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ABSTRACT 

Parallel programs differ from sequential programs primarily in that the temporal rela- 
tionsbips between events are ouly partially defined. However, for a given distributed 
computation, debugging utilities typically linearize the observed set of events into a total 
ordering, thus losing information and allowing potentially capturable temporal errors to 
escape detection. We explore use of the partially ordered relation “happened before” to 
augment both centralized and distributed parallel debuggers to ensure that such errors 
are always detected and that the results produced by the debugger are unaffected by the 
non-determinism inherent in the partial ordering. This greatly reduces the number of tests 
required during debugging. Assertions are based on time intervals, rather than treating 
events as dimensionless points. 

1. INTRODUCTION 

This paper presents techniques for reliably detecting temporal errors in a distributed program, where a 
“temporal error” is defined to be a violation of the intended partial ordering of events. This is proposed 
as a supplement to existing debugging utilities as a way of increasing their consistency in the face of 
non-determinism, and thus reduce the number of tests required for a programmer to be satisfied that a 
program is correct. 

As a compromise between efficieucy and usefulness the approach is developed methodically from 
first principles by starting with the simplest possible temporal relationship, “happened before”, for 
atomic, dimensionless eve&s, and extended to finite time intervals. The presentation is motivated by 
two styles of assertion, one event and one state-based. 

Two different implementations are considered. Firstly, a centralized system is discussed, based on 
existing debugging systems. A more attractive distributed approach is then presented which attempts 
to minimize the impact of the debugging code on the program under test. 

It is assumed that message-passing is the only form of inter-process communication. Both syn- 
chronous and asynchronous communication are discussed, although this work was originally motivated 
by consideration of synchronous systems. Note that we are only concerned with relative event orderings; 
no consideration is made of the issues associated with real-time or “performance” debugging. 

2. MOTIVATION 

Faced with a black-box parallel program and a set of assertions specifying the intended behaviour of the 
program, a natural approach to debugging is to insert an observer (or monitor) process which receives 
reports from the program under test and checks that the assertions hold [2]. The observer may or 
may not delay the program while checkiug the assertions. This philosophy also underlies those systems 
which display significant events on a graphics termiua.1 (where the onus is on the user to ensure that 
the program is seen to behave correctly) or those in which a linear truce is generated for post-mortem 
analysis [7]. 

This work was motivated by the observation that any such system implicitly totally orders the 
events of interest. This has a number of associat.ed problems. 

Firstly it is impossible for an observer process to distinguish between the case where the temporal 
ordering between two events is, and is not, enforced by a causal relationship: 
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Indeed it is even possible for an observer in an asynchronous system to perceive an incorrect total 
ordering due to “overtaking”, even if FIFO queueiug is guaranteed for each inter-process channel: 

event a 

i 
assume b precedes a 

(Admittedly this can not occur in the synchronous case, or if an asynchronous observer blocks the 
observed processes by the use of “ack” signals.) 

Additionally, the debugger itself may be non-deterministically affected by the (global time) inter- 
leaving of events. For exactly the same computation, with the same inputs, following the same control 
paths, and generating the same results, the debugger may produce different results due to differences 
in interleaving, and delays in reporting events. For example, assuming synchronous communication: 

b 

event a event a 

This forces the user to execute the same test again and again to ensure that the debugger has not 
missed a temporal error simply due to a fortuitous interleaving of events. Experience in this area has 
shown that it is necessary to run a particular test several times with different process priorities in the 
hopes of forcing an error to manifest itself [7]. It is important to note that this situation exists even 
with the use of reproducibility tools that do not totally order event traces (section 3.1). 

Also, the perceived ordering differs for each process in the system. This problem is inherent in 
any attempt to add avzriliary communications to a parallel system to distribute information about past 
events. As a degenerate example, two processes simply informing each other of events will inevitably 
infer different temporal orderings in the absence of any additional information: 

assume a precedes b assume b precedes a 

eventa f 1 event” 

Finally, the observer itself may alter the behaviour of the system being studied [9]. This so-called 
probe eflect [6] is particularly noticeable when t,he observer blocks processes. 

The stand taken here is that the interleaving of concurrent events should not affect the results 
produced by a parallel debugging system. Any pronouncement on the correctness, or otherwise, of a 
particular test must be valid for any possible event ordering defined by that computation. Additionally, 
the perceived event ordering must be consistent for all observers. 

