for

non-array implementations. The implementors of the weak

queue server, the I0 server, and the B-tree server storage

allocator initially sketched simple designs that used operation-

based logging. The eventual implementations were complicated

by the use of value logging. The use of operation-logging,

type-specific locking, and value logging where appropriate will

provide a rich environment for re-implementing existing data

servers, and creating new ones.

5. Analysis of TABS Performance
This section presents analytical and experimental evidence

supporting our hypothesis that it is possible to implement

efficient general purpose facilities that support distributed

transactions. This evaluation permits us to describe the

performance and limitations of the current implementation, and it

permits us to predict how well TABS woutd work if it used more

efficient underlying primitives and were more tightly integrated.

The analysis presented in this paper is an application of a

performance evaluation methodology for predicting the cost of

transaction execution (latency and resource utilization) under

conditions of no load [Spector and Daniels 85] 2.

The section continues by describing a collection of

benchmarks and characterizing them in terms of the repeated

execution of primitive operations. We use both this

characterization and an empirical performance study to describe

the performance of TABS and to predict how it would perform if

improvements were made.

5.1. A Microscopic Approach to Transact ion System

Performance Evaluation

The performance of a commercial transaction processing

system can be described macroscopically by its performance on

standard work loads [Anonymous et al. 85]. This approach is not

sufficient for our evaluation of TABS for two reasons. First, the

work loads encountered by a general purpose facility supporting

abstract types are not easily characterizabis. Second,

throughput rates or latencies, by themselves, do not lead to an

understanding of how individual algorithms and implementation

decisions have affected system performance. Hence, we need to

understand more microscopic effects to critique our system and

to predict the effects of algorithmic or structural changes.

To describe TABS performance, we have chosen to measure

the performance of a collection of benchmarks from which it is

2This methodology does not sddress the effects of concurrent transaction
execution on pedormance, even though TABS fully supports the necessary
synchronization.

possible to deduce the performance of other transactions. To

illustrate this deduction process, consider two benchmarks: one

is a read-only transaction that performs one remote read

operation on data in primary memory, and the other is a similar

transaction that performs five remote read operations on data in

primary memory. From these two transactions, it is possible to

deduce the amount of time to perform an incremental

non.paging, remote read operation. The benchmarks, which are

described below, are as simple as possible consistent with their

forming a basis for estimating the performance of other
transactions.

The execution times of benchmarks, while useful for predicting

the performance of other transactions, do not explain how

transaction performance changes as a function of algorithmic or

underlying system changes. Nor do the execution times of

benchmarks shed light on the resources that they use. To

provide this additional information requires a more complex

analysis. The analysis that we propose is based on the notion

that each benchmark is sqbstantially made up of the repetitious

execution of a collection of primitive operations, such as disk

reads or inter-node datagrams. These primitives have

counterparts in all transaction systems and collectively account

for much of the execution time of a transaction.

The primitive operations we use are the following:

• Data Server Cal ls in TABS are remote procedure
calls between applications and data sewers on a
single node. Servers instantiate a coroutine for each
call. We measure the time for the.Data Server Call
primitive by measuring the time for a TABS
application process to call a null procedure in a
TABS data server process.

• In ter -Node Data Server Cal ls are implemented
and measured analogously to single node Data.
Server Calls. These calls use sessions implemented
by the Communication Manager.

• Datagrams are used for inter.node transaction
management messages.

= Accent inter.process messages are used for
communication between TABS applications, data
servers, and TABS system processes on one node.
Because message performance depends on the size
of messages and on the method by which data is
transferred from one process to another, three
different message types are cour~ted:

c A Small Contiguous Message. Small
messages typically contain less than 100
bytes, but in all cases have less than 500 bytes.

o A Large Cont iguous Message. We use 1100
bytes for the average size of these messages.

o A Po in ter Message containing a pointer to
data that is transmitted by copy-on-write
remapping of processes' virtual memory.

138

Primitive Ave rage Time

Data Server Call 26.1

Inter-Node Data Server Call 89.

Datagram 25.

Small Contiguous Message 3.0

Large Contiguous Message 4.4

Pointer Message 18.3

Rando/n Access Paged I /0 32.

Sequential Read 16.

Stable Storage Write 79.

Table 5-1 : Primitive Operation Times (in milliseconds)

These primitive times are used to predict system time in Table 5-4.

• In TABS, all disk reads and writes, other than those
for the log, are performed by Accent as part of its
demand paging of virtual memory. Pages are 51"2
bytes. In Accent, random accesss reads and writes
take about the same time, so we report only one
(combined) Random Access Paged I / 0 primitive.
Because our Perq's have only a single disk, log
writing breaks up sequential access disk writes, so
sequential access writes do not occur. Sequent ia l
Reads do occur in our benchmarks, and this
primitive is also reported separately.

• The Stab le Storage Wri te primitive is the elapsed

time required for the Recovery Manager to force a
page of log data to non.volatile storage.