We aim to achieve this by always working with the entire partial ordering of events defined by the 
computation, rather than a single, arbitrarily selected total ordering. 

3. BACKGROUND 

This section reviews related work on which the current presentation is based and defines some of the 
assumptions made. 

3.1 Reproducibility 

The value of reproducible tests for para,llel progmms as a means of controlling non-determinism during 
debugging is now widely recognized [16] and we accept it as a fundamental capability. This effectively 
allows efficiency issues to be disregarded by a.ssuming that the debugging tools are added to prerecorded 
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tests; in particular an observer can block monitored processes without altering the system behaviour 
D21. 

Reproducibility is assumed to exist in its least intrusive form in which each process separately 
records the non-deterministic choices made and uses them to guide later replay [4]. This ensures that 
the replayed computations follow the same control paths and that the partial ordering of events is 
preserved, but it is important to note that the global time interleaving is not necessarily duplicated 
each time the test is replayed. In practice this effect is noticeable if several processes write to the 
terminal screen; the interleaving of messages may be different each time the computation is replayed. 

It is further assumed that any observer processes or other auxiliary debugging code is not traced. 
Thus the debugger may see different event orcleriugs just as the user at the terminal does. A debugger 
may therefore still produce non-deterministic results despite reproducibility! 

3.2 Semantic Model 

We adopt Reisig’s semantic model in which a parallel program is defined as a partially ordered set of local 
states and actions [15]. There is no notion of global state. Each process is defined as a potentially infinite 
sequence of actions and their resultant states. An action is a single program statement (assignment, 
input, output) or a boolean guard. A synchronous message-pass is treated as a single, shared assignment 
action, A state consists of the current value of the program counter and the local variables for this 
process. We use “event” to denote a particular dynamic instance of a statically defined “action”. 

Thus for the following non-deterministic program (superscripts represent PC values), 

lx := 0; 2*[ x 5 10 + sx := x + 2 
0 c?x + 4skip] 

! y := 5; 6*[ c!y --) ‘y := y - l] 

assuming synchronous communication, one of the many possible computations defined is: 

(PC=5) + y := 5 + li (PC-7 -t __) . . . 
y=5) 

where state nodes are bracketed and action nodes are in italics. With asynchronous communication, 
the partial ordering becomes asymmetric, The semantics of the entire program consists of the union of 
all possible computations. 

3.3 Time Intervals 

Given this definition we distinguish two types of time interval that naturally arise. 
Firstly an event interval [13] maps directly onto a lexical code segment within a particular process. 

The simplest case is a single statement, but in general it is used to refer to a block of code (this is 
very natural in a language such as occamt with its clearly delineated block structure). It is assumed 
that there is some mechanism for labelling code segments with some unique identifier. For example a 
mutual exclusion problem could be represented by labelling each critical region of code and asserting 
that control is never in the two regions at the same time. Referring to the computation graphs presented 
above, an event interval is a contiguous segment defined by the first and last action nodes. 

A state interval is the period during WlJiCh some boolean predicate on a process state holds. In this 
case the endpoints of the interval are the first and last local state node in which the predicate is true. 
Note that a debugger attempting to test such a predicate must not attempt to use undefined variables 
as this is yet another way of possibly introducing non-determinism into the debugger output; there must 
be a special value for “undefined”. 

Note that in both cases an interval is local to a particular process. The intended meaning of 
defining a state interval such as t 2 y, where z and y are in different processes, is unclear and poses 
many implementation difficulties. Our definition is restricted so that it is always possible to tell locally 

t occam is a trade mark of the INMOS Group of Companies 
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whether a process is “in” an interval or not. It is only via the interval relations themselves that inter- 
process comparisons can be made. Also note that an interval definition does not necessarily define a 
unique segment of the graph-this can be achieved by indexing. 

One of the advantages of using intervals is that assertions are invariant under finite state repetition 
Ill]. Thus executing null statements has no effect on the assertion checker-this is not the case in 
systems that count the number of discrete states in which a predicate holds. 

3.4 “Happened Before” 

“Happened before” is a transitive, irreflexive relation that directly describes causality in a parallel 
system [lo]. Denoted n ---) b, it is true iff event a u occur before event b, in any possible interleaving 
defined by the computation in which the two events occurred. The relation holds in all of the following 
cases (horizontal arrows represent synchronous communication): 

We adopt + as the basis for interval assertions since it is the simplest possible temporal relation, 
and has been proven to be practically implementable (see below). Also, since it is a “past operator” it can 
be evaluated dynamically unlike “future operators” that require each computation to have successfully 
terminated before they can be tested [7]. 

3.4.1 Partially ordered clocks 

It is possible to implement partially ordered logical clocks for message-passing systems that allow events 
to be timestamped for later comparison, preserving the full set of relationships defined by + [5]. 

To achieve this each process maintains a clock consisting of a vector of integers, one element for 
each process in the network. The entire vector represents the current time and can be recorded to 
timestamp any event of interest (e.g. written to a trace file or sent to a monitor process). Each process 
ensures that its own vector element is incremented at least once between each atomic event (or at least 
before each event that will be timestamped). 

Since communication events define the inter-process temporal orderings in a parallel computation 
special action must be taken at i/o events. In the asynchronous case the sender of a signal piggybacks 
the current time on the outgoing message (and adds 1 to its own slot on the outgoing vector to allow 
for transit time). The recipient compares the vector received with its local time and sets each element 
in the local vector to be the larger of the two. Later, when two vectors are compared, the slots for the 
process owning the first event are checked and --3 holds only if the second timestamp has a larger value. 
Thus in the following example, 

d [4,0,41 

b 12.0.01 

we can determine that a + z (since 1 < 2), v -+ o (since 1 < 3) aud a -+ c (since 1 < 3). However, 
y(b + o) since 2 # 2, and ~(z + u) since 5 # 0. The algorithm is similar in the synchronous case, except 
that clock vectors are exchanged during communication (in line with the symmetry of the rendezvous). 

In effect the algorithm provides a way of labelling the action nodes in the computation graph. It can 
also be used to label state nodes, the only extension required being to “tick” the clocks immediately after 
the exchange in the synchronous case (so that the two local states immediately following communication 
do not receive the same timestamp). 

The algorithm overcomes the problems of different observers seeing different event interleavings and 
the inability of observer processes to detect causal relationships. By timestamping significant events 
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with partially ordered clock values, all debugging processes see an accurate, and identical, view of the 
computation graph (assuming that any debugging processes are not included in the clock algorithm). 

3.4.2 Distributed synchronization 

Since a + b relies on the ability of the first process to causally affect the second, we can say that 
the relation holds if it is possible to know, when b is executed, that Q has already occurred. Thus by 
piggybacking a flag indicating the completion of a onto all outgoing communications it is possible to 
check the assertion locally when b is executed without the need to add any extra communications (indeed 
there must be no other ways of distributing this information apart from the original communications). 
This approach has been exploited as a way of synchronizing access to shared resources in distributed 
networks [14], but it is equally suitable for error detection. 

It can be generalized to assertions of the form 

Vi . ai -P bi 

by having each process maintain auxiliary variables #a and #b representing the number of times events 
a and b have occurred respectively [3]. These event counters are carried on outgoing messages. The 
assertion may then be expressed as the global invariant 

#a 2 #b 

which is checked whenever either auxiliary variable changes. An error is signalled if the global invariant 
is ever false: 

event a 
(#a=2,#b=O) 

event a 
(#a=l,#b=o) 

3.5 Interval Relations 

event b Invariant is false. 
(#a=l,#b=2) Assertion fails! 

event b 
(#a=l,#b=l) 

Time intervals can be characterized by relations between their endpoints [l]. Using this as a start- 
ing point this section describes some interval relationships of interest that will motivate the following 
presentation. 

Firstly we define some shorthand notations based on -+. Following [lo], let a f, b denote ~(a -+ b). 
This includes the cases where a = b, b --+ u, and where u and b are incomparable in the partial ordering 
in which case a may occur before b. 

If there is no relationship between two events they may occur in either order, or be thought of as 
“potentially concurrent”. This is denoted a H b and is equivalent to a + b A b + a. 