The costs of the primitives were estimated by repeatedly calling

the appropriate Accent and TABS functions. For example, we

determined demand-paged I / 0 costs by instrumenting a

program that repeatedly read (or wrote) individual pages in a

large array that is mapped into virtual memory. This experiment

measures the average cost of a read (or a reed/write pair). Table

5.1 shows the measured performance of the primitive operations

on a Perq T2 computer [Perq Systems Corporation 84], The Data

Server Call primitive time is high due to an inefficient

implementation of coroutines. As background, we note that the

speed of a Perq executing Pascal is approximately 20 tO 25

percent the speed of a Vax.11/780 executing C [Fitzgerald and

Rashid 86].

After determining the appropriate primitives and measuring

their performance, the next step in our analysis is to define a set

of benchmarks and to express the latency of each benchmark as

a function of primitive operation times. The benchmarks are

among the simplest that can be designed to produce the desired

system behavior. There are four dimensions of system behavior

that the benchmarks exercise. First, some benchmarks are

read-only while others modify data. Second, benchmarks either

cause no page faults, cause random page faults, or read pages

sequentially. Third, benchmarks either perform a single data

Benchmark
Remote Small

Data Server Data Server Local
Calls Calls Msg

Large Sequential Random
Local Page Page
Msg Reads I /0

1 Local Read, No Paging 1 4

5 Local Read, No Paging 5 4

1 Local Read, Seq. Paging 1 4

1 Local Read, Random Paging 1 4

1 Local Write, No Paging 1 6 1

5 Local Write, No Paging 5 14 5

1 Local Write, Seq. Paging 1 10 1

1 Lcl Rd, 1 Rem Rd, No Paging 1 1 8

1 Lcl Rd, 5 Rein Rd, No Paging 1 S 8

1 Lcl Rd, 1 Rem Rd, Seq. Paging 1 1 8

1 L¢I Wr, 1 Rein Wr, No Paging 1 1 12 2

I Lcl Wr, 1 Rein Wr, Seq. Paging 1 1 20 2

1 L¢I Rd, 1 Rein Rd, 1 Rem Rd, NP 1 2 11

1Lcl Wr, 1 Rem Wr, 1 Rem Wr, NP 1 2 17 3

1

.86

Table 5-2: Pre-Commit Primitive Counts
This table shows the number of primitive operations each benchmark is expected to perform before starting commit. The
primitive operations are listed in Table 5-1. The number .86 is the measured number of page I/O's per transaction. Blank
entries denote zero values.

139

server operation on each node or perfoi'm multiple data server

operations on one of the nodes in the benchmark. Finally,

benchmarks perform operations on one, two, or three nodes.

There are four read-only benchmarks in which both the

application and data server process are located on the same

machine. The simplest is a transaction that reads an identical

element of a recoverable array of integers. The second is similar,

but is a transaction that reads the same array element five times.

This permits the determination of the costs of individual read

operations on data servers. The third is similar to the first but is

modified to measure the gerformance of the demand paging of

recoverable data. It is a transaction that reads an element from

successive pages of a large array. This array is 5000 pages,

which is more than three times the available physical memory on

a Perq with TABS running. The final test reads random elements

from the array and demonstrates the effect of random I/O times

on TABS performance.

The performance of the system for transactions that modify

recoverable data is measured by benchmarks that write the array

instead of reading it. Because there is only one disk on our

system, there should be no significant difference between the

random-access case and the sequential-access case because of

the intervening seeks required by paging writes. Hence, we

include only a sequential paging test.

To study the performance effects of inter-node communi-

cations, there are similar benchmarks that use two data servers,

one on the same node as the application and one on a remote

node. Read tests have one local non.paging read and one

remote non-paging read; one local non.paging read and five

remote non-paging reads; and one local sequential paging read

and one remote sequential paging read. Two additional tests

measure two node write transactions: one test with one local

non-paging write and one remote non-paging write, and one test

with one local paging write and one remote paging write. These

remote write tests reflect the cost of the more complex

two.phase commit protocol. We do not include a benchmark

that measures 5-write operations remotely, as this can be

deduced from other benchmark times.

To show how the cost of transaction commit increases as a

function of the number of node s , benchmarks that read or write

the same cell on three nodes are included. The performance of

these benchmarks must be adjusted for the number of

operations to show the incremental commit cost directly.

The time in each benchmark attributable to primitive operations

-can be expressed as a function of primitive operation times.

Potentially, this analysis involves complicated stochastic models,

but our benchmarks have a simple approximate analysis. In our

transaction model, all operations prior to commitment execute

sequentially. Hence the pre.commit latency of a transaction that

is due to the execution of primitive operations is a sum of the

primitive operation times weighted by the numbers of primitive

operations performed. The benchmarks are deterministic in

steady state, so determining the primitive counts is fairly easy.

For the random read benchmark, it is simpler to count page

reads during the test than to measure the available buffer

memory and estimate what fraction of references will be to pages

in the buffer. These formulas are reported in Table 5-2, the

Pre-Commit Primitive Count Table.