Finally, let a *r) b denote a -+ b V a H b. This could be interpreted as “a could occur before, or 
equals, b” . Cases where this holds include: 

From these definitions we now define some interval relations. For an interval e, let Se and Ee 
represent the start and endpoints respectively. The interval relation precedes is defined as 

e precedes f E Ee + Sf 

In other words, “the whole of e must precede the whole of f, i.e. e must complete before f can begin” 
[13] in all possible global time interleavings. 
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A second interval relation which has an obvious application to mutual exclusion assertions is may 
overlap, defined as 

e and f may overlap E Se-+EfASf -,Ee 

Informally, this assertion holds if there is any possible interleaving that could result in these two intervals 
overlapping in global time. 

We also briefly refer to includes: 

e includes f z Se-+SfAEf +Ee 

4. CENTRALIZED ERROR DETECTION 

This section outlines the algorithm required for a central observer process to reliably detect temporal 
errors. Given reproducibility it is assumed that the observer can block processes. This makes it impos- 
sible to perceive an incorrect interleaving and we can concentrate on detecting those orderings that do 
exist. 

In summary the approach is: 
i) the program under test supports partially ordered clocks, 

ii) each time a process enters or leaves an interval, notification is sent to the observer, in- 
cluding a timestamp, 

iii) the observer checks that the user’s assertion still holds after each notification, using the 
timestamps to check temporal orderings that are not detectable from the interleaving of 
notifications. 

The following sections define this in more detail for the two types of interval. 

4.1 Event Intervals 

As a motivational example consider the assertion 

Vi . pi precedes qi II qi precedes pi+1 

where p and q are event intervals. This assertion states that p and q must proceed in a strict interleaving 
starting with p. In practice p can be thought of as a producer that creates some sort of structured object 
(e.g. a block of integers) and q a consumer that uses the entire object (e.g. adding a checksum to create 
a data packet). The two intervals must never operate on the shared object at the same time (e.g. there 
is a buffer process holding the block which the producer and consumer can manipulate one integer at a 
time). 

Care must be taken to ensure that the error detection code interacts correctly with the clock 
algorithm. To emphasize this we will make the clock code explicit; let %cV’ represent incrementing the 
local vector element, “etchange” the vector exchange and update (synchronous communication), and 
“nout’ the current value of the logical clock vector. Since the clock algorithm nominally timestamps 
event nodes we must ensure that the timestamp sent to the observer is that which “belongs” to the 
action statements delineating the interval. 

This is trivial in the case of sequential code as shown by the following pseudooccam code fragment 
which we assume has been labelled “e”: 

e: SEQ SEQ 
x := y 2icE 
2:=x+1 * observer ! Se; now 

SEQ 
x := y 
lick 

2:=x+1 
observer ! Ee; now 
tick 

Note that if “e” was a single statement, both the start and endpoints would have the same timestamp. 
Complications are introduced if the first or last event in the interval is a communications event, 

particularly if it is guarded. Since both “halves” of a synchronous communication event must have the 
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same timestamp, the clock exchange must be done before notification is sent to the observer. Taking 
some liberties with the occam syntax, the following transformation represents the code required to label 
a guarded command “f”: 

ALT lick 
f: x=0&c? y ALT 

d! z 3 x=0 & exchange 
observer ! Sk now 
c? y 
tick 
exchange 
d! 1; 
observer ! Efj now 
tick 

This reverses the clock exchange sequence from that described in [5], however as long as the first channel 
appearing in the exchange is that appearing in the original communication event, such a transformation 
cannot introduce deadlock, or change the semantics of the original program, since it does not alter 
the “committment” to communicate (this also holds for the’asynchronous case as long as FIFO signal 
queueing is guaranteed). 

Thus, looking at the exchange in more detail, the transformation for an output mirrors that for an 
input: 

c!x 3 c ! localvector d?y =$ d ? othervector 
c’ ? othervector d’ ! localvector 
merge vectors merge vectors 
. . . 
c! x h’3 y 

where c’ and d’ are the “reverse channels”. 
These transformations ensure that the start of an interval is reported to the observer immediately 

before it is entered. It is inadequate to notify the observer a.fter the first event in the interval since delays 
in reporting let the observer see invalid orderings despite blocking (unless it is assumed that reporting 
to the observer is an atomic part of each observed event [2], an assumption that makes it impossible to 
express our algorithms at the source level): 

A A A 

t 

9 

P 
1-I 

-21 ; 

-____ --_____.---_ 4 s&.a 

__r--______________ --_-_-__--_-_-_-__-._____ -----+, 

Ep+ sql 

producer ImITer consumer observer 

Although the timestamps could distinguish the discrepency, it makes the code for the observer much 
more complicated. 

We now briefly turn to the code required for the observer to detect an assertion violation in this 
example. Firstly note that the observer itself can maintain event counters for the four “meta-events” of 
interest. Given the restrictions described above the observer ~JI& see a valid ordering of these endpoint 
events. The only danger is that it cannot see &l event orderings, i.e. the inability to detect causal 
relationships. The observer must be ready to accept notification of any event at any time (otherwise it 
may introduce deadlock). Upon receiving this it checks that the event is “congruent with the partial 
order” [2], i.e. < Sp,Ep, Sp, Eq, Sp, . . . >, and that the appropriate “happened before” relationship 
enforces this. If not there is a potential error. Otherwise the implementation is very similar that of 
Baiardi et al. 

In the general case, it is even possible to check such assertions if notification is made asynchronously 
with unpredictable delays and signal overtaking. The observer must maintain an array of timestamps 
for each event, and each time notification has arrived for both operands of a + relation it can be directly 
checked. The disadvantage, of course, apart from complexity, is that no obvious bounds can be placed 
on the storage requirements. 
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4.2 State Intervals 

For state intervals the algorithm is slightly simpler since there are no shared nodes in the computation 
graph. 

For each interval s a boolean variable ins (initially false) is maintained which is true if the predicate 
defining the interval is currently true. Whenever any of the variables appearing in the interval definition 
could be changed (by assignment or input), the predicate is checked. If either of the interval endpoints 
has been reached, notification is sent to the observer. Thus for a state interval “3 defined as “2 > y” 
the code transformation is 

SEQ tick 
k := 1 SEQ 
x:=k+2 j k .- .- 1 
1 := 5 tick 

x:=x+2 
tick 
check 
1 := 5 
tick 

where check tests to see whether the predicate has been changed by the assignment: 

IF 
(NOT ina) AND x > y 

SEQ 
ina := true 
observer ! Ss; now 

in-a AND NOT (x > y) 

SEQ 
in-a := false 
observer ! Es; now 
. . . 

In the synchronous case the code following an input is equally simple 

c?x a SEQ 
exchange 
c?x 
tick 
check 

(In fact the tick before the check is not strictly necessary since an output cannot change the state of 
the sender so it would uot be possible for two state interval endpoints to receive the same timestamp 
anyway.) 

As an example, consider the following assertion 

$lg, h . g and h may overlap 

i.e. no instances of the state intervals g and h may ever overlap. 
The classic example is a traffic light controller consisting of two processes, one representing the 

EW and the other the NS signals. The desired safety property, of course, is that both sets of signals 
must not show “green” at the same time. We assume that each process has a local variable representing 
the current colour displayed. Messages are sent to the external environment (which is not part of the 
system under test, see section 6.1) to effect the actual colour changes. 

Again we note that an observer process cannot reliably detect this sort of error without a times- 
tamping mechanism. The following obviously violates the intended system behaviour, but the observer 
never “sees” both intervals being active at the same time: 

190 



IiW ObSerVer 

In this example the observer merely needs to maintain the four endpoint times and check that 
-(Sg v+ Eh ASh rr* Eg) holds each time one is updated (after they have all been initialized). There is 
no need to count events in this case since it does not matter which instance of each interval is currently 
active. 

Surprisingly the endpoints checked do not necessarily need to belong to the same interval instance 
as the following example shows: 

NS EW observer 

At the point marked with an asterisk the observer can detect that ~(d v* e AC -+ b) which captures the 
error, even though event d has overwritten event u! 

The centralized error detection algorithm is also suitable (albeit somewhat redundant) for intra- 
process debugging (i.e. when both intervals are in the same process), and for post-mortem analysis of 
a totally ordered trace (the observer can be thought of as reading a pre-prepared trace, rather than 
receiving dynamic notifications). 

5. DISTRIBUTED ERROR DETECTION 

A centralized observer process, with it numerous links into the network under study, is expensive and 
may be difficult to implement in an inflexible h/w environment. This section examines the possibility 
of distributing information only via existing communication channels so that errors can be detected 
locally, within the existing processes. 