The latency of the commit portion of a transaction is sequential

in the local case, but involves parallel processing in the

distributed case. For each type of transaction commit protocol,

we estimate the execution path of longest duration through the

distributed system. This path is used as the basis of the

benchmark counts that are incorporated in Table 5-3, the

Commit Primitive Count Table. Because different transactions

use the same commit protocol, there are fewer entries in this

table than in the Pre.Commit Benchmark Count Table. Commit

times for the three node benchmarks are longer than commit

Protocol
Remote Small Large Local Stable

Datagram Local Local Pointer Storage
Msg Msg Msg Msg Writes

1 Node, Read Only 5

1 Node, Write 8 1 1

2 Node, Read Only 2 11 1 1

2 Node, Write 4 17 5 1 4

3 Node, Read Only 2.5 11 1 1

3 Node, Write 5 17 5 1 4

Table 5-3: Commit Primitive Counts
This table shows the number of primitive operations in the longest estimated execution path for various commit protocols. The
one-half datagrem time in the 3 Node, Read Only case is an approximation for the time required to immediately send a
"Prepare" datagram to the second remote node. The 3 Node, Write case contains 2 one-half datagram times, because there is
also a "Commit" datagram that is sent to the second remote node. Blank entries denote zero values.

140

Benchmark
Sys Time Measured Measured Improved New
Predicted TABS Proc Elapsed TABS Primitive

by Primitives Time Time Architecture Times

1 Local Read, No Paging 53 41 110 107 67

5 Local Read, No Paging 157 41 217 213 80

1 Local Read, Seq. Paging 71 41 126 123 7 5

1 Local Read, Random Paging 81 41 140 137 98

1 Local Write, No Paging 156 83 247 228 136

5 Local Write, No Paging 302 119 467 424 225

1 Local Write, Seq. Paging 232 104 371 345 249

1 Lcl Rd, 1 Rem Rd, No Page 306 223 469 459 228

1 Lcl Rd, 5 Rein Rd, No Page 662 368 829 819 268

1 Lcl Rd, 1 Rein Rd, Seq. Page 341 226 514 504 257

1 Lcl Wr, 1 Rem Wr, No Page 697 407 989 775 442

1 Lcl Wr, 1 Rein Wr, Seq. Page 864 441 1125 873 539

1 Lcl Rd, 1 Rem Rd, 1 Rein Rd, NP 416 381 621 611 282

1 Lcl Wr, 1 Rem Wr, 1 Rein Wr, NP 831 670 1200 968 534

Table 5-4 : Benchmark Times (in milliseconds)
This table shows predicted, average measured, and projected improved times for the benchmarks. The System Time
Predicted by Primitives is computed by summing the primitive operation times for each benchmark from Tables 5-1, 5-2,
and 5-3. Measured TABS Process Time is the sum of TABS system process times on all nodes. Measured Elapsed Time
is the average measured time of the benchmark over a long run including all points except starting and ending transients. For
the single node tests, Predicted System Time plus Measured TABS Process Time should approximately yield Measured
Elapsed Time, as they do. As described in the text, the TABS architecture could be improved and the primitive times reduced.
The Improved TABS Architecture column shows projection of elapsed times based on algorithmic and structural changes
to TABS. The New PrimiUve.Times column shows how the times in the preceding column would improve if primitive
operations times were as in Table 5-5. Multi-node write tests used one or two Percl 2 computers, which have average disk seek
times about 15 milliseconds slower than the Perq T2 used for the primitive time measurements of Table 5-1. The System Time
Predicted by Primitives for these tests have been increased by 30 or 45 milliseconds. Projected times always assume the
use of Perq T2 disks.

times for the two node benchmarks by a one-half datagram time

for read-only transactions and by 2 one-half datagram times for

update transactions. This is due to the estimated cost of sending

datagrams in parallel to different nodes.

5.2. The Pe r fo rmance of TABS

The sum of the primitive operation times in Table 5.1, as

weighted by the counts of Tables 5-2 and 5-3, accounts for a

significant portion of the latency of each benchmark. This sum is

shown in the first column of Table 5-4, labeled "System Time

Predicted by Primitives."

Benchmarks times were measured by counting the number of

transactions executed in 20 or 30 second time intervals and

averaging these rates over 20 to 30 minutes of testing.

Transients at the beginning and ending of tests were discarded.

The column labeled "Measured Elapsed Time" in Table 5-4 show

the average elapsed time for each benchmark. The column

labeled "Measured TABS Process Time" reports the sum of

average measured CPU time o[the TABS Communication,

Recovery, and Transaction Manager Processes on all nodes in

the test.

Rather than reiterating numbers in tl~e tables, we instead

present more details about the performance of the system. We

account for the latency of a local, singie operation, non-paging

read transaction. We also show where the additional t ime is

spent in a single node, non-paging write transaction. Finally, we

show how to reconcile System Time Predicted by Primitives,

Measured TABS Process Time, and Measured Elapsed Time for

two-node transactions. This discussion uses execution time data

for individual processes, which are not included in Table 5-4.

The measured elapsed time for processing a transaction that

performs a single node, non-paging read operation is 110 msec.

This is 57 msec greater than predicted by primitive operations

alone. Of this additional time, 41 msec is accounted for by TABS

system processes: 36 msec in the Transaction Manager and 5

msec in the Recovery Manager. (TABS system process times

remain constant in all local read-only transactions.) By a

141

complex deduction, we determined that the application and data

server require about 3 msec and 4 msec, respectively, to initiate

and commit a transaction. Our analysis does not account for the

remaining 9 msec.

The difference in measured times between the simplest read

and simplest update transactions is 137 msec, of which 78 msec

is the time for the Stable Storage Write. The data server uses an

additional 5 msec to do a write, rather than a read. This time is

usedto format and send log data to the Recovery Manager. The

Recovery Manager uses an extra 10 msec to spool this data to

the log. The more complex commit protocol for an

update.transaction requires an additional 8 msec in the Recovery

Manager, 24 msec in the Transaction Manager, and 4 msec in the

data server. Together, these times with the additional message

primitives executed (see Tables 5-2 and 5-3) sum to 155

milliseconds. This is 18 milliseconds more than measured, which

may be partially due to double counting some Recovery Manager

time included in the Stable Storage Write time.

Two-node distributed transactions involve little parallel

execution, so we might expect System Time Predicted by

Primitives plus Measured TABS Process Time to equal Measured

Elapsed Time. This is not true, however, because communi-

cation time is counted in both the Measured TABS Process Time

and the System Time Predicted by Primitives. If the

Communication Manager time were subtracted, the sum of the

remaining TABS Process time and Predicted times is within 4

percent of elapsed time for read transactions and within 10

percent for write transactions. Three node transactions involve

considerable parallel processing during commit so this simple

reconciliation is not applicable.

5.3. Improv ing TABS performance

In this section, we use the primitive operation analysis to

project the performance of different implementations of TABS.

Two projections are given here. The first projection is based on

the measured times of primitive operations reported above, but

assumes feasible architectural and implementation changes to

TABS. The second projection is based on the first, but also

assumes new primitive operation times, which are described and

justified below. In neither case are we counting on a faster

processor or better compiler; thus, projected times are higher

than measured TABS Process Time except for benchmarks

having parallelism or high communication costs.

For the first projection, labeled "Improved TABS Architecture"

in Table 5-4, we assume that the Recovery Manager and

Transaction Manager processes are merged with the Accent

kernel. This eliminates message passing between these three

components, and also allows one prepare message sent from a

data server to the modified kernel to perform the function of two

messages in the current implementation. We have previous

experience with the integration of functions implemented by

separate processes into the kernel and believe that this is a

simple process. Additionally, we assume optimized commit

algorithms that eliminate unnecessary messages and permit

some of the processing for commit of distributed write

transactions to occur in parallel with the execution of succeeding

transactions. The projections based on these changes are

derived by reducing the measured elapsed times by the times for

primitive operations that would not be performed. Remote write

transactions showthe biggest performance increase, because of

the elimination of considerable commit processing from the

critical execution path of the transaction.

The second performance projection, labeled "New Primitive

Times" in Table 5.4 is derived from the "Improved TABS

Architecture" projections by setting the primitive operation times

to those given in Table 5-5. The costs of these new primitives are

based on our estimates of the applicability to the Perq/Accent

environment of published techniques for efficient implementation

of these primitives. Accent random I/O times already approach

the performance of the disk, so we do not assume any

improvement here, though we hypothesize a small improvement

in sequential read time.

Primitive Average Time

Data Server Call 2.5

Inter-Node Data Server Call 9.

Oategram 2.0

Small Contiguous Message 1 .O

Large Contiguous Message 1.25

Pointer Message 15.

Random Access Paged I /0 32.

Sequential Read 10,

Stable Storage Write 32.

Table 5-5: Achievable Primitive Operation Times (in milliseconds)

-This table shows primitive times achievable by tuning software and adding disks.

Intra-processor message times have been reported as low as

0.77 msec on hardware that is (roughly) similar in performance to

the Perq [Cheriton 84b]. However, Accent processes have

completely separate virtual address spaces and context

switching times are greater for Accent than for other operating

systems, and so we chose times of 1.0 and 1.25 msec for our

projections. The implementation of pointer messages is fairly

complex and we therefore assume qnly small improvement.

Careful implementation or the use of lazy evaluation should

substantially eliminate to high costs of coroutine allocation in the

Data Server Call primitive.

Considerable work has been devoted to efficient inter-

processor message passing [Birrell and Nelson 84, Spector 82].

142

We feel that times of 9 msec for remote data server calls, and 2

msec for datagram messages allow reasonable overheads

compared with times reported for similar hardware [Nelson 81].

If the existence of small (disk track size) quantities of zero

latency stable storage (e.g. battery backup CMOS primary

memory) and dedicated logging disks are assumed, then log

writing costs could approach main memory copy costs.

However, to lend more credence to our projections we estimate

that log writing can be performed for the same cost as paged

disk writes. This estimate assumes dedicated logging disks and

offline archival of the log.

With these improvements, the projected performance of local

transactions range from 67 msec for non-paging, read-only

transactions to 249 msec for paging write transactions. The

performance of multi-node benchmark transactions range from

228 msec to 539 msec. Of course, these numbers could be

reduced further by improving the code in the TABS system

components and by using a faster CPU. TABS system process

times dominate the costs in these projections, and their

execution time would decrease on a faster CPU.