In general the approach is: 
i) each process maintains monotonically increasing auxiliary variables representing the num- 

ber of times each endpoint has been passed, 
ii) current values are distributed via existing communications (bi-directionally during syn- 

chronous communication), 
iii) the global invariant defined by the assertion is checked whenever one of the aux vars 

changes. 
However, as we shall see, our second motivational example is difficult enough to require a different 

approach. 

5.1 Event Intervals 

The event interval example is actually easier to check without an observer (unfortunately this is not 
generally true). This is because the assertion can be expressed as a conjunction of-+ relations and it is 
therefore possible to guarantee failure if the following expression is ever true 

#&J > #EP v #SP > (#Eq + 1) 
As a disiunction this can be easily checked locally. 

The debugging code inserted closely follows that of section 4.1. Immediately before the first event, 
and after the last event of the interval the appropriate aux var is incremented and and the invariant 
checked. The same considerations must be given to communication events marking the endpoints of an 
interval. 
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It is also possible to report success as well as failure. In general, for an assertion of the form 
Vi . ei + bi success can be reported whenever #a and #b are greater than or equal to i, assuming that 
failure has not already been detected (we assume that ordinary execution is interrupted by the first 
failed instance). The user then sees a display of the form 

proven al + bl. 
proven a2 -P b2. 
a3 + b3 failed! 

This positive feedback can be very useful from the user’s point of view since each report that the 
assertion holds for a particular iteration is a confirmation that the assertion must hold for this case 
(while conversely a failure report states that an error m occur). 

5.2 State Intervals 

On the other hand, the state interval example is particularly difficult to check in the distributed case 
because an error is possible if there was w communication. Since the expression to check failure is a 
coniunction of -+ relations, communication is necessa.ry to detect failure. 

To overcome this we firstly make a general assumption regarding termination: when a set of pro- 
cesses all successfully terminate, the auxiliary variables are merged and the invariant checked. This 
ensures that disjoint parts of the computation graph are checked at program termination, and it also 
maps naturally to languages with nested parallelism so that, for example, s includes 2 will be correctly 
detected in the following, 

interval 6 
< > 

,,--‘----------“‘-‘--...---..*.-.-.-.*-..--~, 
,/ ‘. 

,’ .--.“....**-.*.--.-~ “3 .-_-_-___ _-_-_ _-__-) 
*-_ k 

1 
‘. ,.*’ 

‘..----..---.-....-.------------------------~’ 

where the dotted lines represent control flow. This assumption means that we can guarantee that a 
temporal error fl be detected if the computation is allowed to run to completion (analogous to a proof 
of partial correctness). 

Instead of event counters each process maintains an auxiliary variable lasllines for each interval 
s representing the last time that the predicate was true. For simplicity assume that this “time” is 
implemented using partially ordered clocks (the full generality of the clock algorithm is not necessary 
and since the logical clocks are themselves merely event counters, an extension to the endpoint counter 
variables could be used). Theoretically /aslAmes is set to now whenever the predicate holds for the 
current local state, but efficiency can be improved by only re-setting it at the following points: 

i) when the interval is entered, 
ii) when the interval is left, and 

iii) immediately before a communication event or process termination, if we are currently “in” the 
interval. 

In this last case this must be done before the clock vectors are merged so that the two local states 
have different timestamps. It does not hurt to redundantly set the variable at any point, so it is not 
neccessary to ensure that communication yilJ take place if it is not clear whether an i/o event will be 
selected at a non-deterministic choice. The current values of these auxiliary variables are distributed 
via existing communications as usual. Thus ifs is defined as y = 5, 

SEQ 
Y .- .- x 
z:=y+2 =k 
c? y 

SEQ 
tick 
y := x 
set last time 
check 
tic.4 
z:=y+2 
set last time 
exchange aux vars 
check 
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tick 
c?y 
set last lime . . . 

where set last time sets last-times to now if y = 5, exchange aut uars swaps and merges the auxiliary 
variables, and check tests the assertion. 