6. Relationship to R" and Argus

TABS is similar in many ways to R ° and Argus [Williams et al.

81,Lindsay et al. 84, Liskov 84, Liskov et al. 83]. R ° is a

distributed database management system, developed at IBM San

Jose Research, that supports transactions on relational database

servers. Argus is a programming language, developed at the MIT

Laboratory for Computer Science, that supports transactions and

user-defined types on which they can operate.

The transaction facility of R ° is implemented by a combination

of the underlying operating system, CICS [IBM Corporation 78],

and a component called TM °. This logically unified facility

permits servers to register themselves and their operations when

they are ready to receive requests, and performs routing of

operation requests to local servers. The facility also issues

transaction identifiers, oversees transaction commitment and

aborting, and does deadlock detection.

Servers in R" have two types of interfaces. The first type

includes operations specific to a server. The second type

includes operations required for transaction management,

deadlock detection/resolution, and remote access by other

servers. In R °, requests are never directly issued to remote

servers. Instead, they are passed to local servers, which then

interact with remote ones.

Broadly, TABS is very similar to R* in that both systems make

available transaction facilities for applications and servers.

However, they differ in many ways. For example, TABS, its

applications, and its servers are implemented as a collection of

p[ocesses that communicate via messages, rather than via the

protected procedure calls, which R" uses. Another major

difference is that remote servers in TABS can be directly invoked

in a transparent way. Also, TABS servers retain little context

between operations and use a common log and recovery

algorithms provided by the system; servers in R" must utilize the

same context for each operation within a transaction, and each

server must provide for its own recovery. Some Of these

differences are relatively minor, but some affect performance or

usability. For example, the common log and transparent

inter-node communicat ion provide efficiency and flexibility

respectively; but, on the other hand, protected procedure calls

on the IBM 370 are very fast.

Internally, Argus contains many facilities that are analogous to

those of TABS and R °, but it has the more ambitious goal of

making those facilities very easy to use. Some objects can be

implemented without the type implementor having to consider

synchronization or recovery issues. However, types needing

highly concurrent access require explicit attention paid to

synchronization and recovery. For these high concurrency

types, synchronization and recovery are done with the aid of a

specialized object, called a mutex, rather than via explicit locking

and logging.

Argus is certainly easier to use than TABS for constructing

simple objects. However, it is difficult to compare the amount of

work needed to use mutex objects versus that of explicitly setting

locks and writing log records. We have not considered the

performance differences between the approaches.

7. Conclusions

Our use of TABS has convinced us that its facilities for

supporting transactions and data servers are useful for both local

and distributed abstractions. Specialized distributed database

systems, file systems, mail systems, spoolers, editors, etc. could

be based on the implementation techniques that our existing

servers use. In our view, the use of location-transparent

operation invocation, locking within data servers, write.ahead

logging with a .common log, and the implementation of

permanent objects in virtual memory were good design choices.

We must give due credit to the Accent kernel, which implements

many of the facilities that TABS uses or provides, and which has

proven invaluable for supporting distributed computation.

Because TABS uses nearly the minimum number of expensive

primitive operations such as disk I/O's, log writes, inter-node

messages, and datagrams, TABS performance is sufficient for

many applications in an interactive workstation environment.

Transactions considerably more complex than the benchmarks

of Section 5 take less than a few seconds of elapsed time. For

example, our analysis indicates that about two seconds are

required for a local transaction that invokes five operations, each

of which updates two pages that are not in memory. The same

transaction would require about one-half .second if the data were

143

in main memory. If the operations were performed on one or

more remote nodes, these transactions would take only about

one second longer.

Certainly, TABS can be substantially improved. To simplify

programming simple data servers, the calls to TABS synchro-

nization and recovery facilities should be hidden in a language

run-time system, such as that of Argus. For more complex

servers that need greater flexibility, the server library should

provide a better set of primitives, including some for operation

logging and type-specific locking. Thought should also be given

to providing better debugging support for data servers.

Functionally, TABS should be extended to permit the recovery

of a single server without the recovery of the entire node. In

addition, TABS should use stable storage for the log and support

media recovery. Finally, TABS should probably have a more

complete subtransaction model, particularly for the implement.

ation of replicated objects.

In its implementation, TABS loses performance because of the

division of the Recovery Manager, Transaction Manager, and

Accent into separate processes. The TABS coroutine, logging,

and inter-node communication facilities need re-implementation

or tuning. If these changes were made and TABS used more

modern hardware, one would expect transaction times that are

four to ten times faster than the currently measured ones.

We are continuing to enhance the system and study its use.

For example, we plan to empirically compare the relative merits

of value and operation logging. We are also continuing to

investigate architectures and algorithms that will provide

increased transaction throughput. In addition, we would like to

develop a performance methodology for measuring and
predicting throughput. Though much work remains, our

experiences to date have convinced us that general purpose

distributed transaction facilities are feasible and useful for a wide

variety of systems.

Acknowledgments

Jacob Butcher, Charles Fineman, Sherri Menees, and Peter

Schwarz made major design and programming efforts; their work

was essential to the underlying TABS prototype and the data

servers that use it. Maxwell Berenson constructed the

distributed performance monitoring system that made it possible

to get accurate performance measurements of distributed

transactions. Sherri Menees provided editorial assistance for

this paper, and Maurice Herlihy, David Nichols, and Rick Rashid

provided helpful comments.

References

[AIIchin and McKendry 83] J.E. Allchin, M.S. McKendry.
Synchronization and Recovery of Actions. In
Proceedings of the Second Annual Symposium on Prin-
ciples of Distributed Computing, pages 31.44. ACM, Au-
gust, 1983.

[Anonymous et al. 85] Anonymous, et al. A Measure of Trans-
action Processing.Power. Datamation 31(7), April, 1985.
Also available as Technical Report TR 85.2, Tandem
Corporation, Cupertino, California, January 1985.

[Banatre et al. 83] J.P. Banatre, M. Banatre, F. Ployette.
Construction of a Distributed System Supporting Atomic
Transactions. In Proceedings of the Third Symposium
on Reliability in Distributed Software and Database
Systems. IEEE, October, 1983.

[Bernstein and Goodman 81] Philip A. Bernstein, Nathan Good-
man. Concurrency Control in Distributed Database
Systems. ACM Computing Surveys 13(2):185-221, June,
1981.

[Birman et al. 83] K. P. Birman, D. Skeen, A. El Abbadi, W.C.
Dietrich, T. Raeuchle. Isis: An Environment for Con-
structing Fault-Tolerant Distributed Systems. Technical
Report 83-552, Cornell University, 1983.

[Birrell and Nelson 84] Andrew D. Birrell, Bruce J. Nelson.
Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems 2(1):39-59, February,
1984.

[Bloch et al. 84] Joshua J. Bloch, Dean S. Daniels, Alfred
Z. Spector. Weighted Voting for Directories: A Compre-
hensive Study. Technical Report CMU-CS.84-114,
Carnegie-Mellon University, April, 1984.

[Cheriton 84a] David R. Cheriton. The V Kernel: A Software
Base for Distributed Systems. IEEE Software 1(2):186-
213, April, 1984.

[Cheriton 84b] David R. Cheriton. An Experiment using Regis-
ters for Fast Message.Based Interprocess Communioa.
tion. Operating Systems Review 18(4):12-20, October,
1984.

[Dahl and Hoare 72] O.J. Dahl, C. A. R. Hoare. Hierarchical
Program Structures. In C. A. R. Hoare (editor), A.P.I.C.
Studies in Data Processing. Volume 8: Structured
Programming, chapter 3, pages 175-220.Academic
Press, London and New York, 1972.

[Daniels 82] Dean S. Daniels. Query Compilation in a Distrib-
uted Database System. Master's thesis, Massachusetts
Institute of Technology, March, 1982.

[Daniels and Spector 83] Dean S. Daniels, Alfred Z. Spector. An
Algorithm for Replicated Directories. In Proceedings of
the Second Annual Symposium on Principles of Distrib-
uted Computing, pages 104-113. ACM, August, 198,3.

[Date83] C.J. Date. The System Programming Series: An In-
troduction to Database Systems Volume 2.
Addison-Wesley, Reading, MA, 1983.

[Department of Defense 82] Reference Manual for the Ada Pro-
gramming Language July 1982 edition, Department of
Defense, Ada Joint Program Office, Washington, DC,
1982.

144

[Diel et al. 84] Hans Diel, Gerald Kreissig, Norbet Lenz, Michael
Scheible, Bernd Schoener. Data Management Facilities
of an Operating System Kernel. In Sigmod '84, pages
58-69. June, 1984.

[Dwork and Skeen 83] Cynthia Dwork, Dale Skeen. The Inher-
ent Cost of Nonblocking Commitment. In Proceedings
of the Second Annual Symposium on Principles of Dis-
tributed Computing, pages 1-11. ACM, August, 1983.

[Eppinger and Spector 85] Jeffrey L. Eppinger, Alfred
Z. Spector. Virtual Memory Management for Recover-
able Objects in the TABS Prototype. Technical Report
CMU-CS-85-163, Carnegie.Mellon University, October,
1985. Forthcoming.

[Eswaran et al. 76] K.P. Eswaran, James N. Gray, Raymond
A. Lode, Irving L. Traiger. The Notions of Consistency
and Predicate Locks in a Database.System.
Communications of the ACM 19(11):624-633, November,
1976.

[Fabry 74] R.S. Fabry. Capability.Based Addressing.
Communications of the ACM 17(7):403-411, July, 1974.

[Fitzgerald and Rashid 86] Robert P. Fitzgerald, Richard
F. Rashid. The Integration of Virtual Memory Manage-
ment and Interprocess Communication in Accent. ACM
Transactions on Computer Systems 4(2), May, 1986. To
be presented at the Tenth Symposium on Operating
System Principles, Orcas Island, Washington, Decem-
ber, 1985.