Returning to the traffic light example, note that in terms of the semantic model, the assertion states 
that there must never be two local states u and v in which the predicates g and h hold respectively such 
that u w u. Therefore it is merely necessary to check the invariant 

-(lastAime-g * last-time-h) 

whenever either auxiliary variable changes. 
Overall, the distributed algorithm is simpler than the centralized case since the communications 

that define temporal relationships are the only means of distributing information. The global time 
interleaving therefore cannot have any effect on the results produced. In the centralized case, or whenever 
a debugger introduces additional communications, considerable effort must be expended on determining 
the original temporal relationships. 

6. DISCUSSION AND FUTURE WORK 

This section discusses unsolved problems and indicates directions for future work. 

6.1 Assertion Language 

For the purposes of this paper we have been deliberately evasive about exactly which language is used 
to express temporal assertions. In fact one of the aims of this work is to determine which language 
is most suitable. Ideally it should also be amenable to formal verification. A number of alternatives 
already exist, but each has drawbacks: 

l Temporal logic is by far the most obvious choice, however since in its most common form it is based 
on operators that quantify over an infinite number of future states (henceforth and eventually), its 
applicability to dynamic evaluation during execution is unclear. One approach is to assume that 
the program wilJ terminate and perform post-mortem analysis [7]. 

l For their debugger, Baiardi et al define a language based on observable communication events with 
operators for sequence, iteration, non-deterministic choice, etc. Our main objection to this language 
is that the assertions merely tend to parrot the original code. As shown by the examples in [2], the 
assertions map directly onto the original code, and in some cases are even bulkier. 

l A totally new approach called “timesets” was proposed by Lamport in [ll]. This paper influenced 
the work herein to some extent, but its reliance on a notion of global state does not match our 
semantic model. 

l Hoare [8] expresses temporal relations as global invariants on trace lengths, however this is a very 
low level approach that maps directly onto the use of auxiliary event counter variables. 

6.2 Global vs. “Observable” Time 

We have assumed a notion of global time that allows us to say that the following two intervals overlap: 

Arguably, however, this should not be considered true unless there is a process in the network that can 
observe this-with respect to what do they overlap ? In the traffic light example there is no danger 
unless there is a process (the external environment) that is capable of “seeing” both lights green. This 
assumption greatly simplifies the distributed implementation, but we have avoided it for two reasons. 
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Firstly it seems counter-intuitive and prevents us from making assertions of the form that two 
intervals may overlap (in global time) which could be used to check that the desired level of concurrency 
is being achieved, i.e. the user wants to check that two intervals m unordered. 

Secondly it means that the system under test must be “closed”, with no communication to the 
environment. In the traffic light example a process must be added to simulate the environment since 
this is the only place where the mutual exclusion violation may be detected. This contradicts the aim 
of the distributed algorithm to avoid changing the communications graph. 

6.3 Early Error Detection 

Neither approach considered herein can detect an error at the earliest possible point. Communica- 
tion within intervals, for example, often allows temporal relationships to be detected without wait- 
ing for the endpoints to be reached. The distributed algorithm in particular is limited by available 
communications-disjoint parts of the computation graph may even prevent assertions being checked 
until program termination. A hybrid approach in which each process maintains event counters with 
attached partially ordered timestamps representing the last time they were updated can alleviate this 
problem in some cases, but the additional complexity seems to outweigh the advantages. 

7. CONCLUSION 

For a parallel computation, the debugger itself produces non-deterministic results. We have shown that 
it is possible to avoid this by treating each test as a partially ordered set of events, rather than totally 
ordered. Some applications have been illustrated by example. Experimentally, our interest has been 
focussed on the distributed implementation and some limited state interval tests have been developed 
using our local CSP simulator. This work continues at the time of writing. 

The author first became interested in this field while debugging a CSP program that generated 
graphical output (on a SUN workstation using Suncore primitives). A controller process initialized 
the graphics display, then a number’of processes drew on the screen, and the controller closed the 
“viewsurface”. During testing this program would non-deterministically crash towards the end of the 
computation (hence our initial interest in reproducibility). When finally tracked down the error was 
found to be due to insufficient synchronization between the controller and its subordinate processes, 
allowing the controller to attempt to close the display before all processes had finished writing to it. 
This hypothesis would have been immediately testable if we had had some easy way of asserting that 
the interval during which processes write precedes the shutdown procedure. 
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