[Gifford 79] David K. Gifford. Weighted Voting for Replicated
Data. In Proceedings of the Seventh Symposium on
Operating System Principles, pages 150-162. ACM, De-
cember, 1979.

[Gray 78] James N. Gray. Notes on Database Operating
Systems. In R. Bayer, R. M. Graham, G. Seegmuller (ed-
itors), Lecture Notes in Computer Science. Volume 60:
Operating Systems - An Advanced Course, pages
393-481 .Springer-Verlag, 1978. Also available as Tech-
nical Report RJ2188, IBM Research Laboratory, San
Jose, California, 1978.

[Gray 80] James N. Gray. A Transaction Mode/. Technical
Report RJ2895, IBM Research Laboratory, San Jose,
California, August, 1980.

[Gray et al. 81] James N. Gray, et al. The Recovery Manager of
the System R Database Manager. ACM Computing
Surveys 13(2):223-242, June, 1981.

[Haerder and Reuter 83] Theo Haerder, Andreas Reuter.
Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys 15(4):287-318, December,
1983.

[Herlihy 84] Maurice P. Herlihy. Genera/Quorum Consensus: A
Replication Method for Abstract Data Types. Technical
Report CMU-CS-84-164, Carnegie-Mellon University, De-
cember, 1984.

[IBM Corporation 78] Customer Information Control
System/Virtual Storage,/ntroduction to Program Logic
SC33-0067-1 edition, IBM Corporation, 1978.

[Jensen and Pleszkoch 84] E.D. Jensen, N. Pleszkoch.
ArchOS: A Physically Dispersed Operating System. IEEE
Distributed Processing Technics/Committee Newsletter
, June, 1984.

[Jones et al. 85] Michael B. Jones. Richard F. Rashid, Mary
R. Thompson. Matchmaker: An Interface Specification
Language for Distributed Processing. In Proceedings of
the Twelfth Annual Symposium on Principles of Pro-
gramming Languages, pages 225-235. ACM, January,
1985.

[Joy et al. 83] William Joy, Eric Cooper, Robert Fabry, Samuel
Leffler, Kirk McKusick, David Mosher; 4.2 BSD System
/nterface Overview. Technical Report CSRG TR/5, Uni-
versity of California Berkeley, July, 1983.

[Korth 83] Henry F. Korth. Locking Primitives in a Database
System. Journal of the ACM 30(1):55-79, January, 1983.

[Lampson 81] Butler W. Lampson. Atomic Transactions. In
G. Goos and J. Hartmanis (editors), Lecture Notes in
Computer Science. Volume 105: Distributed Systems-
Architecture and/mp/ementation: An Advanced Course,
chapter 11,, pages 246-265.Springer-Verlag, 1981.

[Lansky 80] Amy L. Lansky. Pasmac -. A Macro Processorfor
Pascal Technical Report CSL-TN-174, Stanford Univer-
sity Computer Systems Laboratory, April, 1980.

[Lindsay et al. 79] Bruce G. Lindsay, et al. Notes on Distributed
Databases. Technical Report RJ2571, IBM Research
Laboratory, San Jose, California, July, 1979. Also ap-
pears in Droffen and Poole (editors), Distributed
Databases, Cambridge University Press, 1980.

[Lindsay et al. 84] Bruce G. Lindsay, Laura M. Haas, C. Mohan,
Paul F. Wilms, Robert A. Yost. Computation and Com-
munication in R*: A Distributed Database Manager.
ACM Transactions on Computer Systems 2(1):24-38,
February, 1984.

[Liskov 82] Barbara Liskov. On Linguistic Support for Distrib-
uted Programs. IEEE Transactions on Software
Engineering SE-8(3):203-210, May, 1982.

[Liskov84] Barbara Liskov. Overview of the Argus Language
and System. Programming Methodology Group Memo
40, Massachusetts Institute of Technology Laboratory
for Computer Science, February, 1984.

[Liskov and Herlihy 83] Barbara Liskov, Maurice Herlihy. Issues
in Process and Communication Structure for Distributed
Programs. In Proceedings of the Third Symposium on
Reliability in Distributed Software and Database
Systems. October, 1983.

[Liskov and Scheifler 82] Barbara Liskov, Robert Scheifler.
Guardians and Actions: Linguistic Support for Robust,
Distributed Programs..In Proceedings of the Ninth An-
nual Symposium on the Principles of Programming
Languages, pages 7-19. ACM, January, 1982.

[Liskov et al. 83] B. Liskov, M. Herlihy, P. Johnson, G. Leavent,
R. Scheifler, W. Weihl. Preliminary Argus Reference
Manual. Programming Methodology Group Memo 39,
Massachusetts Institute of Technology Laboratory for
Computer Science, October, 1983.

[Lomet 77] David B. Lomet. Process Structuring, Synchroniza-
tion, and Recovery Using Atomic Actions. ACM S/G-
PLAN Notices 12(3), March, 1977.

[Lorie 77] Raymond A. Lorie. Physical Integrity in a Large Seg-
mented Database. ACM Transactions on Database
Systems 2(1):91-104, March, 1977.

145

[Moss 81] J. Eliot B. Moss. Nested Transactions: An Approach
to Reliable Distributed Computing. PhD thesis, Massa-
chusetts Institute of Technology, April, 1981.

[Nelson 81] Bruce Jay Nelson. Remote Procedure Call. PhD
thesis, Carnegie-Mellon University, May, 1981. Available
as Technical Report CMU-CS-81-119a, Carnegie-Mellon
University.

[Obermarck 82] Ron Obermarck. Distributed Deadlock Detec-
tion Algorithm. ACM Transactions on Database Systems
7(2):187-208, June, 1982.

[Paxton 79] William H. Paxton. A Client-Based Transaction
System to Maintain Data Integrity. In Proceedings of the
Seventh Symposium on Operating System Principles,
pages 18-23. ACM, December, 1979.

[Perq Systems Corporation 84] Perq System Overview March
1984 edition, Perq Systems Corporation, Pittsburgh,
Pennsylvania, 1984.

[Rashid and Robertson 81] Richard Rashid, George Robertson.
Accent: A Communication Oriented Network Operating
System Kernel. In Proceedings of the Eighth Sympo-
sium on Operating System Principles, pages 64-75.
ACM, December, 1981.

[Reed 78] David P. Reed. Naming and Synchronization in a De-
centralized Computer System. PhD thesis, Massachu-
setts Institute of Technology, September, 1978.

[Reuter 64] Andreas Reuter. Performance Analysis of Recovery
Techniques. ACM Transactions on Database Systems
9(4):526-559, December, 1984.

[Saltzer 74] Jerome H. Saltzer. Protection and the Control of
Information in Multics. Communications of the ACM
17(7), July, 1974.

[Schwarz 84] Peter M. Schwarz. Transactions on Typed
Objects. PhD thesis, Carnegie-Mellon University, De-
cember, 1984. Available as Technical Report CMU-
CS-84-166, Carnegie-Mellon University.

[Schwarz and Spector 84] Peter M. Schwarz; Alfred Z. Spector.
Synchronizing Shared Abstract Types. ACM Trans-
actions on Computer Systems 2(3):223-250, August,
1984. Also available as Technical Report CMU-
CS-83-163, Carnegie-Mellon University, November 1988.

[Spector 82] Alfred Z. Spector. Performing Remote Operations
Efficiently on a Local Computer Network.
Communications of the ACM 25(4):246-260, April, 1982.

[Spector and Daniels 85] Alfred Z. Spector, Dean S. Daniels.
Performance Evaluation of Distributed Transaction Fa-
cilities. September, 1985.Presented at the Workshop on
High Performance Transaction Processing, Asilomar,
September, 1985.

[Spector and Schwarz 833] • Alfred Z. Spector, Peter M. Schwarz.
Transactions: A Construct for Reliable Distributed Com-
puting. Operating Systems Review 17(2):18-35, April,
1983. Also available as Technical Report CMU-
CS-82-143, Carnegie.Mellon University, January 1988.

[Spector et al. 85] Alfred Z. Spector, Jacob Butcher, Dean
S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger,
Charles E. Fineman, Abdelsalam Heddaya, Peter
M. Schwarz. Support for Distributed Transactions in the
TABS Prototype. IEEE Transactions on Software
Engineering SE-11(6):520-530, June, 1985. Also avail-
able in Proceedings of the Fourth Symposium on Relia-
bility in Distributed Software and Database Systems, Sil-
ver Springs, Maryland, IEEE, October, 1984 and as
Technical Report CMU-CS-84-132, Carnegie-Mellon Uni-
versity, July, 1984.

[Stonebraker84] Michael Stonebraker. Virtual Memory Trans-
action Management. Operating Systems Review 18(2):8-
16, April, 1984.

[Tandem 82] ENCOMPASS Distributed Data Management
System Tandem Computers, Inc., Cupertino, California,
1982.

[Traiger 82] Irving L. Traiger. Virtual Memory Management for
Database Systems. Technical Report RJ3489, IBM Re-
search Laboratory, San Jose, California, May, 1982.

[Watson 81] R.W. Watson. Distributed system architecture
model. In B.W. Lampson (editors), Lecture Notes in
Computer Science. Volume 105: Distributed Systems -
Architecture and Implementation: An Advanced Course,
chapter 2,, pages 10-43.Springer-Verlag, 1981.

[Weihl and Liskov 83] W. Weihl, B. Liskov. Specification and
Implementation of Resilient, Atomic Data Types. In
Symposium on Programming Language Issues in Soft-
ware Systems. June, 1983.

[Williams et al. 81] R. Williams, et al. R': An Overview of the
Architecture. IBM Research Report RJ3325, IBM Re-
search Laboratory, San Jose, California, December,
1981.

[Wulf et al. 74] W.A. Wulf, E. Cohen, W. Corwin, A. Jones,
R. Levin, C. Pierson, F. Pollack. HYDRA: The Kernel of a
Muiltiprocessor Operating System. Communications of
the ACM 17(6):337-345, June, 1974.

146

